Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Short Communication

Identification of Kaempferol as Viral Entry Inhibitor and DL-Arginine as Viral Replication Inhibitor from Selected Plants of Indian Traditional Medicine against COVID-19: An in silico Guided in vitro Approach

Author(s): Adithya Jayaprakashkamath, Maneesha Murali, Bhagyalakshmi Nair, Feby Benny, Rajalakshmi P. Mani, Darsana Suresh, Aneesh T. Presanna, Amrutha N. Areekkara and Lekshmi R. Nath*

Volume 19, Issue 4, 2023

Published on: 31 January, 2023

Page: [313 - 323] Pages: 11

DOI: 10.2174/1573409919666230112123213

Price: $65

Abstract

Background: Indian traditional medicinal plants are known for their great potential in combating viral diseases. Previously, we reported a systematic review approach of seven plausible traditional Indian medicinal plants against SARS-CoV-2.

Methods: Molecular docking was conducted with Biovia Discovery Studio. Three binding domains for spike glycoprotein (PDB IDs: 6LZG, 6M17, 6M0J) and one binding domain of RdRp (PDB ID: 7BTF) were used. Among 100 phytoconstituents listed from seven plants by the IMPPAT database used for virtual screening, the best six compounds were again filtered using Swiss ADME prediction and Lipinski's rule. Additionally, a pseudovirion assay was performed to study the interaction of SARS-CoV-2 S1-protein with the ACE 2 receptor to further confirm the effect.

Results: Chebulagic acid (52.06 Kcal/mol) and kaempferol (48.84 Kcal/mol) showed increased interaction energy compared to umifenovir (33.68 Kcal/mol) for the 6LZG binding domain of spike glycoprotein. Epicatechin gallate (36.95 Kcal/mol) and arachidic acid (26.09 Kcal/mol) showed equally comparable interaction energy compared to umifenovir (38.20 Kcal/mol) for the 6M17 binding domain of spike glycoprotein. Trihydroxychalcone (35.23 Kcal/mol) and kaempferol (36.96 Kcal/mol) showed equally comparable interaction energy with umifenovir (36.60 Kcal/mol) for 6M0J binding domain of spike glycoprotein. Upon analyzing the phytoconstituents against RdRp binding domain, DL-arginine (41.78 Kcal/mol) showed comparable results with the positive control remdesivir (47.61 Kcal/mol). ADME analysis performed using Swiss ADME revealed that kaempferol and DL arginine showed drug-like properties with appropriate pharmacokinetic parameters. Further in vitro analysis of kaempferol by pseudovirion assay confirmed an acceptable decrease of the lentiviral particles in transfected HEK293T-hACE2 cells.

Conclusion: The study highlights that kaempferol and DL-arginine could be the significant molecules to exhibit potent action against SARS-CoV-2 and its variants.

« Previous
Graphical Abstract

[1]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Allemailem, K.S.; Almatroudi, A.; Moustafa, M.F.; Hegazy, M.E.F. In silico evaluation of prospective anti-COVID-19 drug candidates as potential SARS-CoV-2 main protease inhibitors. Protein J., 2021, 40(3), 296-309.
[http://dx.doi.org/10.1007/s10930-020-09945-6] [PMID: 33387249]
[2]
Kumar, R.; Harilal, S.; Al-Sehemi, A.G.; Mathew, G.E.; Carradori, S.; Mathew, B. The chronicle of COVID-19 and possible strategies to curb the pandemic. Curr. Med. Chem., 2021, 28(15), 2852-2886.
[http://dx.doi.org/10.2174/0929867327666200702151018] [PMID: 32614740]
[3]
Mousavizadeh, L.; Ghasemi, S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect., 2021, 54(2), 159-163.
[http://dx.doi.org/10.1016/j.jmii.2020.03.022] [PMID: 32265180]
[4]
Tsankov, B.K.; Allaire, J.M.; Irvine, M.A.; Lopez, A.A.; Sauvé, L.J.; Vallance, B.A.; Jacobson, K. Severe COVID-19 infection and pediatric comorbidities: A systematic review and meta-analysis. Int. J. Infect. Dis., 2021, 103, 246-256.
[http://dx.doi.org/10.1016/j.ijid.2020.11.163] [PMID: 33227520]
[5]
Baby, B; Devan, AR; Nair, B; Nath, LR The impetus of COVID-19 in multiple organ affliction apart from respiratory infection: Pathogenesis, diagnostic measures and current treatment strategy. Infectious Disorders-Drug Targets., 2021, 21(4), 514-26.
[6]
Calabrese, F.; Pezzuto, F.; Fortarezza, F.; Hofman, P.; Kern, I.; Panizo, A.; von der Thüsen, J.; Timofeev, S.; Gorkiewicz, G.; Lunardi, F. Pulmonary pathology and COVID-19: Lessons from autopsy. The experience of european pulmonary pathologists. Virchows Arch., 2020, 477(3), 359-372.
[http://dx.doi.org/10.1007/s00428-020-02886-6] [PMID: 32642842]
[7]
Adithya, J.; Nair, B.; Aishwarya, T.S.; Nath, L.R. The plausible role of Indian traditional medicine in combating corona virus (SARS-CoV 2): A mini-review. Curr. Pharm. Biotechnol., 2021, 22(7), 906-919.
[http://dx.doi.org/10.2174/1389201021666200807111359] [PMID: 32767920]
[8]
Shree, P.; Mishra, P.; Selvaraj, C.; Singh, S.K.; Chaube, R.; Garg, N.; Tripathi, Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants -Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)-a molecular docking study. J. Biomol. Struct. Dyn., 2022, 40(1), 190-203.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[9]
Tharakan, A.; Shukla, H.; Benny, I.R.; Tharakan, M.; George, L.; Koshy, S. Immunomodulatory effect of Withania somnifera (Ashwagandha) extract-a randomized, double-blind, placebo controlled trial with an open label extension on healthy participants. J. Clin. Med., 2021, 10(16), 3644.
[http://dx.doi.org/10.3390/jcm10163644] [PMID: 34441940]
[10]
Dhama, K.; Sachan, S.; Khandia, R.; Munjal, A.; Iqbal, H.M.N.; Latheef, S.K.; Karthik, K.; Samad, H.A.; Tiwari, R.; Dadar, M. Medicinal and beneficial health applications of Tinospora cordifolia (Guduchi): A miraculous herb countering various diseases/disorders and its immunomodulatory effects. Recent Pat. Endocr. Metab. Immune Drug Discov., 2017, 10(2), 96-111.
[http://dx.doi.org/10.2174/1872214811666170301105101] [PMID: 28260522]
[11]
Jantan, I.; Haque, M.A.; Ilangkovan, M.; Arshad, L. An insight into the modulatory effects and mechanisms of action of phyllanthus species and their bioactive metabolites on the immune system. Front. Pharmacol., 2019, 10, 878.
[http://dx.doi.org/10.3389/fphar.2019.00878] [PMID: 31440162]
[12]
Pise, M.; Rudra, J.; Upadhyay, A. Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures. J. Nat. Sci. Biol. Med., 2015, 6(2), 415-420.
[http://dx.doi.org/10.4103/0976-9668.160025] [PMID: 26283842]
[13]
Bisht, D; Rashid, M; Arya, RK; Kumar, D; Chaudhary, SK; Rana, VS; Sethiya, NK. Revisiting liquorice (Glycyrrhiza glabra L.) as anti-inflammatory, antivirals and immunomodulators: Potential pharmacological applications with mechanistic insight. Phytomedicine Plus, 2021, 100206.
[14]
Jamshidi, N.; Cohen, M.M. The clinical efficacy and safety of Tulsi in humans: A systematic review of the literature. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/9217567] [PMID: 28400848]
[15]
Goel, A.; Singh, D.K.; Kumar, S.; Bhatia, A.K. Immunomodulating property of Ocimum sanctum by regulating the IL-2 production and its mRNA expression using rat’s splenocytes. Asian Pac. J. Trop. Med., 2010, 3(1), 8-12.
[http://dx.doi.org/10.1016/S1995-7645(10)60021-1]
[16]
Sharma, G.; Regmi, S.; Lamichhane, R.; Bhetwal, H.; Subedi, S.; Timilsina, S.; Thapa, S. Phytoconstituents, conventional and chemical uses of Tulsi: A review. Asian J. Pharmacogn., 2021, 4(1), 17-23.
[17]
Wylie, M.R.; Merrell, D.S. The antimicrobial potential of the neem tree Azadirachta indica. Front. Pharmacol., 2022, 13, 891535.
[http://dx.doi.org/10.3389/fphar.2022.891535] [PMID: 35712721]
[18]
Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.P.; Chand, R.P.B.; Aparna, S.R.; Mangalapandi, P.; Samal, A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep., 2018, 8(1), 4329.
[http://dx.doi.org/10.1038/s41598-018-22631-z] [PMID: 29531263]
[19]
Irwin, J.J.; Shoichet, B.K. Zinc a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[20]
Siniprasad, P.; Nair, B.; Balasubramaniam, V.; Sadanandan, P.; Namboori, P.K.; Nath, L.R. Evaluation of Kaempferol as AKT dependent mTOR regulator via targeting FKBP-12 in hepatocellular carcinoma: An in silico approach. Lett. Drug Des. Discov., 2020, 17(11), 1401-1408.
[http://dx.doi.org/10.2174/1570180817999200623115703]
[21]
Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol., 2014, 32(1), 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[22]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[23]
Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[24]
Dahlin, J.L.; Inglese, J.; Walters, M.A. Mitigating risk in academic preclinical drug discovery. Nat. Rev. Drug Discov., 2015, 14(4), 279-294.
[http://dx.doi.org/10.1038/nrd4578] [PMID: 25829283]
[25]
Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the rule of 5 and drugability. Adv. Drug Deliv. Rev., 2016, 101, 89-98.
[http://dx.doi.org/10.1016/j.addr.2016.05.007] [PMID: 27182629]
[26]
Adebayo, A.; Varzideh, F.; Wilson, S.; Gambardella, J.; Eacobacci, M.; Jankauskas, S.S.; Donkor, K.; Kansakar, U.; Trimarco, V.; Mone, P.; Lombardi, A.; Santulli, G. l-Arginine and COVID-19: An update. Nutrients, 2021, 13(11), 3951.
[http://dx.doi.org/10.3390/nu13113951] [PMID: 34836206]
[27]
Lupitha, S.S.; Darvin, P.; Chandrasekharan, A.; Varadarajan, S.N.; Divakaran, S.J.; Easwaran, S.; Nelson-Sathi, S.; Umasankar, P.K.; Jones, S.; Joseph, I.; Pillai, M.R.; Santhoshkumar, T.R. A rapid bead-based assay for screening of SARS-CoV-2 neutralizing antibodies. Antib. Ther., 2022, 5(2), 100-110.
[http://dx.doi.org/10.1093/abt/tbac007] [PMID: 35437514]
[28]
Nie, J.; Li, Q.; Wu, J.; Zhao, C.; Hao, H.; Liu, H.; Zhang, L.; Nie, L.; Qin, H.; Wang, M.; Lu, Q.; Li, X.; Sun, Q.; Liu, J.; Fan, C.; Huang, W.; Xu, M.; Wang, Y. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes Infect., 2020, 9(1), 680-686.
[http://dx.doi.org/10.1080/22221751.2020.1743767] [PMID: 32207377]
[29]
Goc, A.; Sumera, W.; Rath, M.; Niedzwiecki, A. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLoS One, 2021, 16(6), e0253489.
[http://dx.doi.org/10.1371/journal.pone.0253489] [PMID: 34138966]
[30]
Murali, M.; Nair, B.; v R, V.; T P, A.; Nath, L.R. Evaluation of the nimbamrithadhi panchathiktha kashayam against SARS CoV-2 based on network pharmacology and molecular docking analysis. Comb. Chem. High Throughput Screen., 2022, 26(2), 436-477.
[PMID: 35598237]
[31]
Kuriakose, A.; Nair, B.; Abdelgawad, M.A.; Adewum, A.T.; Soliman, M.E.S.; Mathew, B.; Nath, L.R. Evaluation of the active constituents of Nilavembu Kudineer for viral replication inhibition against SARS‐COV‐2: An approach to targeting RNA‐dependent RNA polymerase (RDRP). J. Food Biochem., 2022, e14367.
[http://dx.doi.org/10.1111/jfbc.14367] [PMID: 35994404]
[32]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[33]
Rampogu, S.; Rampogu Lemuel, M. Network based approach in the establishment of the relationship between type 2 diabetes mellitus and its complications at the molecular level coupled with molecular docking mechanism. BioMed Res. Int., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/6068437] [PMID: 27699170]
[34]
Giménez, B.G.; Santos, M.S.; Ferrarini, M.; Fernandes, J.P. Evaluation of blockbuster drugs under the rule-of-five. Pharmazie, 2010, 65(2), 148-152.
[PMID: 20225662]
[35]
Tuli, H.; Sood, S.; Pundir, A.; Choudhary, D.; Dhama, K.; Kaur, G.; Seth, P.; Vashishth, A.; Kumar, P. Molecular docking studies of apigenin, kaempferol, and quercetin as potential target against spike receptor protein of SARS COV. J. Exp. Biol. Agric. Sci., 2022, 10(1), 144-149.
[http://dx.doi.org/10.18006/2022.10(1).144.149]
[36]
Khan, A.; Heng, W.; Wang, Y.; Qiu, J.; Wei, X.; Peng, S.; Saleem, S.; Khan, M.; Ali, S.S.; Wei, D.Q. In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS‐COV ‐2 main protease (3CLPRO). Phytother. Res., 2021, 35(6), 2841-2845.
[http://dx.doi.org/10.1002/ptr.6998] [PMID: 33448101]
[37]
Schwarz, S; Sauter, D; Wang, K; Zhang, R; Sun, B; Karioti, A; Bilia, AR; Efferth, T; Schwarz, W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta medica, 2014, 80, 177-82.
[38]
Jiang, Y.; Xie, Y.Z.; Peng, C.W.; Yao, K.N.; Lin, X.Y.; Zhan, S.F.; Zhuang, H.F.; Huang, H.T.; Liu, X.H.; Huang, X.F.; Li, H. Modeling kaempferol as a potential pharmacological agent for COVID-19/PF co-occurrence based on bioinformatics and system pharmacological tools. Front. Pharmacol., 2022, 13, 865097.
[http://dx.doi.org/10.3389/fphar.2022.865097] [PMID: 35754492]
[39]
Rehman, M.T.; AlAjmi, M.F.; Hussain, A. Natural compounds as inhibitors of SARS-CoV-2 main protease (3CLpro): A molecular docking and simulation approach to combat COVID-19. Curr. Pharm. Des., 2021, 27(33), 3577-3589.
[http://dx.doi.org/10.2174/1381612826999201116195851] [PMID: 33200697]
[40]
Fiorentino, G.; Coppola, A.; Izzo, R.; Annunziata, A.; Bernardo, M.; Lombardi, A.; Trimarco, V.; Santulli, G.; Trimarco, B. Effects of adding L-arginine orally to standard therapy in patients with COVID-19: A randomized, double-blind, placebo-controlled, parallel-group trial. Results of the first interim analysis. EClinicalMedicine, 2021, 40, 101125.
[http://dx.doi.org/10.1016/j.eclinm.2021.101125] [PMID: 34522871]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy