Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nanocarrier Based Delivery of Berberine: A Critical Review on Pharmaceutical and Preclinical Characteristics of the Bioactive

Author(s): Mohd. Jawed Khan, Abdul Hafeez* and Mohd. Aftab Siddiqui

Volume 24, Issue 11, 2023

Published on: 03 February, 2023

Page: [1449 - 1464] Pages: 16

DOI: 10.2174/1389201024666230112141330

Price: $65

Abstract

Berberine (BBR) is an isoquinoline alkaloid with several therapeutic properties, including anti-microbial, anti-diarrhea, anti-viral, anti-inflammatory, antihypertensive, anti-tumor, and anti-diabetes. However, its low water solubility, low absorption, first-pass metabolism, nontargeting, and poor bioavailability represent major hurdles to its successful therapeutic applications. Hence, researchers have attempted to enhance the biological and pharmacological activity of BBR to overcome its drawbacks by encapsulation of BBR in micro and nano delivery systems. For the preparation of nanostructured carrier systems of BBR, a range of methods has been developed, and each method has its benefits and characteristics. This review critically describes different types of nanocarriers like liposomes, niosomes, ethosomes, nanoemulsions, polymeric nanoparticles, micelles, dendrimers, and silver and gold nanoparticles that have been used for encapsulation of BBR for different therapeutic applications. The various pharmaceutical characteristics (size, shape, entrapment efficiency, zeta potential, drug release, and drug permeation) of these BBR-loaded nanocarriers have been discussed systematically. Preclinical studies of BBR nanoformulations involving animal models are also discussed.

Graphical Abstract

[1]
Chen, W.H.; Pang, J.Y.; Qin, Y.; Peng, Q.; Cai, Z.; Jiang, Z.H. Synthesis of linked berberine dimers and their remarkably enhanced DNA-binding affinities. Bioorg. Med. Chem. Lett., 2005, 15(10), 2689-2692.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.098] [PMID: 15863343]
[2]
Singh, I.P.; Mahajan, S. Berberine and its derivatives: A patent review (2009 - 2012). Expert Opin. Ther. Pat., 2013, 23(2), 215-231.
[http://dx.doi.org/10.1517/13543776.2013.746314] [PMID: 23231038]
[3]
Tang, J.; Feng, Y.; Tsao, S.; Wang, N.; Curtain, R.; Wang, Y. Berberine and Coptidis rhizoma as novel antineoplastic agents: A review of traditional use and biomedical investigations. J. Ethnopharmacol., 2009, 126(1), 5-17.
[http://dx.doi.org/10.1016/j.jep.2009.08.009] [PMID: 19686830]
[4]
Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol., 2012, 84(10), 1260-1267.
[http://dx.doi.org/10.1016/j.bcp.2012.07.018] [PMID: 22842630]
[5]
Andola, H.C.; Gaira, K.S.; Rawal, R.S.; Rawat, M.S.M.; Bhatt, I.D. Habitat-dependent variations in berberine content of Berberis asiatica Roxb. ex. DC. in Kumaon, Western Himalaya. Chem. Biodivers., 2010, 7(2), 415-420.
[http://dx.doi.org/10.1002/cbdv.200900041] [PMID: 20151388]
[6]
Imenshahidi, M.; Hosseinzadeh, H. Berberis vulgaris and berberine: an update review. Phytother. Res., 2016, 30(11), 1745-1764.
[http://dx.doi.org/10.1002/ptr.5693] [PMID: 27528198]
[7]
Akowuah, G.A.; Okechukwu, P.N.; Chiam, N.C. Evaluation of HPLC and spectrophotometric methods for analysis of bioactive constitu-ent berberine in stem extracts of Coscinium fenestratum. Acta Chromatogr., 2014, 26(2), 243-254.
[http://dx.doi.org/10.1556/AChrom.26.2014.2.4]
[8]
Babu, H.N.R.; Thriveni, H.N.; Vasudeva, R. Influence of drying methods and extraction procedures on the recovery of berberine content in Coscinium fenestratum. J. Nat. Prod. Plant Resour., 2012, 2(4), 540-544.
[9]
Liu, B.; Li, W.; Chang, Y.; Dong, W.; Ni, L. Extraction of berberine from rhizome of Coptis chinensis Franch using supercritical fluid extraction. J. Pharm. Biomed. Anal., 2006, 41(3), 1056-1060.
[http://dx.doi.org/10.1016/j.jpba.2006.01.034] [PMID: 16500064]
[10]
Liu, S.; Chen, Y.; Gu, L.; Li, Y.; Wang, B.; Hao, J.; Zhu, H.; Li, H.; Yang, S.; Kitanaka, S. Effects of ultrahigh pressure extraction condi-tions on yields of berberine and palmatine from cortex Phellodendri amurensis. Anal. Methods, 2013, 5(17), 4506-4512.
[http://dx.doi.org/10.1039/c3ay40784e]
[11]
Mokgadi, J.; Turner, C.; Torto, N. Pressurized hot water extraction of alkaloids in Goldenseal. Am. J. Anal. Chem., 2013, 2013
[http://dx.doi.org/10.4236/ajac.2013.48050]
[12]
Singh, R.; Katiyar, C.K.; Pasrija, A. Validated HPLC-UV method for the determination of berberine in raw herb Daruharidra (Berberis aristata DC), its extract, and in commercially marketed ayurvedic dosage forms. Int. J. Ayurveda Res., 2010, 1(4), 243-246.
[http://dx.doi.org/10.4103/0974-7788.76789] [PMID: 21455453]
[13]
Pfoze, N.L.; Myrboh, B.; Kumar, Y.; Rohman, M.R. Isolation of protoberberine alkaloids from stem bark of Mahonia manipurensis Takeda using RP-HPLC. Faslnamah-i Giyahan-i Daruyi, 2014, 2(2), 48-57.
[14]
Rojsanga, P.; Gritsanapan, W. Variation of berberine content in Coscinium fenestratum stem in Thailand Market. The Mahidol University. J. Pharm. Sci., 2005, 32(3-4), 66-70.
[15]
Teng, H.; Choi, Y.H. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from Rhizoma Coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chem., 2014, 142, 299-305.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.136] [PMID: 24001845]
[16]
Satija, S.; Bansal, P.; Dureja, H.; Garg, M. Microwave assisted extraction of Tinospora cordifolia and optimization through central compo-site design. J. Biol. Sci., 2015, 15(3), 106-115.
[http://dx.doi.org/10.3923/jbs.2015.106.115]
[17]
Samal, P.K. HPTLC analysis of berberine in Argemone mexicana. L. J. Global Trends Pharm. Sci., 2013, 4(2), 1073-1076.
[18]
Jain, S.K.; Patel, K.; Rajpoot, K.; Jain, A. Development of a berberine loaded multifunctional design for the treatment of helicobacter pylo-ri induced gastric ulcer. Drug Deliv. Lett., 2019, 9(1), 50-57.
[http://dx.doi.org/10.2174/2210303108666181120110756]
[19]
Xue, M.; Zhang, L.; Yang, M.; Zhang, W.; Li, X.; Ou, Z.; Li, Z.; Liu, S.; Li, X.; Yang, S. Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int. J. Nanomedicine, 2015, 10, 5049-5057.
[http://dx.doi.org/10.2147/IJN.S84565] [PMID: 26346310]
[20]
Ahmed, T.; Gilani, A.H.; Abdollahi, M.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Berberine and neurodegeneration: A review of literature. Pharmacol. Rep., 2015, 67(5), 970-979.
[http://dx.doi.org/10.1016/j.pharep.2015.03.002] [PMID: 26398393]
[21]
Wang, Z.; Wang, Y.; Chang, Z.; Li, L.; Zhang, Y.; Lu, M.; Zheng, X.; Li, M.; Shao, D.; Li, J.; Chen, L.; Dong, W. Berberine-loaded Janus nanocarriers for magnetic field-enhanced therapy against hepatocellular carcinoma. Chem. Biol. Drug Des., 2017, 89(3), 464-469.
[http://dx.doi.org/10.1111/cbdd.12866] [PMID: 27618577]
[22]
Peng, L.; Kang, S.; Yin, Z.; Jia, R.; Song, X.; Li, L.; Li, Z.; Zou, Y.; Liang, X.; Li, L.; He, C.; Ye, G.; Yin, L.; Shi, F.; Lv, C.; Jing, B. Anti-bacterial activity and mechanism of berberine against Streptococcus agalactiae. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5217-5223.
[PMID: 26191220]
[23]
Dkhil, M.A.; Al-Quraishy, S.; Al-Shamrany, A.; Alazzouni, A.S.; Lubbad, M.Y.; Al-Shaebi, E.M.; Taib, N.T. Protective effect of berberine chloride on Plasmodium chabaudi-induced hepatic tissue injury in mice. Saudi J. Biol. Sci., 2015, 22(5), 551-555.
[http://dx.doi.org/10.1016/j.sjbs.2014.11.023] [PMID: 26288557]
[24]
Kulkarni, S.K.; Dhir, A. On the mechanism of antidepressant-like action of berberine chloride. Eur. J. Pharmacol., 2008, 589(1-3), 163-172.
[http://dx.doi.org/10.1016/j.ejphar.2008.05.043] [PMID: 18585703]
[25]
Mojarad, T.B.; Roghani, M. The anticonvulsant and antioxidant effects of berberine in kainate-induced temporal lobe epilepsy in rats. Basic Clin. Neurosci., 2014, 5(2), 124-130.
[PMID: 25337370]
[26]
Kim; Cho, K.H.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neu-ronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int. J. Mol. Med., 2014, 33(4), 870-878.
[http://dx.doi.org/10.3892/ijmm.2014.1656] [PMID: 24535622]
[27]
Wu, M.; Yang, S.; Wang, S.; Cao, Y.; Zhao, R.; Li, X.; Xing, Y.; Liu, L. Effect of berberine on atherosclerosis and gut microbiota modula-tion and their correlation in high-fat diet-fed ApoE−/− mice. Front. Pharmacol., 2020, 11, 223.
[http://dx.doi.org/10.3389/fphar.2020.00223] [PMID: 32231564]
[28]
Wang, Y.; Zidichouski, J.A. Update on the benefits and mechanisms of action of the bioactive vegetal alkaloid berberine on lipid metabolism and homeostasis. Cholesterol, 2018, 2018
[http://dx.doi.org/10.1155/2018/7173920]
[29]
Guo, Z.; Sun, H.; Zhang, H.; Zhang, Y. Anti-hypertensive and renoprotective effects of berberine in spontaneously hypertensive rats. Clin. Exp. Hypertens., 2015, 37(4), 332-339.
[http://dx.doi.org/10.3109/10641963.2014.972560] [PMID: 25867076]
[30]
Wei, W.; Zhao, H.; Wang, A.; Sui, M.; Liang, K.; Deng, H.; Ma, Y.; Zhang, Y.; Zhang, H.; Guan, Y. A clinical study on the short-term effect of berberine in comparison to metformin on the metabolic characteristics of women with polycystic ovary syndrome. Eur. J. Endocrinol., 2012, 166(1), 99-105.
[http://dx.doi.org/10.1530/EJE-11-0616] [PMID: 22019891]
[31]
Tang, L.Q.; Wei, W.; Chen, L.M.; Liu, S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J. Ethnopharmacol., 2006, 108(1), 109-115.
[http://dx.doi.org/10.1016/j.jep.2006.04.019] [PMID: 16759828]
[32]
Zhang, B.J.; Xu, D.; Guo, Y.; Ping, J.; Chen, L.; Wang, H. Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors. Clin. Exp. Pharmacol. Physiol., 2008, 35(3), 303-309.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04819.x] [PMID: 17973934]
[33]
Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Patil, B.S. The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur. J. Pharmacol., 2012, 688(1-3), 14-21.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.004] [PMID: 22617025]
[34]
Chen, W.; Miao, Y.Q.; Fan, D.J.; Yang, S.S.; Lin, X.; Meng, L.K.; Tang, X. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech, 2011, 12(2), 705-711.
[http://dx.doi.org/10.1208/s12249-011-9632-z] [PMID: 21637946]
[35]
Liu, Y.T.; Hao, H.P.; Xie, H.G.; Lai, L.; Wang, Q.; Liu, C.X.; Wang, G.J. Extensive intestinal first-pass elimination and predominant he-patic distribution of berberine explain its low plasma levels in rats. Drug Metab. Dispos., 2010, 38(10), 1779-1784.
[http://dx.doi.org/10.1124/dmd.110.033936] [PMID: 20634337]
[36]
Fratter, A.; De Servi, B. New oral delivery system to improve absorption of berberine: Likely interaction of cationized chitosan with PG-P pump. Int. J. Drug Deliv. Technol., 2014, 5(01), 33-42.
[37]
Laroui, H.; Dalmasso, G.; Nguyen, H.T.T.; Yan, Y.; Sitaraman, S.V.; Merlin, D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology, 2010, 138(3), 843-853.e2, 2.
[38]
Mazayen, Z.M.; Ghoneim, A.M.; Elbatanony, R.S.; Basalious, E.B.; Bendas, E.R. Pharmaceutical nanotechnology: From the bench to the market. Future Journal of Pharmaceutical Sciences, 2022, 8(1), 12.
[http://dx.doi.org/10.1186/s43094-022-00400-0] [PMID: 35071609]
[39]
Bamrungsap, S.; Zhao, Z.; Chen, T.; Wang, L.; Li, C.; Fu, T.; Tan, W. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. Nanomedicine, 2012, 7(8), 1253-1271.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[40]
Lobatto, M.E.; Fuster, V.; Fayad, Z.A.; Mulder, W.J.M. Perspectives and opportunities for nanomedicine in the management of athero-sclerosis. Nat. Rev. Drug Discov., 2011, 10(11), 835-852.
[http://dx.doi.org/10.1038/nrd3578] [PMID: 22015921]
[41]
Amoabediny, G.; Haghiralsadat, F.; Naderinezhad, S.; Helder, M.N.; Akhoundi Kharanaghi, E.; Mohammadnejad Arough, J.; Zandieh-Doulabi, B. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehen-sive review. Int. J. Polym. Mater., 2018, 67(6), 383-400.
[http://dx.doi.org/10.1080/00914037.2017.1332623]
[42]
Wilson, D.R.; Sen, R.; Sunshine, J.C.; Pardoll, D.M.; Green, J.J.; Kim, Y.J. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomedicine, 2018, 14(2), 237-246.
[http://dx.doi.org/10.1016/j.nano.2017.10.013] [PMID: 29127039]
[43]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[44]
Shen, Z.; Nieh, M.P.; Li, Y. Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers (Basel), 2016, 8(3), 83.
[http://dx.doi.org/10.3390/polym8030083] [PMID: 30979183]
[45]
Yadav, N.; Rana, J.S.; Dahiya, T.; Chhillar, A.K.; Saini, H.M. Nanotechnology in cancer diagnostics and therapeutics: A review. Curr. Pharm. Biotechnol., 2022, 23(13), 1556-1568.
[http://dx.doi.org/10.2174/1389201023666211222165508] [PMID: 34951360]
[46]
Mirhadi, E.; Rezaee, M.; Malaekeh-Nikouei, B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed. Pharmacother., 2018, 104, 465-473.
[http://dx.doi.org/10.1016/j.biopha.2018.05.067] [PMID: 29793179]
[47]
Faraji, A.H.; Wipf, P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem., 2009, 17(8), 2950-2962.
[http://dx.doi.org/10.1016/j.bmc.2009.02.043] [PMID: 19299149]
[48]
Yang, F.; Jin, C.; Jiang, Y.; Li, J.; Di, Y.; Ni, Q.; Fu, D. Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside. Cancer Treat. Rev., 2011, 37(8), 633-642.
[http://dx.doi.org/10.1016/j.ctrv.2011.01.006] [PMID: 21330062]
[49]
Maherani, B.; Arab-Tehrany, E.; Mozafari, R.M.; Gaiani, C.; Linder, M. Liposomes: A review of manufacturing techniques and targeting strategies. Curr. Nanosci., 2011, 7(3), 436-452.
[http://dx.doi.org/10.2174/157341311795542453]
[50]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[51]
Lin, Y.C.; Kuo, J.Y.; Hsu, C.C.; Tsai, W.C.; Li, W.C.; Yu, M.C.; Wen, H.W. Optimizing manufacture of liposomal berberine with evalua-tion of its antihepatoma effects in a murine xenograft model. Int. J. Pharm., 2013, 441(1-2), 381-388.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.017] [PMID: 23220078]
[52]
Wang, X.; Wang, Q.; Liu, Z.; Zheng, X. Preparation, pharmacokinetics and tumour-suppressive activity of berberine liposomes. J. Pharm. Pharmacol., 2017, 69(6), 625-632.
[http://dx.doi.org/10.1111/jphp.12692] [PMID: 28295319]
[53]
Ma, X.; Zhou, J.; Zhang, C.X.; Li, X.Y.; Li, N.; Ju, R.J.; Shi, J.F.; Sun, M.G.; Zhao, W.Y.; Mu, L.M.; Yan, Y.; Lu, W.L. Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes. Biomaterials, 2013, 34(18), 4452-4465.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.066] [PMID: 23518403]
[54]
Sailor, G.; Seth, A.K.; Parmar, G.; Chauhan, S.; Javia, A. Formulation and in vitro evaluation of berberine containing liposome optimized by 32 full factorial designs. J. Appl. Pharm. Sci., 2015, 5(7), 23-28.
[55]
Calvo, A.; Moreno, E.; Larrea, E.; Sanmartín, C.; Irache, J.M.; Espuelas, S. Berberine-loaded liposomes for the treatment of Leishmania infantum-infected BALB/c mice. Pharmaceutics, 2020, 12(9), 858.
[http://dx.doi.org/10.3390/pharmaceutics12090858] [PMID: 32916948]
[56]
Jia, J.; Zhang, K.; Zhou, X.; Ma, J.; Liu, X.; Xiang, A.; Ge, F. Berberine-loaded solid proliposomes prepared using solution enhanced dispersion by supercritical CO2: Sustained release and bioavailability enhancement. J. Drug Deliv. Sci. Technol., 2019, 51, 356-363.
[http://dx.doi.org/10.1016/j.jddst.2019.03.021]
[57]
Luo, X.; Li, J.; Guo, L.; Cheng, X.; Zhang, T.; Deng, Y. Preparation of berberine hydrochloride long-circulating liposomes by ionophore A23187-mediated ZnSO4 gradient method. Asian Journal of Pharmaceutical Sciences, 2013, 8(4), 261-266.
[http://dx.doi.org/10.1016/j.ajps.2013.09.009]
[58]
Allijn, I.E.; Czarny, B.M.S.; Wang, X.; Chong, S.Y.; Weiler, M.; da Silva, A.E.; Metselaar, J.M.; Lam, C.S.P.; Pastorin, G.; de Kleijn, D.P.V.; Storm, G.; Wang, J.W.; Schiffelers, R.M. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocar-dial infarction. J. Control. Release, 2017, 247, 127-133.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.042] [PMID: 28065862]
[59]
Nguyen, T.X.; Huang, L.; Liu, L.; Elamin Abdalla, A.M.; Gauthier, M.; Yang, G. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(41), 7149-7159.
[http://dx.doi.org/10.1039/C4TB00876F] [PMID: 32261793]
[60]
Duong, T.T.; Isomäki, A.; Paaver, U.; Laidmäe, I.; Tõnisoo, A.; Yen, T.T.H.; Kogermann, K.; Raal, A.; Heinämäki, J.; Pham, T.M.H. Nanoformulation and evaluation of oral berberine-loaded liposomes. Molecules, 2021, 26(9), 2591.
[http://dx.doi.org/10.3390/molecules26092591] [PMID: 33946815]
[61]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[62]
Yücel, Ç.; Şeker Karatoprak, G.; Değim, İ.T. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J. Microencapsul., 2019, 36(2), 180-191.
[http://dx.doi.org/10.1080/02652048.2019.1617363] [PMID: 31070486]
[63]
Lin, H.; Lin, L.; Choi, Y.; Michniak-Kohn, B. Development and in-vitro evaluation of co-loaded berberine chloride and evodiamine ethosomes for treatment of melanoma. Int. J. Pharm., 2020, 581119278
[http://dx.doi.org/10.1016/j.ijpharm.2020.119278] [PMID: 32229284]
[64]
Sharma, D.; Ali, A.A.E.; Aate, J.R. Niosomes as novel drug delivery system. Pharmatutor, 2018, 6(3), 58-65.
[http://dx.doi.org/10.29161/PT.v6.i3.2018.58]
[65]
Gupta, D.K.; Aqil, M.; Ahad, A.; Imam, S.S.; Waheed, A.; Qadir, A.; Iqubal, M.K.; Sultana, Y. Tailoring of berberine loaded transnio-somes for the management of skin cancer in mice. J. Drug Deliv. Sci. Technol., 2020, 60102051
[http://dx.doi.org/10.1016/j.jddst.2020.102051]
[66]
Simonazzi, A.; Cid, A.G.; Villegas, M.; Romero, A.I.; Palma, S.D.; Bermúdez, J.M. Nanotechnology applications in drug controlled re-lease. In: Drug targeting and stimuli sensitive drug delivery systems; Elsevier: Amsterdam, 2018; pp. 81-116.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00003-3]
[67]
Li, Y.J.; Hu, X.B.; Lu, X.L.; Liao, D.H.; Tang, T.T.; Wu, J.Y.; Xiang, D.X. Nanoemulsion-based delivery system for enhanced oral bioa-vailability and Caco-2 cell monolayers permeability of berberine hydrochloride. Drug Deliv., 2017, 24(1), 1868-1873.
[http://dx.doi.org/10.1080/10717544.2017.1410257] [PMID: 29191058]
[68]
Xu, H.Y.; Liu, C.S.; Huang, C.L.; Chen, L.; Zheng, Y.R.; Huang, S.H.; Long, X.Y. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf. B Biointerfaces, 2019, 181, 927-934.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.006] [PMID: 31382342]
[69]
Pund, S.; Borade, G.; Rasve, G. Improvement of anti-inflammatory and anti-angiogenic activity of berberine by novel rapid dissolving nanoemulsifying technique. Phytomedicine, 2014, 21(3), 307-314.
[http://dx.doi.org/10.1016/j.phymed.2013.09.013] [PMID: 24176841]
[70]
Li, J.; Yang, L.; Shen, R.; Gong, L.; Tian, Z.; Qiu, H.; Shi, Z.; Gao, L.; Sun, H.; Zhang, G. Self-nanoemulsifying system improves oral absorption and enhances anti-acute myeloid leukemia activity of berberine. J. Nanobiotechnology, 2018, 16(1), 76.
[http://dx.doi.org/10.1186/s12951-018-0402-x] [PMID: 30290822]
[71]
Singh, P.K.; Iqubal, M.K.; Shukla, V.K.; Shuaib, M. Microemulsions: current trends in novel drug delivery systems. J. Pharm. Chem. Biol. Sci., 2014, 1(1), 39-51.
[72]
Pandey, V.; Kohli, S. Lipids and surfactants: The inside story of lipid-based drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(2), 99-155.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018016710] [PMID: 29717664]
[73]
Gull, A.; Ahmed, S.; Ahmad, F.J.; Nagaich, U.; Chandra, A. Hydrogel thickened microemulsion; a local cargo for the co-delivery of cin-namaldehyde and berberine to treat acne vulgaris. J. Drug Deliv. Sci. Technol., 2020, 58101835
[http://dx.doi.org/10.1016/j.jddst.2020.101835]
[74]
Zhu, J.X.; Tang, D.; Feng, L.; Zheng, Z.G.; Wang, R.S.; Wu, A.G.; Duan, T.T.; He, B.; Zhu, Q. Development of self-microemulsifying drug delivery system for oral bioavailability enhancement of berberine hydrochloride. Drug Dev. Ind. Pharm., 2013, 39(3), 499-506.
[http://dx.doi.org/10.3109/03639045.2012.683875] [PMID: 22563917]
[75]
Biswas, A.K.; Islam, M.R.; Choudhury, Z.S.; Mostafa, A.; Kadir, M.F. Nanotechnology based approaches in cancer therapeutics. Adv. Nat. Sci. Nanosci. Nanotechnol., 2014, 5(4)043001
[76]
Rudramurthy, G.; Swamy, M.; Sinniah, U.; Ghasemzadeh, A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules, 2016, 21(7), 836.
[http://dx.doi.org/10.3390/molecules21070836] [PMID: 27355939]
[77]
Pillai, O.; Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol., 2001, 5(4), 447-451.
[http://dx.doi.org/10.1016/S1367-5931(00)00227-1] [PMID: 11470609]
[78]
Pranke, P.; dos Santos, M.G.; Prestes, J.P. Nanopolymers: Powerful tools in neuroprotection and neuroregeneration. Curr. Nanosci., 2022, 18(6), 668-674.
[http://dx.doi.org/10.2174/1573413718666211217123809]
[79]
Ghaffarzadegan, R.; Khoee, S.; Rezazadeh, S. Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release. Daru, 2020, 28(1), 237-252.
[http://dx.doi.org/10.1007/s40199-020-00335-y] [PMID: 32307652]
[80]
Solanki, R.; Patel, K.; Patel, S. Bovine serum albumin nanoparticles for the efficient delivery of berberine: Preparation, characterization and in vitro biological studies. Colloids Surf. A Physicochem. Eng. Asp., 2021, 608125501
[http://dx.doi.org/10.1016/j.colsurfa.2020.125501]
[81]
Jin, J.; Xu, M.; Liu, Y.; Ji, Z.; Dai, K.; Zhang, L.; Wang, L.; Ye, F.; Chen, G.; Lv, Z. Alginate-based composite microspheres coated by berberine simultaneously improve hemostatic and antibacterial efficacy. Colloids Surf. B Biointerfaces, 2020, 194111168
[http://dx.doi.org/10.1016/j.colsurfb.2020.111168] [PMID: 32563918]
[82]
Kapoor, R.; Singh, S.; Tripathi, M.; Bhatnagar, P.; Kakkar, P.; Gupta, K.C. O-hexadecyl-dextran entrapped berberine nanoparticles abro-gate high glucose stress induced apoptosis in primary rat hepatocytes. PLoS One, 2014, 9(2)e89124
[http://dx.doi.org/10.1371/journal.pone.0089124] [PMID: 24586539]
[83]
Musumeci, T.; Bonaccorso, A.; Carbone, C.; Russo, G.; Pappalardo, F.; Puglisi, G. Design and optimization of PEGylated nanoparticles intended for Berberine chloride delivery. J. Drug Deliv. Sci. Technol., 2019, 52, 521-530.
[http://dx.doi.org/10.1016/j.jddst.2019.05.012]
[84]
Yu, F.; Ao, M.; Zheng, X.; Li, N.; Xia, J.; Li, Y.; Li, D.; Hou, Z.; Qi, Z.; Chen, X.D. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine–phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv., 2017, 24(1), 825-833.
[http://dx.doi.org/10.1080/10717544.2017.1321062] [PMID: 28509588]
[85]
Khemani, M.; Sharon, M.; Sharon, M. Encapsulation of berberine in nano-sized PLGA synthesized by emulsification method. Int. Sch. Res. Notices, 2012.
[86]
Khan, I.; Joshi, G.; Nakhate, K.T. Ajazuddin; Kumar, R.; Gupta, U. Nano-co-delivery of berberine and anticancer drug using PLGA nanoparticles: exploration of better anticancer activity and in vivo kinetics. Pharm. Res., 2019, 36(10), 149.
[http://dx.doi.org/10.1007/s11095-019-2677-5] [PMID: 31420752]
[87]
Zou, Q.; Li, Y.; Zhang, L.; Zuo, Y.; Li, J.; Li, J. Antibiotic delivery system using nano-hydroxyapatite/chitosan bone cement consisting of berberine. J. Biomed. Mater. Res. A, 2009, 89A(4), 1108-1117.
[http://dx.doi.org/10.1002/jbm.a.32199] [PMID: 18767062]
[88]
Lin, Y.H.; Lin, J.H.; Chou, S.C.; Chang, S.J.; Chung, C.C.; Chen, Y.S.; Chang, C.H. Berberine-loaded targeted nanoparticles as specific Helicobacter pylori eradication therapy: In vitro and in vivo study. Nanomedicine, 2015, 10(1), 57-71.
[http://dx.doi.org/10.2217/nnm.14.76] [PMID: 25177920]
[89]
Wu, S.J.; Don, T.M.; Lin, C.W.; Mi, F.L. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar. Drugs, 2014, 12(11), 5677-5697.
[http://dx.doi.org/10.3390/md12115677] [PMID: 25421323]
[90]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[91]
Wang, L.; Li, H.; Wang, S.; Liu, R.; Wu, Z.; Wang, C.; Wang, Y.; Chen, M. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech, 2014, 15(4), 834-844.
[http://dx.doi.org/10.1208/s12249-014-0112-0] [PMID: 24696391]
[92]
Sailor, G.U.; Ramani, V.D.; Shah, N.; Parmar, G.R.; Balaraman, R.; Seth, A. Design of experiment approach based formulation optimiza-tion of Berberine loaded solid lipid nanoparticle for antihyperlipidemic activity. Indian J. Pharm. Sci., 2021, 83(2), 204-218.
[93]
Sharma, G.; Thakur, K.; Raza, K.; Singh, B.; Katare, O.P. Nanostructured lipid carriers: A new paradigm in topical delivery for dermal and transdermal applications. Crit. Rev. Ther. Drug Carrier Syst., 2017, 34(4), 355-386.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017019047] [PMID: 29199589]
[94]
Liu, D.; Liu, Z.; Wang, L.; Zhang, C.; Zhang, N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces, 2011, 85(2), 262-269.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.038] [PMID: 21435845]
[95]
Parkin, D.M.; Bray, F.I.; Devesa, S.S. Cancer burden in the year 2000. The global picture. Eur. J. Cancer, 2001, 37(Suppl. 8), 4-66.
[http://dx.doi.org/10.1016/S0959-8049(01)00267-2] [PMID: 11602373]
[96]
Wang, Z.P.; Wu, J.; Chen, T.S.; Zhou, Q.; Wang, Y.F. In vitro and in vivo antitumor efficacy of berberine-nanostructured lipid carriers against H22 tumor; Biophotonics and Immune Responses, 2015, p. 9324.
[97]
Meng, X.P.; Fan, H.; Wang, Y.F.; Wang, Z.P.; Chen, T.S. Antihepatocarcinoma effects of Berberine-nanostructured lipid carriers against human HepG2, Huh7, and EC9706 cancer cell lines. In: Optics in Health Care and Biomedical Optics VII; , 2016; 10024, p. 1002417.
[98]
Yin, J.; Hou, Y.; Yin, Y.; Song, X. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a syn-ergic hypoglycemic effect. Int. J. Nanomedicine, 2017, 12, 8671-8680.
[http://dx.doi.org/10.2147/IJN.S144615] [PMID: 29263662]
[99]
Deng, J.; Wu, Z.; Zhao, Z.; Wu, C.; Yuan, M.; Su, Z.; Wang, Y.; Wang, Z. Berberine-loaded nanostructured lipid carriers enhance the treatment of ulcerative colitis. Int. J. Nanomedicine, 2020, 15, 3937-3951.
[http://dx.doi.org/10.2147/IJN.S247406] [PMID: 32581538]
[100]
Agrawal, R.D.; Tatode, A.A.; Rarokar, N.R.; Umekar, M.J. Polymeric micelle as a nanocarrier for delivery of therapeutic agents: A com-prehensive review. J. Drug Deliv. Ther., 2020, 10(1-s), 191-195.
[http://dx.doi.org/10.22270/jddt.v10i1-s.3850]
[101]
Fan, X.; Xu, M.; Leung, E.L.H.; Jun, C.; Yuan, Z.; Liu, L. ROS-responsive berberine polymeric micelles effectively suppressed the in-flammation of rheumatoid arthritis by targeting mitochondria. Nano-Micro Lett., 2020, 12(1), 76.
[http://dx.doi.org/10.1007/s40820-020-0410-x] [PMID: 34138288]
[102]
Shen, R.; Kim, J.J.; Yao, M.; Elbayoumi, T.A. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succin-ate-mixed polymeric phospholipid micelles of Berberine as an anticancer nanopharmaceutical. Int. J. Nanomedicine, 2016, 11, 1687-1700.
[PMID: 27217747]
[103]
Wang, T.; Wang, N.; Song, H.; Xi, X.; Wang, J.; Hao, A.; Li, T. Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine. Eur. J. Pharm. Sci., 2011, 44(1-2), 127-135.
[http://dx.doi.org/10.1016/j.ejps.2011.06.015] [PMID: 21742030]
[104]
Niu, J.; Yuan, M.; Chen, C.; Wang, L.; Tang, Z.; Fan, Y.; Liu, X.; Ma, Y.J.; Gan, Y. Berberine-loaded thiolated pluronic f127 polymeric micelles for improving skin permeation and retention. Int. J. Nanomedicine, 2020, 15, 9987-10005.
[http://dx.doi.org/10.2147/IJN.S270336] [PMID: 33324058]
[105]
Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol., 2017, 8, 261.
[http://dx.doi.org/10.3389/fphar.2017.00261] [PMID: 28559844]
[106]
Gupta, L.; Sharma, A.K.; Gothwal, A.; Khan, M.S.; Khinchi, M.P.; Qayum, A.; Singh, S.K.; Gupta, U. Dendrimer encapsulated and conju-gated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int. J. Pharm., 2017, 528(1-2), 88-99.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.073] [PMID: 28533175]
[107]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[108]
Souza, C.R.; Oliveira, H.R.; Pinheiro, W.M.; Biswaro, L.S.; Azevedo, R.B.; Gomes, A.J.; Lunardi, C.N. Gold nanoparticle and berberine entrapped into hydrogel matrix as drug delivery system. J. Biomater. Nanobiotechnol., 2015, 6(1), 53-63.
[http://dx.doi.org/10.4236/jbnb.2015.61006]
[109]
Pandey, S.; Mewada, A.; Thakur, M.; Shah, R.; Oza, G.; Sharon, M. Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. Mater. Sci. Eng. C, 2013, 33(7), 3716-3722.
[http://dx.doi.org/10.1016/j.msec.2013.05.007] [PMID: 23910269]
[110]
Liu, Y.C.; Xu, C.; Ren, W.W.; Ke, Y.; Bai, A.M.; Hu, Y.J. Effect of berberine hydrochloride-functionalized gold nanoparticles on calf thymus DNA: A biophysical study. J. Biomol. Struct. Dyn., 2020, 38(13), 4025-4031.
[http://dx.doi.org/10.1080/07391102.2019.1683072] [PMID: 31630643]
[111]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[112]
Dziedzic, A.; Kubina, R.; Bułdak, R.; Skonieczna, M.; Cholewa, K. Silver nanoparticles exhibit the dose-dependent anti-proliferative effect against human squamous carcinoma cells attenuated in the presence of Berberine. Molecules, 2016, 21(3), 365.
[http://dx.doi.org/10.3390/molecules21030365] [PMID: 26999092]
[113]
Bhanumathi, R.; Vimala, K.; Shanthi, K.; Thangaraj, R.; Kannan, S. Bioformulation of silver nanoparticles as berberine carrier cum anti-cancer agent against breast cancer. New J. Chem., 2017, 41(23), 14466-14477.
[http://dx.doi.org/10.1039/C7NJ02531A]
[114]
Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35(18), 4969-4985.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.001] [PMID: 24674460]
[115]
Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release, 2016, 240, 109-126.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[116]
Vijayan, V.M.; Vasudevan, P.N.; Thomas, V. Polymeric nanogels for theranostic applications: A mini-review. Curr. Nanosci., 2020, 16(3), 392-398.
[http://dx.doi.org/10.2174/1573413715666190717145040]
[117]
Al-Awady, M.J.; Fauchet, A.; Greenway, G.M.; Paunov, V.N. Enhanced antimicrobial effect of berberine in nanogel carriers with cationic surface functionality. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(38), 7885-7897.
[http://dx.doi.org/10.1039/C7TB02262J] [PMID: 32264390]
[118]
Singh, M.; Devi, S.; Rana, V.S.; Mishra, B.B.; Kumar, J.; Ahluwalia, V. Delivery of phytochemicals by liposome cargos: Recent progress, challenges and opportunities. J. Microencapsul., 2019, 36(3), 215-235.
[http://dx.doi.org/10.1080/02652048.2019.1617361] [PMID: 31092084]
[119]
Davatgaran Taghipour, Y.; Hajialyani, M.; Naseri, R.; Hesari, M.; Mohammadi, P.; Stefanucci, A.; Mollica, A.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine, 2019, 14, 5303-5321.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy