Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Clinical Utility of Soluble CD163 and its Diagnostic and Prognostic Value in a Variety of Neurological Disorders

Author(s): Maryam Rezaee, Fatemeh Foroutan, Leila Etemad, Vahid Razban, Amir Tajbakhsh* and Amir Savardashtaki*

Volume 23, Issue 16, 2023

Published on: 25 January, 2023

Page: [1592 - 1607] Pages: 16

DOI: 10.2174/1389557523666230106120302

Price: $65

Abstract

Nowadays, many people suffer from Neurological Diseases (NDs), particularly neurodegenerative diseases. Hence, there is an urgent need to discover new and more effective diagnostic and prognostic biomarkers as well as therapeutic strategies for the treatment of NDs. In this context, detecting biomarkers can provide helpful information on various levels of NDs. Up to now, there has been a lot of progress in recognizing these diseases, but they are not completely clear yet. NDs are associated with inflammatory conditions and there are several differences in NDs’ immune biomarkers compared to normal conditions. Among these biomarkers, soluble CD163 (sCD163) levels (as a new biomarker) increase in biofluids, relating to the activation of macrophage/microglia and inflammation levels in NDs. ADAM17/TACE and ADAM10 are the responsible enzymes for producing sCD163 from macrophages. Increased shedding of CD163 is caused by inflammatory stimuli, and a function has been hypothesized for sCD163 in immunological suppression. When the body confronts an inflammation or infection, the concentration of sCD163 drives up. sCD163 is stable and can be easily quantified in the serum. In addition to its role as a biomarker, sCD163 can be a good modulator of adaptive immune suppression after stroke. sCD163, with a long half-life, has been proposed to be a surrogate for some critical markers such as Tumor Necrosis Factor-α (TNF- α). Furthermore, sCD163 production can be regulated by some regents/approaches such as zidovudine, nanotechnology, combination antiretroviral treatment, and aprepitant. Considering the importance of the issue, the critical role of sCD163 in NDs was highlighted for novel diagnostic and prognostic purposes.

Graphical Abstract

[1]
Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2018, 10(4), a033118.
[http://dx.doi.org/10.1101/cshperspect.a033118] [PMID: 28716886]
[2]
Pereira, T.M.C.; Côco, L.Z.; Ton, A.M.M.; Meyrelles, S.S.; Campos-Toimil, M.; Campagnaro, B.P.; Vasquez, E.C. The emerging scenario of the gut–brain axis: The therapeutic actions of the new actor Kefir against neurodegenerative diseases. Antioxidants, 2021, 10(11), 1845.
[http://dx.doi.org/10.3390/antiox10111845] [PMID: 34829716]
[3]
DeLegge, M.H.; Smoke, A. Neurodegeneration and inflammation. Nutr. Clin. Pract., 2008, 23(1), 35-41.
[4]
Bianchi, V.E.; Herrera, P.F.; Laura, R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr. Neurosci., 2021, 24(10), 810-834.
[http://dx.doi.org/10.1080/1028415X.2019.1681088] [PMID: 31684843]
[5]
Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med., 2021, 27(6), 954-963.
[http://dx.doi.org/10.1038/s41591-021-01382-x] [PMID: 34083813]
[6]
Chung, C.G.; Lee, H.; Lee, S.B. Mechanisms of protein toxicity in neurodegenerative diseases. Cell. Mol. Life Sci., 2018, 75(17), 3159-3180.
[http://dx.doi.org/10.1007/s00018-018-2854-4] [PMID: 29947927]
[7]
Nabais, M.F.; Laws, S.M.; Lin, T.; Vallerga, C.L.; Armstrong, N.J.; Blair, I.P.; Kwok, J.B.; Mather, K.A.; Mellick, G.D.; Sachdev, P.S.; Wallace, L.; Henders, A.K.; Zwamborn, R.A.J.; Hop, P.J.; Lunnon, K.; Pishva, E.; Roubroeks, J.A.Y.; Soininen, H.; Tsolaki, M.; Mecocci, P.; Lovestone, S.; Kłoszewska, I.; Vellas, B.; Furlong, S.; Garton, F.C.; Henderson, R.D.; Mathers, S.; McCombe, P.A.; Needham, M.; Ngo, S.T.; Nicholson, G.; Pamphlett, R.; Rowe, D.B.; Steyn, F.J.; Williams, K.L.; Anderson, T.J.; Bentley, S.R.; Dalrymple-Alford, J.; Fowder, J.; Gratten, J.; Halliday, G.; Hickie, I.B.; Kennedy, M.; Lewis, S.J.G.; Montgomery, G.W.; Pearson, J.; Pitcher, T.L.; Silburn, P.; Zhang, F.; Visscher, P.M.; Yang, J.; Stevenson, A.J.; Hillary, R.F.; Marioni, R.E.; Harris, S.E.; Deary, I.J.; Jones, A.R.; Shatunov, A.; Iacoangeli, A.; van Rheenen, W.; van den Berg, L.H.; Shaw, P.J.; Shaw, C.E.; Morrison, K.E.; Al-Chalabi, A.; Veldink, J.H.; Hannon, E.; Mill, J.; Wray, N.R.; McRae, A.F. Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biol., 2021, 22(1), 90.
[http://dx.doi.org/10.1186/s13059-021-02275-5] [PMID: 33771206]
[8]
Devanney, N.A.; Stewart, A.N.; Gensel, J.C. Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp. Neurol., 2020, 329, 113310.
[http://dx.doi.org/10.1016/j.expneurol.2020.113310] [PMID: 32289316]
[9]
Skytthe, M.K.; Graversen, J.H.; Moestrup, S.K. Targeting of CD163+ macrophages in inflammatory and malignant diseases. Int. J. Mol. Sci., 2020, 21(15), 5497.
[http://dx.doi.org/10.3390/ijms21155497] [PMID: 32752088]
[10]
Weaver, L.K.; Hintz-Goldstein, K.A.; Pioli, P.A.; Wardwell, K.; Qureshi, N.; Vogel, S.N.; Guyre, P.M. Pivotal advance: Activation of cell surface toll-like receptors causes shedding of the hemoglobin scavenger receptor CD163. J. Leukoc. Biol., 2006, 80(1), 26-35.
[http://dx.doi.org/10.1189/jlb.1205756] [PMID: 16799153]
[11]
Kristiansen, M.; Graversen, J.H.; Jacobsen, C.; Sonne, O.; Hoffman, H.J.; Law, S.K.A.; Moestrup, S.K. Identification of the haemoglobin scavenger receptor. Nature, 2001, 409(6817), 198-201.
[http://dx.doi.org/10.1038/35051594] [PMID: 11196644]
[12]
Martinez, F.O.; Gordon, S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep., 2014, 6, 13.
[http://dx.doi.org/10.12703/P6-13] [PMID: 24669294]
[13]
Maniecki, M.B.; Møller, H.J.; Moestrup, S.K.; Møller, B.K. CD163 positive subsets of blood dendritic cells: The scavenging macrophage receptors CD163 and CD91 are coexpressed on human dendritic cells and monocytes. Immunobiology, 2006, 211(6-8), 407-417.
[http://dx.doi.org/10.1016/j.imbio.2006.05.019] [PMID: 16920480]
[14]
Garvin, S.; Oda, H.; Arnesson, L.G.; Lindström, A.; Shabo, I. Tumor cell expression of CD163 is associated to postoperative radiotherapy and poor prognosis in patients with breast cancer treated with breast-conserving surgery. J. Cancer Res. Clin. Oncol., 2018, 144(7), 1253-1263.
[http://dx.doi.org/10.1007/s00432-018-2646-0] [PMID: 29725763]
[15]
Tajbakhsh, A.; Gheibi Hayat, S.M.; Butler, A.E.; Sahebkar, A. Effect of soluble cleavage products of important receptors/ligands on efferocytosis: Their role in inflammatory, autoimmune and cardiovascular disease. Ageing Res. Rev., 2019, 50, 43-57.
[http://dx.doi.org/10.1016/j.arr.2019.01.007] [PMID: 30639340]
[16]
Tajbakhsh, A.; Gheibihayat, S.M.; Taheri, R.A.; Fasihi-Ramandi, M.; Bajestani, A.N.; Taheri, A. Potential diagnostic and prognostic of efferocytosis-related unwanted soluble receptors/ligands as new non-invasive biomarkers in disorders: A review. Mol. Biol. Rep., 2022, 49(6), 5133-5152.
[http://dx.doi.org/10.1007/s11033-022-07224-4] [PMID: 35419645]
[17]
Sulahian, T.H.; Pioli, P.A.; Wardwell, K.; Guyre, P.M. Cross-linking of FcγR triggers shedding of the hemoglobin-haptoglobin scavenger receptor CD163. J. Leukoc. Biol., 2004, 76(1), 271-277.
[http://dx.doi.org/10.1189/jlb.1003523] [PMID: 15075364]
[18]
Burdo, T.H.; Lentz, M.R.; Autissier, P.; Krishnan, A.; Halpern, E.; Letendre, S.; Rosenberg, E.S.; Ellis, R.J.; Williams, K.C. Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J. Infect. Dis., 2011, 204(1), 154-163.
[http://dx.doi.org/10.1093/infdis/jir214] [PMID: 21628670]
[19]
Etzerodt, A.; Moestrup, S.K. CD163 and inflammation: Biological, diagnostic, and therapeutic aspects. Antioxid. Redox Signal., 2013, 18(17), 2352-2363.
[http://dx.doi.org/10.1089/ars.2012.4834] [PMID: 22900885]
[20]
Møller, H.J. Soluble CD163. Scand. J. Clin. Lab. Invest., 2012, 72(1), 1-13.
[http://dx.doi.org/10.3109/00365513.2011.626868] [PMID: 22060747]
[21]
Al-Daghri, N.M.; Al-Attas, O.S.; Bindahman, L.S.; Alokail, M.S.; Alkharfy, K.M.; Draz, H.M.; Yakout, S.; McTernan, P.G.; Sabico, S.; Chrousos, G.P. Soluble CD163 is associated with body mass index and blood pressure in hypertensive obese Saudi patients. Eur. J. Clin. Invest., 2012, 42(11), 1221-1226.
[http://dx.doi.org/10.1111/j.1365-2362.2012.02714.x] [PMID: 22946776]
[22]
Sakr, M.A.; Mohamed, K.A.H.; Hussein, A.M.; Fouad, M.H.; Allam, A.S.; Safwat, E. Diagnostic and prognostic value of serum soluble CD163 in cirrhotic patients with hepatitis C virus-related hepatocellular carcinoma before and after locoregional therapy. Egyptian Liver J., 2021, 11(1), 22.
[http://dx.doi.org/10.1186/s43066-021-00090-y]
[23]
O’Connell, G.C.; Tennant, C.S.; Lucke-Wold, N.; Kabbani, Y.; Tarabishy, A.R.; Chantler, P.D.; Barr, T.L. Monocyte-lymphocyte cross-communication via soluble CD163 directly links innate immune system activation and adaptive immune system suppression following ischemic stroke. Sci. Rep., 2017, 7(1), 12940.
[http://dx.doi.org/10.1038/s41598-017-13291-6] [PMID: 29021532]
[24]
Nissen, S.K.; Ferreira, S.A.; Nielsen, M.C.; Schulte, C.; Shrivastava, K.; Hennig, D.; Etzerodt, A.; Graversen, J.H.; Berg, D.; Maetzler, W.; Panhelainen, A.; Møller, H.J.; Brockmann, K.; Romero-Ramos, M. Soluble CD163 changes indicate monocyte association with cognitive deficits in Parkinson’s disease. Mov. Disord., 2021, 36(4), 963-976.
[http://dx.doi.org/10.1002/mds.28424] [PMID: 33332647]
[25]
Pathak, N.; Vimal, S.K.; Tandon, I.; Agrawal, L.; Hongyi, C.; Bhattacharyya, S. Neurodegenerative disorders of Alzheimer, parkinsonism, amyotrophic lateral sclerosis and multiple sclerosis: An early diagnostic approach for precision treatment. Metab. Brain Dis., 2022, 37(1), 67-104.
[http://dx.doi.org/10.1007/s11011-021-00800-w] [PMID: 34719771]
[26]
Gleissner, C.A.; Shaked, I.; Erbel, C.; Böckler, D.; Katus, H.A.; Ley, K. CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ. Res., 2010, 106(1), 203-211.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.199505] [PMID: 19910578]
[27]
de Jong, E.K.; de Haas, A.H.; Brouwer, N.; van Weering, H.R.J.; Hensens, M.; Bechmann, I.; Pratley, P.; Wesseling, E.; Boddeke, H.W.G.M.; Biber, K. Expression of CXCL4 in microglia in vitro and in vivo and its possible signaling through CXCR3. J. Neurochem., 2008, 105(5), 1726-1736.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05267.x] [PMID: 18248618]
[28]
Chauvin, P.; Morzadec, C.; de Latour, B.; Llamas-Gutierrez, F.; Luque-Paz, D.; Jouneau, S.; Vernhet, L. Soluble CD163 is produced by monocyte-derived and alveolar macrophages, and is not associated with the severity of idiopathic pulmonary fibrosis. Innate Immun., 2022, 28(3-4), 138-151.
[http://dx.doi.org/10.1177/17534259221097835] [PMID: 35522300]
[29]
Buechler, C.; Ritter, M.; Orsó, E.; Langmann, T.; Klucken, J.; Schmitz, G. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J. Leukoc. Biol., 2000, 67(1), 97-103.
[http://dx.doi.org/10.1002/jlb.67.1.97] [PMID: 10648003]
[30]
Weaver, L.K.; Pioli, P.A.; Wardwell, K.; Vogel, S.N.; Guyre, P.M. Up-regulation of human monocyte CD163 upon activation of cell-surface toll-like receptors. J. Leukoc. Biol., 2007, 81(3), 663-671.
[http://dx.doi.org/10.1189/jlb.0706428] [PMID: 17164428]
[31]
Nielsen, M.C.; Hvidbjerg Gantzel, R.; Clària, J.; Trebicka, J.; Møller, H.J.; Grønbæk, H. Macrophage activation markers, cd163 and cd206, in acute-on-chronic liver failure. Cells, 2020, 9(5), 1175.
[http://dx.doi.org/10.3390/cells9051175] [PMID: 32397365]
[32]
Moestrup, S.; Møller, H. CD163: A regulated hemoglobin scavenger receptor with a role in the anti‐inflammatory response. Ann. Med., 2004, 36(5), 347-354.
[http://dx.doi.org/10.1080/07853890410033171] [PMID: 15478309]
[33]
Chen, S.; Wang, X.; Zhu, H.; Tang, Q.; Du, W.; Cao, H.; Lai, C.; Guo, W.; Fu, L.; Lu, W. Zidovudine-based treatments inhibit the glycosylation of ADAM17 and reduce cd163 shedding from monocytes. J. Acquir. Immune Defic. Syndr., 2018, 79(1), 126-134.
[http://dx.doi.org/10.1097/QAI.0000000000001769] [PMID: 29794822]
[34]
Kowal-Bielecka, O.; Bielecki, M.; Guiducci, S.; Trzcinska-Butkiewicz, B.; Michalska-Jakubus, M.; Matucci-Cerinic, M.; Brzosko, M.; Krasowska, D.; Chyczewski, L.; Kowal, K. High serum sCD163/sTWEAK ratio is associated with lower risk of digital ulcers but more severe skin disease in patients with systemic sclerosis. Arthritis Res. Ther., 2013, 15(3), R69.
[http://dx.doi.org/10.1186/ar4246] [PMID: 23800379]
[35]
Etzerodt, A.; Rasmussen, M.R.; Svendsen, P.; Chalaris, A.; Schwarz, J.; Galea, I.; Møller, H.J.; Moestrup, S.K. Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-α in macrophages. J. Biol. Chem., 2014, 289(2), 778-788.
[http://dx.doi.org/10.1074/jbc.M113.520213] [PMID: 24275664]
[36]
Bhattacharya, A.; Ashouri, R.; Fangman, M.; Mazur, A.; Garett, T.; Doré, S. Soluble receptors affecting stroke outcomes: Potential biomarkers and therapeutic tools. Int. J. Mol. Sci., 2021, 22(3), 1108.
[http://dx.doi.org/10.3390/ijms22031108] [PMID: 33498620]
[37]
Emamzadeh, F. N. Alpha-synuclein structure, functions, and interactions. J. Res. Med. Sci., the official journal of Isfahan University of Medical Sciences, 2016, 21, 29.
[38]
Barger, S.R.; Gauthier, N.C.; Krendel, M. Squeezing in a meal: Myosin functions in phagocytosis. Trends Cell Biol., 2020, 30(2), 157-167.
[http://dx.doi.org/10.1016/j.tcb.2019.11.002] [PMID: 31836280]
[39]
Timmermann, M.; Buck, F.; Sorg, C.; Högger, P. Interaction of soluble CD163 with activated T lymphocytes involves its association with non‐muscle myosin heavy chain type A. Immunol. Cell Biol., 2004, 82(5), 479-487.
[http://dx.doi.org/10.1111/j.0818-9641.2004.01277.x] [PMID: 15479433]
[40]
Llauradó, G.; González-Clemente, J.M.; Maymó-Masip, E.; Subías, D.; Vendrell, J.; Chacón, M.R. Serum levels of TWEAK and scavenger receptor CD163 in type 1 diabetes mellitus: Relationship with cardiovascular risk factors. a case-control study. PLoS One, 2012, 7(8), e43919.
[http://dx.doi.org/10.1371/journal.pone.0043919] [PMID: 22937125]
[41]
Andersen, M.N.; Abildgaard, N.; Maniecki, M.B.; Møller, H.J.; Andersen, N.F. Monocyte/macrophage-derived soluble CD163: a novel biomarker in multiple myeloma. Eur. J. Haematol., 2014, 93(1), 41-47.
[http://dx.doi.org/10.1111/ejh.12296] [PMID: 24612259]
[42]
Sugaya, M.; Miyagaki, T.; Ohmatsu, H.; Suga, H.; Kai, H.; Kamata, M.; Fujita, H.; Asano, Y.; Tada, Y.; Kadono, T.; Okochi, H.; Sato, S. Association of the numbers of CD163+ cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. J. Dermatol. Sci., 2012, 68(1), 45-51.
[http://dx.doi.org/10.1016/j.jdermsci.2012.07.007] [PMID: 22884782]
[43]
Thomsen, H.H.; Møller, H.J.; Trolle, C.; Groth, K.A.; Skakkebæk, A.; Bojesen, A.; Høst, C.; Gravholt, C.H. The macrophage low-grade inflammation marker sCD163 is modulated by exogenous sex steroids. Endocr. Connect., 2013, 2(4), 216-224.
[http://dx.doi.org/10.1530/EC-13-0067] [PMID: 24148221]
[44]
Magliozzi, R.; Pezzini, F.; Pucci, M.; Rossi, S.; Facchiano, F.; Marastoni, D.; Montagnana, M.; Lippi, G.; Reynolds, R.; Calabrese, M. Changes in cerebrospinal fluid balance of tnf and tnf receptors in naïve multiple sclerosis patients: Early involvement in compartmentalised intrathecal inflammation. Cells, 2021, 10(7), 1712.
[http://dx.doi.org/10.3390/cells10071712] [PMID: 34359880]
[45]
Axisa, P.P.; Hafler, D.A. Multiple sclerosis. Curr. Opin. Neurol., 2016, 29(3), 345-353.
[http://dx.doi.org/10.1097/WCO.0000000000000319] [PMID: 27058221]
[46]
Loma, I.; Heyman, R. Multiple sclerosis: Pathogenesis and treatment. Curr. Neuropharmacol., 2011, 9(3), 409-416.
[http://dx.doi.org/10.2174/157015911796557911] [PMID: 22379455]
[47]
Hunter, S.F. Overview and diagnosis of multiple sclerosis. Am. J. Manag. Care, 2016, 22(6)(Suppl.), s141-s150.
[PMID: 27356023]
[48]
De Fino, C.; Lucchini, M.; Lucchetti, D.; Nociti, V.; Losavio, F.A.; Bianco, A.; Colella, F.; Ricciardi-Tenore, C.; Sgambato, A.; Mirabella, M. The predictive value of CSF multiple assay in multiple sclerosis: A single center experience. Mult. Scler. Relat. Disord., 2019, 35, 176-181.
[http://dx.doi.org/10.1016/j.msard.2019.07.030] [PMID: 31394405]
[49]
Farrokhi, M.; Saadatpour, Z.; Fadaee, E.; Saadatpour, L.; Rezaei, A.; Moeini, P.; Amani Beni, A. A novel approach to discriminate subgroups in multiple sclerosis. Iran. J. Allergy Asthma Immunol., 2016, 15(6), 536-546.
[PMID: 28129686]
[50]
Fabriek, B.O.; Møller, H.J.; Vloet, R.P.M.; van Winsen, L.M.; Hanemaaijer, R.; Teunissen, C.E.; Uitdehaag, B.M.J.; van den Berg, T.K.; Dijkstra, C.D. Proteolytic shedding of the macrophage scavenger receptor CD163 in multiple sclerosis. J. Neuroimmunol., 2007, 187(1-2), 179-186.
[http://dx.doi.org/10.1016/j.jneuroim.2007.04.016] [PMID: 17537523]
[51]
González-Oria, M.C.; Márquez-Coello, M.; Girón-Ortega, J.A.; Argente, J.; Moya, M.; Girón-González, J.A. Monocyte and lymphocyte activation and regulation in multiple sclerosis patients. therapy effects. J. Neuroimmune Pharmacol., 2019, 14(3), 413-422.
[http://dx.doi.org/10.1007/s11481-018-09832-z] [PMID: 30649665]
[52]
Gjelstrup, M.C.; Stilund, M.; Petersen, T.; Møller, H.J.; Petersen, E.L.; Christensen, T. Subsets of activated monocytes and markers of inflammation in incipient and progressed multiple sclerosis. Immunol. Cell Biol., 2018, 96(2), 160-174.
[http://dx.doi.org/10.1111/imcb.1025] [PMID: 29363161]
[53]
Stilund, M.; Reuschlein, A.K.; Christensen, T.; Møller, H.J.; Rasmussen, P.V.; Petersen, T. Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS One, 2014, 9(6), e98588.
[http://dx.doi.org/10.1371/journal.pone.0098588] [PMID: 24886843]
[54]
Melief, J.; Koper, J.W.; Endert, E.; Møller, H.J.; Hamann, J.; Uitdehaag, B.M.; Huitinga, I. Glucocorticoid receptor haplotypes conferring increased sensitivity (BclI and N363S) are associated with faster progression of multiple sclerosis. J. Neuroimmunol., 2016, 299, 84-89.
[http://dx.doi.org/10.1016/j.jneuroim.2016.08.019] [PMID: 27725129]
[55]
Stilund, M.; Gjelstrup, M.C.; Petersen, T.; Møller, H.J.; Rasmussen, P.V.; Christensen, T. Biomarkers of inflammation and axonal degeneration/damage in patients with newly diagnosed multiple sclerosis: Contributions of the soluble CD163 CSF/serum ratio to a biomarker panel. PLoS One, 2015, 10(4), e0119681.
[http://dx.doi.org/10.1371/journal.pone.0119681] [PMID: 25860354]
[56]
Moreno, J.A.; Dejouvencel, T.; Labreuche, J.; Smadja, D.M.; Dussiot, M.; Martin-Ventura, J.L.; Egido, J.; Gaussem, P.; Emmerich, J.; Michel, J.B.; Blanco-Colio, L.M.; Meilhac, O. Peripheral artery disease is associated with a high CD163/TWEAK plasma ratio. Arterioscler. Thromb. Vasc. Biol., 2010, 30(6), 1253-1262.
[http://dx.doi.org/10.1161/ATVBAHA.110.203364] [PMID: 20299688]
[57]
Urbonaviciene, G.; Martin-Ventura, J.L.; Lindholt, J.S.; Urbonavicius, S.; Moreno, J.A.; Egido, J.; Blanco-Colio, L.M. Impact of soluble TWEAK and CD163/TWEAK ratio on long-term cardiovascular mortality in patients with peripheral arterial disease. Atherosclerosis, 2011, 219(2), 892-899.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.09.016] [PMID: 21962403]
[58]
Ou, Z.; Pan, J.; Tang, S.; Duan, D.; Yu, D.; Nong, H.; Wang, Z. Global trends in the incidence, prevalence, and years lived with disability of parkinson’s disease in 204 countries/territories from 1990 to 2019. Front. Public Health, 2021, 9, 776847.
[http://dx.doi.org/10.3389/fpubh.2021.776847] [PMID: 34950630]
[59]
Wang, T.; Shi, C.; Luo, H.; Zheng, H.; Fan, L.; Tang, M.; Su, Y.; Yang, J.; Mao, C.; Xu, Y. Neuroinflammation in parkinson’s disease: Triggers, mechanisms, and immunotherapies. The Neuroscientist : A review journal bringing neurobiology, neurology and psychiatry, 2021, 1073858421991066.
[PMID: 33576313]
[60]
Nissen, S.K.; Shrivastava, K.; Schulte, C.; Otzen, D.E.; Goldeck, D.; Berg, D.; Møller, H.J.; Maetzler, W.; Romero-Ramos, M. Alterations in blood monocyte functions In Parkinson’s disease. Mov. Disord., 2019, 34(11), 1711-1721.
[http://dx.doi.org/10.1002/mds.27815] [PMID: 31449711]
[61]
Hui, C.; T, P.; Patti, L. Ischemic stroke. Florida: Starpeals Publishing 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499997/
[62]
Sun, H.; Zhang, X.; Ma, J.; Liu, Z.; Qi, Y.; Fang, L.; Zheng, Y.; Cai, Z. Circulating soluble cd163: A potential predictor for the functional outcome of acute is chemic stroke. Front. Neurol., 2021, 12, 740420.
[http://dx.doi.org/10.3389/fneur.2021.740420] [PMID: 34970202]
[63]
Högger, P.; Sorg, C. Soluble CD163 inhibits phorbol ester-induced lymphocyte proliferation. Biochem. Biophys. Res. Commun., 2001, 288(4), 841-843.
[http://dx.doi.org/10.1006/bbrc.2001.5845] [PMID: 11688984]
[64]
Frings, W.; Dreier, J.; Sorg, C. Only the soluble form of the scavenger receptor CD163 acts inhibitory on phorbol ester-activated T-lymphocytes, whereas membrane-bound protein has no effect. FEBS Lett., 2002, 526(1-3), 93-96.
[http://dx.doi.org/10.1016/S0014-5793(02)03142-3] [PMID: 12208511]
[65]
Specogna, A.V.; Patten, S.B.; Turin, T.C.; Hill, M.D. Cost of spontaneous intracerebral hemorrhage in Canada during 1 decade. Stroke, 2014, 45(1), 284-286.
[http://dx.doi.org/10.1161/STROKEAHA.113.003276] [PMID: 24135925]
[66]
Liu, Q.; Meng, H.; Xie, W.; Yu, H.; Zhang, Y. CD163 promotes hematoma absorption and improves neurological functions in patients with intracerebral hemorrhage. Neural Regen. Res., 2016, 11(7), 1122-1127.
[http://dx.doi.org/10.4103/1673-5374.187047] [PMID: 27630696]
[67]
Chen-Roetling, J.; Regan, R.F. Haptoglobin increases the vulnerability of CD163-expressing neurons to hemoglobin. J. Neurochem., 2016, 139(4), 586-595.
[http://dx.doi.org/10.1111/jnc.13720]
[68]
Wang, M.; Hua, Y.; Keep, R.F.; Wan, S.; Novakovic, N.; Xi, G. Complement inhibition attenuates early erythrolysis in the hematoma and brain injury in aged rats. Stroke, 2019, 50(7), 1859-1868.
[http://dx.doi.org/10.1161/STROKEAHA.119.025170] [PMID: 31177985]
[69]
Hua, Y.; Xi, G.; Keep, R.F.; Hoff, J.T. Complement activation in the brain after experimental intracerebral hemorrhage. J. Neurosurg., 2000, 92(6), 1016-1022.
[http://dx.doi.org/10.3171/jns.2000.92.6.1016] [PMID: 10839264]
[70]
Cao, S.; Zheng, M.; Hua, Y.; Chen, G.; Keep, R.F.; Xi, G. Hematoma changes during clot resolution after experimental intracerebral hemorrhage. Stroke, 2016, 47(6), 1626-1631.
[http://dx.doi.org/10.1161/STROKEAHA.116.013146] [PMID: 27125525]
[71]
Galea, J.; Cruickshank, G.; Teeling, J.L.; Boche, D.; Garland, P.; Perry, V.H.; Galea, I. The intrathecal CD163‐haptoglobin–hemoglobin scavenging system in subarachnoid hemorrhage. J. Neurochem., 2012, 121(5), 785-792.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07716.x] [PMID: 22380637]
[72]
Schaer, C.A.; Vallelian, F.; Imhof, A.; Schoedon, G.; Schaer, D.J. CD163-expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system. J. Leukoc. Biol., 2007, 82(1), 106-110.
[http://dx.doi.org/10.1189/jlb.0706453] [PMID: 17460152]
[73]
Hintz, K.A.; Rassias, A.J.; Wardwell, K.; Moss, M.L.; Morganelli, P.M.; Pioli, P.A.; Givan, A.L.; Wallace, P.K.; Yeager, M.P.; Guyre, P.M. Endotoxin induces rapid metalloproteinase‐mediated shedding followed by up‐regulation of the monocyte hemoglobin scavenger receptor CD163. J. Leukoc. Biol., 2002, 72(4), 711-717.
[http://dx.doi.org/10.1189/jlb.72.4.711] [PMID: 12377940]
[74]
Etzerodt, A.; Maniecki, M.B.; Møller, K.; Møller, H.J.; Moestrup, S.K. Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. J. Leukoc. Biol., 2010, 88(6), 1201-1205.
[http://dx.doi.org/10.1189/jlb.0410235] [PMID: 20807704]
[75]
Tononi, G.; Sporns, O.; Edelman, G.M. Measures of degeneracy and redundancy in biological networks. Proc. Natl. Acad. Sci., 1999, 96(6), 3257-3262.
[http://dx.doi.org/10.1073/pnas.96.6.3257] [PMID: 10077671]
[76]
Pugin, J.; Heumann, D.; Tomasz, A.; Kravchenko, V.V.; Akamatsu, Y.; Nishijima, M.; Glauser, M.P.; Tobias, P.S.; Ulevitch, R.J. CD14 Is a pattern recognition receptor. Immunity, 1994, 1(6), 509-516.
[http://dx.doi.org/10.1016/1074-7613(94)90093-0] [PMID: 7534618]
[77]
Nores, J.E.R.; Bensussan, A.; Vita, N.; Stelter, F.; Arias, M.A.; Jones, M.; Lefort, S.; Borysiewicz, L.K.; Ferrara, P.; Labéta, M.O. Soluble CD14 acts as a negative regulator of human T cell activation and function. Eur. J. Immunol., 1999, 29(1), 265-276.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199901)29:01<265:AID-IMMU265>3.0.CO;2-G] [PMID: 9933108]
[78]
Shive, C.L.; Jiang, W.; Anthony, D.D.; Lederman, M.M. Soluble CD14 is a nonspecific marker of monocyte activation. AIDS, 2015, 29(10), 1263-1265.
[http://dx.doi.org/10.1097/QAD.0000000000000735] [PMID: 26035325]
[79]
Jiang, W.; King, T.Z.; Turner, J.A. Imaging genetics towards a refined diagnosis of schizophrenia. Front. Psychiatry, 2019, 10, 494.
[http://dx.doi.org/10.3389/fpsyt.2019.00494] [PMID: 31354550]
[80]
Sadeghi, D.; Shoeibi, A.; Ghassemi, N.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Teshnehlab, M.; Gorriz, J.M.; Khozeimeh, F.; Zhang, Y.D.; Nahavandi, S.; Acharya, U.R. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput. Biol. Med., 2022, 146, 105554.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105554] [PMID: 35569333]
[81]
Chen, S.; Chithanathan, K.; Fan, F.; Xiu, M.; Fan, H.; Cui, Y.; Zhang, P.; Yu, T.; Yang, F.; Tian, B.; Hong, L.E.; Tan, Y.; Tian, L. Monocytic subsets and their signature genes differentially impact cortex and cognition in first-episode schizophrenia. Med. Rxiv, 2021, 21262813.
[http://dx.doi.org/10.1101/2021.09.13.21262813]
[82]
Knudsen, T.B.; Ertner, G.; Petersen, J.; Møller, H.J.; Moestrup, S.K.; Eugen-Olsen, J.; Kronborg, G.; Benfield, T. Plasma soluble CD163 level independently predicts all-cause mortality in HIV-1–infected individuals. J. Infect. Dis., 2016, 214(8), 1198-1204.
[http://dx.doi.org/10.1093/infdis/jiw263] [PMID: 27354366]
[83]
Williams, M.E.; Stein, D.J.; Joska, J.A.; Naudé, P.J.W. Cerebrospinal fluid immune markers and HIV-associated neurocognitive impairments: A systematic review. J. Neuroimmunol., 2021, 358, 577649.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577649] [PMID: 34280844]
[84]
Burdo, T.H.; Weiffenbach, A.; Woods, S.P.; Letendre, S.; Ellis, R.J.; Williams, K.C. Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS, 2013, 27(9), 1387-1395.
[http://dx.doi.org/10.1097/QAD.0b013e32836010bd] [PMID: 23435298]
[85]
Bryant, A.K.; Moore, D.J.; Burdo, T.H.; Lakritz, J.R.; Gouaux, B.; Soontornniyomkij, V.; Achim, C.L.; Masliah, E.; Grant, I.; Levine, A.J.; Ellis, R.J. Plasma soluble CD163 is associated with postmortem brain pathology in human immunodeficiency virus infection. AIDS, 2017, 31(7), 973-979.
[http://dx.doi.org/10.1097/QAD.0000000000001425] [PMID: 28244955]
[86]
Bielecki, M.; Kowal, K.; Lapinska, A.; Chyczewski, L.; Kowal-Bielecka, O. Increased release of soluble CD163 by the peripheral blood mononuclear cells is associated with worse prognosis in patients with systemic sclerosis. Adv. Med. Sci., 2013, 58(1), 126-133.
[http://dx.doi.org/10.2478/v10039-012-0076-9] [PMID: 23640944]
[87]
Zwadlo-Klarwasser, G.; Bent, S.; Haubeck, H.D.; Sorg, C.; Schmutzler, W. Glucocorticoid-induced appearance of the macrophage subtype RM 3/1 in peripheral blood of man. Int. Arch. Allergy Immunol., 1990, 91(2), 175-180.
[http://dx.doi.org/10.1159/000235111] [PMID: 2341198]
[88]
D’Antoni, M.L.; Byron, M.M.; Chan, P.; Sailasuta, N.; Sacdalan, C.; Sithinamsuwan, P.; Tipsuk, S.; Pinyakorn, S.; Kroon, E.; Slike, B.M.; Krebs, S.J.; Khadka, V.S.; Chalermchai, T.; Kallianpur, K.J.; Robb, M.; Spudich, S.; Valcour, V.; Ananworanich, J.; Ndhlovu, L.C.; Teeratakulpisarn, N.; Fletcher, J.L.K.; Sacdalan, C.; Chomchey, N.; Sutthichom, D.; Rattanamanee, S.; Prueksakaew, P.; Ubolyam, S.; Eamyoung, P.; Puttamaswin, S.; Karnsomlap, P.; Luekasemsuk, T.; Intasan, J.; Benjapornpong, K.; Ratnaratorn, N.; O’Connell, R.J.; Trichavaroj, R.; Akapirat, S.; Phuang-Ngern, Y.; Sukhumvittaya, S.; Sajjaweerawan, C.; Jongrakthaitae, S.; Saetun, P.; Tragonlugsana, N.; Nuntapinit, B.; Tantibul, N.; Savadsuk, H.; Michael, N.; Trautmann, L.; Tovanabutra, S.; Ouellette, M.; Butterworth, O.; Crowell, T.; Turk, E.; Ann Eller, L.; Milazzo, M.; Bandar, I.S.; Shiramizu, B.; Shikuma, C. Normalization of soluble cd163 levels after institution of antiretroviral therapy during acute hiv infection tracks with fewer neurological abnormalities. J. Infect. Dis., 2018, 218(9), 1453-1463.
[http://dx.doi.org/10.1093/infdis/jiy337] [PMID: 29868826]
[89]
Hokello, J.; Sharma, A.L.; Tyagi, P.; Bhushan, A.; Tyagi, M. Human immunodeficiency virus type-1 (HIV-1) transcriptional regulation, latency and therapy in the central nervous system. Vaccines, 2021, 9(11), 1272.
[http://dx.doi.org/10.3390/vaccines9111272] [PMID: 34835203]
[90]
Barrett, J.S.; Spitsin, S.; Moorthy, G.; Barrett, K.; Baker, K.; Lackner, A.; Tulic, F.; Winters, A.; Evans, D.L.; Douglas, S.D. Pharmacologic rationale for the NK1R antagonist, aprepitant as adjunctive therapy in HIV. J. Transl. Med., 2016, 14(1), 148.
[http://dx.doi.org/10.1186/s12967-016-0904-y] [PMID: 27230663]
[91]
Li, Y.; Lin, F. Decoy nanoparticles bearing native C5a receptors as a new approach to inhibit complement-mediated neutrophil activation. Acta Biomater., 2019, 99, 330-338.
[http://dx.doi.org/10.1016/j.actbio.2019.08.033] [PMID: 31446047]
[92]
Ciombor, K.K.; Berlin, J. Aflibercept--a decoy VEGF receptor. Curr. Oncol. Rep., 2014, 16(2), 368.
[http://dx.doi.org/10.1007/s11912-013-0368-7] [PMID: 24445500]
[93]
Chakrabarty, P.; Li, A.; Ladd, T.B.; Strickland, M.R.; Koller, E.J.; Burgess, J.D.; Funk, C.C.; Cruz, P.E.; Allen, M.; Yaroshenko, M.; Wang, X.; Younkin, C.; Reddy, J.; Lohrer, B.; Mehrke, L.; Moore, B.D.; Liu, X.; Ceballos-Diaz, C.; Rosario, A.M.; Medway, C.; Janus, C.; Li, H.D.; Dickson, D.W.; Giasson, B.I.; Price, N.D.; Younkin, S.G.; Ertekin-Taner, N.; Golde, T.E. TLR5 decoy receptor as a novel anti-amyloid therapeutic for Alzheimer’s disease. J. Exp. Med., 2018, 215(9), 2247-2264.
[http://dx.doi.org/10.1084/jem.20180484] [PMID: 30158114]
[94]
Alvarado-Vazquez, P.A.; Bernal, L.; Paige, C.A.; Grosick, R.L.; Moracho Vilrriales, C.; Ferreira, D.W.; Ulecia-Morón, C.; Romero-Sandoval, E.A. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions. Immunobiology, 2017, 222(8-9), 900-912.
[http://dx.doi.org/10.1016/j.imbio.2017.05.011] [PMID: 28545809]
[95]
Elhosseiny, N.; Samir, T.; Kholy, A.E.; Attia, A. Towards the development of a lateral flow immunochromatographic strip for the detection of soluble CD163 as a potential biomarker of neonatal sepsis. Int. J. Infect. Dis., 2020, 101, 191.
[http://dx.doi.org/10.1016/j.ijid.2020.09.511]
[96]
Youssry, S.A.; El-Sheredy, H.G.; Shalaby, T.I. In vitro evaluation of antitumor and immunomodulatory potential of curcumin nano-emulsion on breast cancer. Bionanoscience, 2022, 12(3), 841-850.
[http://dx.doi.org/10.1007/s12668-022-00981-3]
[97]
Gómez-Rial, J.; Currás-Tuala, M.J.; Rivero-Calle, I.; Gómez-Carballa, A.; Cebey-López, M.; Rodríguez-Tenreiro, C.; Dacosta-Urbieta, A.; Rivero-Velasco, C.; Rodríguez-Núñez, N.; Trastoy-Pena, R.; Rodríguez-García, J.; Salas, A.; Martinón-Torres, F. Increased serum levels of SCD14 and SCD163 indicate a preponderant role for monocytes in COVID-19 immunopathology. Front. Immunol., 2020, 11, 560381.
[http://dx.doi.org/10.3389/fimmu.2020.560381] [PMID: 33072099]
[98]
Kazankov, K.; Barrera, F.; Møller, H.J.; Bibby, B.M.; Vilstrup, H.; George, J.; Grønbaek, H. Soluble CD163, a macrophage activation marker, is independently associated with fibrosis in patients with chronic viral hepatitis B and C. Hepatology, 2014, 60(2), 521-530.
[http://dx.doi.org/10.1002/hep.27129] [PMID: 24623375]
[99]
Hasegawa, S.; Matsushige, T.; Inoue, H.; Takahara, M.; Kajimoto, M.; Momonaka, H.; Ishida, C.; Tanaka, S.; Morishima, T.; Ichiyama, T. Serum soluble CD163 levels in patients with influenza-associated encephalopathy. Brain Dev., 2013, 35(7), 626-629.
[http://dx.doi.org/10.1016/j.braindev.2012.10.005] [PMID: 23149357]
[100]
Zingaropoli, M.A.; Nijhawan, P.; Carraro, A.; Pasculli, P.; Zuccalà, P.; Perri, V.; Marocco, R.; Kertusha, B.; Siccardi, G.; Del Borgo, C.; Curtolo, A.; Ajassa, C.; Iannetta, M.; Ciardi, M.R.; Mastroianni, C.M.; Lichtner, M. Increased sCD163 and sCD14 plasmatic levels and depletion of peripheral blood pro-inflammatory monocytes, myeloid and plasmacytoid dendritic cells in patients with severe covid-19 pneumonia. Front. Immunol., 2021, 12, 627548.
[http://dx.doi.org/10.3389/fimmu.2021.627548] [PMID: 33777012]
[101]
Scriven, J.E.; Rhein, J.; Hullsiek, K.H.; von Hohenberg, M.; Linder, G.; Rolfes, M.A.; Williams, D.A.; Taseera, K.; Meya, D.B.; Meintjes, G.; Boulware, D.R. Early ART after cryptococcal meningitis is associated with cerebrospinal fluid pleocytosis and macrophage activation in a multisite randomized trial. J. Infect. Dis., 2015, 212(5), 769-778.
[http://dx.doi.org/10.1093/infdis/jiv067] [PMID: 25651842]
[102]
Ljubenkov, P.A.; Miller, Z.; Mumford, P.; Zhang, J.; Allen, I.E.; Mitic, L.; Staffaroni, A.; Heuer, H.; Rojas, J.C.; Cobigo, Y.; Karydas, A.; Pearlman, R.; Miller, B.; Kramer, J.H.; McGrath, M.S.; Rosen, H.J.; Boxer, A.L. Peripheral innate immune activation correlates with disease severity in grn haploinsufficiency. Front. Neurol., 2019, 10, 1004.
[http://dx.doi.org/10.3389/fneur.2019.01004] [PMID: 31620075]
[103]
Roy-O’Reilly, M.; Zhu, L.; Atadja, L.; Torres, G.; Aronowski, J.; McCullough, L.; Edwards, N.J. Soluble CD163 in intracerebral hemorrhage: Biomarker for perihematomal edema. Ann. Clin. Transl. Neurol., 2017, 4(11), 793-800.
[http://dx.doi.org/10.1002/acn3.485] [PMID: 29159191]
[104]
Eljaszewicz, A.; Sienkiewicz, D.; Grubczak, K.; Okurowska-Zawada, B.; Paszko-Patej, G.; Miklasz, P.; Singh, P.; Radzikowska, U.; Kulak, W.; Moniuszko, M. Effect of periodic granulocyte colony-stimulating factor administration on endothelial progenitor cells and different monocyte subsets in pediatric patients with muscular dystrophies. Stem Cells Int., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/2650849] [PMID: 26770204]
[105]
Bygum Knudsen, T.; Larsen, K.; Birk Kristiansen, T.; Jon Møller, H.; Tvede, M.; Eugen-Olsen, J.; Kronborg, G. Diagnostic value of soluble CD163 serum levels in patients suspected of meningitis: Comparison with CRP and procalcitonin. Scand. J. Infect. Dis., 2007, 39(6-7), 542-553.
[http://dx.doi.org/10.1080/00365540601113685] [PMID: 17577816]
[106]
Fujimura, M.; Fujimura, T.; Kakizaki, A.; Sato-Maeda, M.; Niizuma, K.; Tomata, Y.; Aiba, S.; Tominaga, T. Increased serum production of soluble CD163 and CXCL5 in patients with moyamoya disease: Involvement of intrinsic immune reaction in its pathogenesis. Brain Res., 2018, 1679, 39-44.
[http://dx.doi.org/10.1016/j.brainres.2017.11.013] [PMID: 29174692]
[107]
Stilund, M.; Gjelstrup, M.C.; Christensen, T.; Møller, H.J.; Petersen, T. A multi‐biomarker follow‐up study of patients with multiple sclerosis. Brain Behav., 2016, 6(9), e00509.
[http://dx.doi.org/10.1002/brb3.509] [PMID: 27688939]
[108]
Pranzatelli, M.R.; Tate, E.D.; McGee, N.R. Microglial/macrophage markers CHI3L1, sCD14, and sCD163 in CSF and serum of pediatric inflammatory and non-inflammatory neurological disorders: A case-control study and reference ranges. J. Neurol. Sci., 2017, 381, 285-290.
[http://dx.doi.org/10.1016/j.jns.2017.09.006] [PMID: 28991699]
[109]
Newell, E.; Shellington, D.K.; Simon, D.W.; Bell, M.J.; Kochanek, P.M.; Feldman, K.; Bayir, H.; Aneja, R.K.; Carcillo, J.A.; Clark, R.S.B. Cerebrospinal fluid markers of macrophage and lymphocyte activation after traumatic brain injury in children. Pediatr. Crit. Care Med., 2015, 16(6), 549-557.
[http://dx.doi.org/10.1097/PCC.0000000000000400] [PMID: 25850867]
[110]
McGuire, J.L.; Gill, A.J.; Douglas, S.D.; Kolson, D.L. Central and peripheral markers of neurodegeneration and monocyte activation in hiv-associated neurocognitive disorders. J. Neurovirol., 2015, 21(4), 439-448.
[http://dx.doi.org/10.1007/s13365-015-0333-3] [PMID: 25776526]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy