Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Astragaloside IV (ASIV) Mediates Endothelial Progenitor Cell (EPC) Exosomal LINC01963 to Inhibit Pyroptosis and Oxidative Stress in High Glucose-impaired Endothelial Cells

Author(s): Wu Xiong, Xi Zhang*, Jian-da Zhou, Mei-xin Tan, Yu Liu, Yu Yan, Hua-Juan Lei, Jia-rui Peng, Wei Liu and Pei Tan

Volume 24, Issue 2, 2024

Published on: 24 February, 2023

Page: [252 - 263] Pages: 12

DOI: 10.2174/1566524023666230111163718

Price: $65

Abstract

Background: Hyperglycemia is widespread in the world’s population, increasing the risk of many diseases. This study aimed to explore the regulatory effect and mechanism of astragaloside IV (ASIV)-mediated endothelial progenitor cells (EPCs) exosomal LINC01963 in endothelial cells (HUVECs) impaired by high glucose.

Methods: Morphologies of exosomes were observed by light microscope and electron microscope. Immunofluorescence was used to identify EPCs and detect the expressions of caspase-1. LINC01963 was detected by quantitative reverse transcription PCR. NLRP3, ASC, and caspase-3 were detected by Western Blot. Nanoparticle tracking analysis was carried out to analyze the exosome diameter. High-throughput sequencing was applied to screen target lncRNAs. The proliferation of endothelial cells was measured by cell counting kit-8 assay. The apoptosis level of HUVECs was detected by flow cytometry and TdT-mediated dUTP Nick-End labeling. The levels of IL- 1β, IL-18, ROS, SOD, MDA, and LDH were measured by enzyme-linked immunosorbent assay.

Results: ASIV could promote the secretion of the EPC exosome. LINC01963 was obtained by high-throughput sequencing. It was observed that high glucose could inhibit the proliferation, reduce the level of SOD, the expression of NLRP3, ASC, and caspase- 1, increase the levels of IL-1β, IL-18, ROS, MDA, and LDH, and promote apoptosis of HUVECs. Whereas LINC01963 could inhibit the apoptosis of HUVECs, the increase the expression of NLRP3, ASC, and caspase-1, and decrease the levels of IL-1β, IL-18, ROS, MDA, and LDH.

Conclusion: EPCs exosomal LINC01963 play an inhibitory role in high glucoseinduced pyroptosis and oxidative stress of HUVECs. This study provides new ideas and directions for treating hyperglycemia and researching exosomal lncRNAs.

[1]
McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin 2001; 17(1): 107-24.
[http://dx.doi.org/10.1016/S0749-0704(05)70154-8] [PMID: 11219223]
[2]
Li H, Luo HY, Liu Q, et al. Intermittent high glucose exacerbates A-FABP activation and inflammatory response through TLR4-JNK signaling in THP-1 cells. J Immunol Res 2018; 2018: 1-9.
[http://dx.doi.org/10.1155/2018/1319272] [PMID: 29850615]
[3]
Moganti K, Li F, Schmuttermaier C, et al. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology 2017; 222(10): 952-9.
[http://dx.doi.org/10.1016/j.imbio.2016.07.006] [PMID: 27492721]
[4]
Vennard KC, Selen DJ, Gilbert MP. The management of hyperglycemia in noncritically ill hospitalized patients treated with continuous enteral or parenteral nutrition. Endocr Pract 2018; 24(10): 900-6.
[http://dx.doi.org/10.4158/EP-2018-0150] [PMID: 30035626]
[5]
Kovacs SB, Miao EA. Gasdermins: Effectors of pyroptosis. Trends Cell Biol 2017; 27(9): 673-84.
[http://dx.doi.org/10.1016/j.tcb.2017.05.005] [PMID: 28619472]
[6]
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol 2017; 17(3): 151-64.
[http://dx.doi.org/10.1038/nri.2016.147] [PMID: 28138137]
[7]
van der Poll T, Opal SM. Host–pathogen interactions in sepsis. Lancet Infect Dis 2008; 8(1): 32-43.
[http://dx.doi.org/10.1016/S1473-3099(07)70265-7] [PMID: 18063412]
[8]
Gu J, Huang W, Zhang W, et al. Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis. Int Immunopharmacol 2019; 75: 105832.
[http://dx.doi.org/10.1016/j.intimp.2019.105832] [PMID: 31473434]
[9]
Peluso I, Morabito G, Urban L, Ioannone F, Serafi M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets 2012; 12(4): 351-60.
[http://dx.doi.org/10.2174/187153012803832602] [PMID: 23061409]
[10]
Hu R, Wang M, Ni S, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol 2020; 867: 172797.
[http://dx.doi.org/10.1016/j.ejphar.2019.172797] [PMID: 31747547]
[11]
Zhang C, Syed TW, Liu R, Yu J. Role of endoplasmic reticulum stress, autophagy, and inflammation in cardiovascular disease. Front Cardiovasc Med 2017; 4: 29.
[http://dx.doi.org/10.3389/fcvm.2017.00029] [PMID: 28553639]
[12]
Hu YW, Zhao JY, Li SF, et al. RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. Arterioscler Thromb Vasc Biol 2015; 35(1): 87-101.
[http://dx.doi.org/10.1161/ATVBAHA.114.304296] [PMID: 25265644]
[13]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[14]
Sun Z, Yang S, Zhou Q, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer 2018; 17(1): 82.
[http://dx.doi.org/10.1186/s12943-018-0831-z] [PMID: 29678180]
[15]
Zhao R, Zhang Y, Zhang X, et al. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer 2018; 17(1): 68.
[http://dx.doi.org/10.1186/s12943-018-0817-x] [PMID: 29486794]
[16]
Jiang Q, Xue D, Shi F, Qiu J. Prognostic significance of an autophagy-related long non-coding RNA signature in patients with oral and oropharyngeal squamous cell carcinoma. Oncol Lett 2021; 21(1): 29.
[PMID: 33240435]
[17]
Jules J, Zhang P, Ashley JW, et al. Molecular basis of requirement of receptor activator of nuclear factor κB signaling for interleukin 1-mediated osteoclastogenesis. J Biol Chem 2012; 287(19): 15728-38.
[http://dx.doi.org/10.1074/jbc.M111.296228] [PMID: 22416138]
[18]
Kamei N, Atesok K, Ochi M. The use of endothelial progenitor cells for the regeneration of musculoskeletal and neural tissues. Stem Cells Int 2017; 2017: 1-7.
[http://dx.doi.org/10.1155/2017/1960804] [PMID: 28458693]
[19]
Cui Y, Fu S, Sun D, Xing J, Hou T, Wu X. EPC ‐derived exosomes promote osteoclastogenesis through Lnc RNA ‐ MALAT 1. J Cell Mol Med 2019; 23(6): 3843-54.
[http://dx.doi.org/10.1111/jcmm.14228] [PMID: 31025509]
[20]
Zhou Y, Li P, Goodwin AJ, et al. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol Ther 2018; 26(5): 1375-84.
[http://dx.doi.org/10.1016/j.ymthe.2018.02.020] [PMID: 29599080]
[21]
Qin Y, Zhang C. Endothelial progenitor cell-derived extracellular vesicle-meditated cell-to-cell communication regulates the proliferation and osteoblastic differentiation of bone mesenchymal stromal cells. Mol Med Rep 2017; 16(5): 7018-24.
[http://dx.doi.org/10.3892/mmr.2017.7403] [PMID: 28901383]
[22]
Hu H, Jiang C, Li R, Zhao J. Comparison of endothelial cell- and endothelial progenitor cell-derived exosomes in promoting vascular endothelial cell repair. Int J Clin Exp Pathol 2019; 12(7): 2793-800.
[PMID: 31934115]
[23]
Li L, Hou X, Xu R, Liu C, Tu M. Research review on the pharmacological effects of astragaloside IV. Fundam Clin Pharmacol 2017; 31(1): 17-36.
[http://dx.doi.org/10.1111/fcp.12232] [PMID: 27567103]
[24]
Qiao Y, Fan CL, Tang MK. Astragaloside IV protects rat retinal capillary endothelial cells against high glucose-induced oxidative injury. Drug Des Devel Ther 2017; 11: 3567-77.
[http://dx.doi.org/10.2147/DDDT.S152489] [PMID: 29263652]
[25]
You L, Fang Z, Shen G, et al. Astragaloside IV prevents high glucose induced cell apoptosis and inflammatory reactions through inhibition of the JNK pathway in human umbilical vein endothelial cells. Mol Med Rep 2019; 19(3): 1603-12.
[http://dx.doi.org/10.3892/mmr.2019.9812] [PMID: 30628687]
[26]
Xiong W, Bai X, Xiao H, et al. Effects of Astragaloside IV on exosome secretion and its microRNA-126 expression in human endothelial progenitor cells. Zhonghua Shao Shang Za Zhi 2020; 36(12): 1183-90.
[http://dx.doi.org/ 10.3760/cma.j.cn501120-20191222-00466] [PMID: 33379855 ]
[27]
Bao Z, Jiang C, Wang Z, et al. The influence of solvent formulations on thermosensitive hydroxybutyl chitosan hydrogel as a potential delivery matrix for cell therapy. Carbohydr Polym 2017; 170: 80-8.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.038] [PMID: 28522006]
[28]
Lee TY, Lu WJ, Changou CA, et al. Platelet autophagic machinery involved in thrombosis through a novel linkage of AMPK-MTOR to sphingolipid metabolism. Autophagy 2021; 17(12): 4141-58.
[http://dx.doi.org/10.1080/15548627.2021.1904495] [PMID: 33749503]
[29]
Wang Y, Zhao Y, Wang Z, et al. Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS. Front Immunol 2021; 12: 652782.
[http://dx.doi.org/10.3389/fimmu.2021.652782] [PMID: 34054813]
[30]
Song J, Chen M, Li Z, et al. Astragalus polysaccharide extends lifespan via mitigating endoplasmic reticulum stress in the silk-worm, Bombyx mori. Aging Dis 2019; 10(6): 1187-98.
[http://dx.doi.org/10.14336/AD.2019.0515] [PMID: 31788331]
[31]
Li K, Han H, Gu W, Cao C, Zheng P. Long non-coding RNA LINC01963 inhibits progression of pancreatic carcinoma by targeting miR-641/TMEFF2. Biomed Pharmacother 2020; 129: 110346.
[http://dx.doi.org/10.1016/j.biopha.2020.110346] [PMID: 32559621]
[32]
Maes T, Cobos FA, Schleich F, et al. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol 2016; 137(5): 1433-46.
[http://dx.doi.org/10.1016/j.jaci.2016.02.018] [PMID: 27155035]
[33]
Xu H, Ling M, Xue J, et al. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking. Theranostics 2018; 8(19): 5419-33.
[http://dx.doi.org/10.7150/thno.27876] [PMID: 30555555]
[34]
Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles 2015; 4(1): 28388.
[http://dx.doi.org/10.3402/jev.v4.28388] [PMID: 26563733]
[35]
Schwarz ERv, Busse N, Angelus KM, Omair A, Schwarz AAv, Bogaardt PC. Intracavernous injection of stem cell-derived bioactive molecules for erectile dysfunction—a pilot phase non-randomized controlled trial. JOMH 2021; 17(4): 99-108.
[36]
Mateescu B, Kowal EJK, van Balkom BWM, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. J Extracell Vesicles 2017; 6(1): 1286095.
[http://dx.doi.org/10.1080/20013078.2017.1286095] [PMID: 28326170]
[37]
Ramirez MI, Amorim MG, Gadelha C, et al. Technical challenges of working with extracellular vesicles. Nanoscale 2018; 10(3): 881-906.
[http://dx.doi.org/10.1039/C7NR08360B] [PMID: 29265147]
[38]
Fatima F, Ekstrom K, Nazarenko I, et al. Non-coding RNAs in mesenchymal stem cell-derived extracellular vesicles: Deciphering regulatory roles in stem cell potency, inflammatory resolve, and tissue regeneration. Front Genet 2017; 8: 161.
[http://dx.doi.org/10.3389/fgene.2017.00161] [PMID: 29123544]
[39]
Nawaz M. Extracellular vesicle-mediated transport of non-coding RNAs between stem cells and cancer cells: implications in tumor progression and therapeutic resistance. Stem Cell Investig 2017; 4(10): 83.
[http://dx.doi.org/10.21037/sci.2017.10.04] [PMID: 29167804]
[40]
Fatima F, Nawaz M. Vesiculated long non-coding RNAs: Offshore packages deciphering trans-regulation between cells, cancer progression and resistance to therapies. Noncoding RNA 2017; 3(1): 10.
[http://dx.doi.org/10.3390/ncrna3010010] [PMID: 29657282]
[41]
Xing Z, Li S, Xing J, Yu G, Wang G, Liu Z. Silencing of LINC01963 enhances the chemosensitivity of prostate cancer cells to docetaxel by targeting the miR-216b-5p/TrkB axis. Lab Invest 2022; 102(6): 602-12.
[http://dx.doi.org/10.1038/s41374-022-00736-4] [PMID: 35152275]
[42]
Nie Q, Zhu L, Zhang L, Leng B, Wang H. Astragaloside IV protects against hyperglycemia-induced vascular endothelial dys-function by inhibiting oxidative stress and Calpain-1 activation. Life Sci 2019; 232: 116662.
[http://dx.doi.org/10.1016/j.lfs.2019.116662] [PMID: 31323271]
[43]
Qian W, Cai X, Qian Q, et al. Astragaloside IV protects endothelial progenitor cells from the damage of ox-LDL via the LOX-1/NLRP3 inflammasome pathway. Drug Des Devel Ther 2019; 13: 2579-89.
[http://dx.doi.org/10.2147/DDDT.S207774] [PMID: 31440038]
[44]
Jia Y, Zheng Z, Wang Y, et al. SIRT1 is a regulator in high glucose-induced inflammatory response in RAW264.7 cells. PLoS One 2015; 10(3): e0120849.
[http://dx.doi.org/10.1371/journal.pone.0120849] [PMID: 25793995]
[45]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[46]
Nunes PR, Mattioli SV, Sandrim VC. NLRP3 activation and its relationship to endothelial dysfunction and oxidative stress: Implications for preeclampsia and pharmacological interventions. Cells 2021; 10(11): 2828.
[http://dx.doi.org/10.3390/cells10112828] [PMID: 34831052]
[47]
Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. Clin Chim Acta 2019; 488: 165-71.
[http://dx.doi.org/10.1016/j.cca.2018.11.009] [PMID: 30419221]
[48]
Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun 2014; 5(1): 5220.
[http://dx.doi.org/10.1038/ncomms6220] [PMID: 25330849]
[49]
Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, et al. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol Cell 2015; 60(4): 626-36.
[http://dx.doi.org/10.1016/j.molcel.2015.10.001] [PMID: 26590717]
[50]
Grelet S, Link LA, Howley B, et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol 2017; 19(9): 1105-15.
[http://dx.doi.org/10.1038/ncb3595] [PMID: 28825698]
[51]
Ahn JH, Lee HS, Lee JS, et al. nc886 is induced by TGF-β and suppresses the microRNA pathway in ovarian cancer. Nat Commun 2018; 9(1): 1166.
[http://dx.doi.org/10.1038/s41467-018-03556-7] [PMID: 29563500]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy