Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Iodine(III)-Based Hypervalent Iodine Electrophiles in Organic Synthesis

Author(s): Kokila Sakthivel, Priyanka B. Kole, Ritu Mamgain and Fateh V. Singh*

Volume 26, Issue 21, 2022

Published on: 20 January, 2023

Page: [1917 - 1934] Pages: 18

DOI: 10.2174/1385272827666230103110651

Price: $65

Abstract

The chemistry of hypervalent iodine reagents is now developed as an important tool of synthetic organic chemistry. These reagents play a key role in replacing the toxic heavy metal reagent because of their mild reaction condition and environmentally friendly nature. Mainly, these reagents were known for oxidative properties, but the scope of these reagents is not limited to oxidation reactions. In the past two decades, they have been used as versatile electrophiles in various key organic transformations. Recently, the demand for these reagents has increased drastically for green chemistry, mainly due to their application in catalysis. Hypervalent iodine reagents have been successfully used to develop various oxidative transformations such as the oxidation of different organic species, α-functionalization of carbonyl compounds, cyclization reactions, C-H activation reactions, lactonization and oxidative rearrangements. Moreover, the use of these reagents is not limited to general organic reactions but is successfully used to develop several stereoselective transformations by using chiral hypervalent iodine reagents. This review article highlights various acyclic and cyclic reactions where the hypervalent iodine reagents have been used as electrophiles.

[1]
Krische, M.J. Hypervalent iodine chemistry: Modern developments in organic synthesis In: Topics in Current Chemistry; Wirth, T., Ed.; Springer Verlag: Berlin, Heidelberg, New York, 2003; p. 264.
[2]
Singh, F.V.; Wirth, T. Oxidative functionalization with hypervalent halides. In: Comprehensive Organic Synthesis II; Elsevier: Amsterdam, The Netherlands, 2014; 7, pp. 880-933.
[3]
Singh, F.V.; Wirth, T. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions. Chem. Asian J., 2014, 9(4), 950-971.
[http://dx.doi.org/10.1002/asia.201301582] [PMID: 24523252]
[4]
Singh, F.V.; Shetgaonkar, S.E.; Krishnan, M.; Wirth, T. Progress in organocatalysis with hypervalent iodine catalysts. Chem. Soc. Rev., 2022, 51, 8102-8139.
[5]
Parida, K.N.; Moorthy, J.N. Catalytic Oxidations with ortho-Substituted Modified IBXs. Synlett, 2022.
[http://dx.doi.org/10.1055/a-1813-7319]
[6]
Wirth, T. Introduction and general aspects. Top. Curr. Chem., 2003, 224, 1-4.
[http://dx.doi.org/10.1007/3-540-46114-0_1]
[7]
Dasgupta, A.; Thiehoff, C.; Newman, P.D.; Wirth, T.; Melen, R.L. Reactions promoted by hypervalent iodine reagents and boron Lewis acids. Org. Biomol. Chem., 2021, 19(22), 4852-4865.
[http://dx.doi.org/10.1039/D1OB00740H] [PMID: 34019066]
[8]
Singh, F.V.; Wirth, T. Catalytic oxidation with hypervalent iodine. In: Catalytic Oxidation in Organic Synthesis; Thieme, 2017; 1, pp. 29-62.
[9]
Singh, F.V.; Wirth, T. Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org. Lett., 2011, 13(24), 6504-6507.
[http://dx.doi.org/10.1021/ol202800k] [PMID: 22085140]
[10]
Singh, F.V.; Wirth, T. Hypervalent iodine(III) mediated cyclization of ortho-Stillbenes into benzofurans. Synthesis, 2012, 44, 1171-1177.
[http://dx.doi.org/10.1055/s-0031-1290588]
[11]
Singh, F.; Mangaonkar, S. Hypervalent iodine(III)-catalyzed synthesis of 2-arylbenzofurans. Synthesis, 2018, 50(24), 4940-4948.
[http://dx.doi.org/10.1055/s-0037-1610650]
[12]
Singh, F.V.; Kole, P.B.; Mangaonkar, S.R.; Shetgaonkar, S.E. Synthesis of spirocyclic scaffolds using hypervalent iodine reagents. Beilstein J. Org. Chem., 2018, 14, 1778-1805.
[http://dx.doi.org/10.3762/bjoc.14.152] [PMID: 30112083]
[13]
Kumar, R.; Singh, F.V.; Takenaga, N.; Dohi, T. Asymmetric direct/stepwise dearomatization reactions involving hypervalent iodine reagents. Chem. Asian J., 2022, 17(4), e202101115.
[http://dx.doi.org/10.1002/asia.202101115] [PMID: 34817125]
[14]
Merritt, E.A.; Olofsson, B. α-Functionalization of carbonyl compounds using hypervalent iodine reagents. Synthesis, 2011, 4, 517-538.
[15]
Dong, D.Q.; Hao, S.H.; Wang, Z.L.; Chen, C. Hypervalent iodine: a powerful electrophile for asymmetric α-functionalization of carbonyl compounds. Org. Biomol. Chem., 2014, 12(25), 4278-4289.
[http://dx.doi.org/10.1039/c4ob00318g] [PMID: 24827449]
[16]
Shetgaonkar, S.E.; Mamgain, R.; Kikushima, K.; Dohi, T.; Singh, F.V. Palladium-catalyzed organic reactions involving hypervalent iodine reagents. Molecules, 2022, 27(12), 3900.
[http://dx.doi.org/10.3390/molecules27123900] [PMID: 35745020]
[17]
Li, Y.; Hari, D.P.; Vita, M.V.; Waser, J. Cyclic hypervalent iodine reagents for atom-transfer reactions: Beyond trifluoromethylation. Angew. Chem. Int. Ed., 2016, 55(14), 4436-4454.
[http://dx.doi.org/10.1002/anie.201509073] [PMID: 26880486]
[18]
Singh, F.V.; Rehbein, J.; Wirth, T. Facile oxidative rearrangements using hypervalent iodine reagents. ChemistryOpen, 2012, 1(6), 245-250.
[http://dx.doi.org/10.1002/open.201200037] [PMID: 24551514]
[19]
Wirth, T.; Singh, F. Oxidative rearrangements with hypervalent iodine reagents. Synthesis, 2013, 45(18), 2499-2511.
[http://dx.doi.org/10.1055/s-0033-1339679]
[20]
Shetgaonkar, S.E.; Krishnan, M.; Singh, F.V. Hypervalent iodine reagents for oxidative rearrangements. Mini Rev. Org. Chem., 2021, 18(2), 138-158.
[http://dx.doi.org/10.2174/1570193X17999200727204349]
[21]
Wang, X.; Studer, A. Iodine(III) reagents in radical chemistry. Acc. Chem. Res., 2017, 50(7), 1712-1724.
[http://dx.doi.org/10.1021/acs.accounts.7b00148] [PMID: 28636313]
[22]
Taylor, M.T.; Nelson, J.E.; Suero, M.G.; Gaunt, M.J. A protein functionalization platform based on selective reactions at methionine residues. Nature, 2018, 562(7728), 563-568.
[http://dx.doi.org/10.1038/s41586-018-0608-y] [PMID: 30323287]
[23]
Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J. Org. Chem., 2018, 14(1), 1813-1825.
[http://dx.doi.org/10.3762/bjoc.14.154] [PMID: 30112085]
[24]
Moriarty, R.M.; Vaid, R.K.; Duncan, M.P.; Ochiai, M.; Inenaga, M.; Nagao, Y. Hypervalent iodine oxidation of amines using iodosobenzene: Synthesis of nitriles, ketones and lactams. Tetrahedron Lett., 1988, 29(52), 6913-6916.
[http://dx.doi.org/10.1016/S0040-4039(00)88473-7]
[25]
Barton, D.H.R.; Godfrey, C.R.A.; Morzycki, J.W.; Motherwell, W.B.; Ley, S.V. A practical catalytic method for the preparation of steroidal 1,4-dien-3-ones by oxygen atom transfer from iodoxybenzene to diphenyl diselenide. J. Chem. Soc., Perkin Trans. 1, 1982, 1947-1952.
[http://dx.doi.org/10.1039/p19820001947]
[26]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, 2009(1), 1-62.
[http://dx.doi.org/10.3998/ark.5550190.0010.101]
[27]
Yusubov, M.S.; Wirth, T. Solvent-free reactions with hypervalent iodine reagents. Org. Lett., 2005, 7(3), 519-521.
[http://dx.doi.org/10.1021/ol047363e] [PMID: 15673279]
[28]
Kumar, R.; Parkash, J.; Kamal, R.; Kumar, V.; Saini, S. Synthesis, XRD and mechanistic studies of α‐aryl‐β,β‐ditosyloxy ketones: an oxidative 1,2‐aryl migration in α,β‐unsaturated diaryl ketones under metal free conditions. Asian J. Org. Chem., 2022, 11(1), e202100578.
[http://dx.doi.org/10.1002/ajoc.202100578]
[29]
Yoshimura, A.; Koski, S.R.; Fuchs, J.M.; Saito, A.; Nemykin, V.N.; Zhdankin, V.V. Saccharin-based μ-oxo imidoiodane: a readily available and highly reactive reagent for electrophilic amination. Chemistry, 2015, 21(14), 5328-5331.
[http://dx.doi.org/10.1002/chem.201500335] [PMID: 25694131]
[30]
Dohi, T.; Takenaga, N.; Fukushima, K.; Uchiyama, T.; Kato, D.; Motoo, S.; Fujioka, H.; Kita, Y. Designer μ-oxo-bridged hypervalent iodine(iii) organocatalysts for greener oxidations. Chem. Commun. (Camb.), 2010, 46(41), 7697-7699.
[http://dx.doi.org/10.1039/c0cc03213a] [PMID: 20877828]
[31]
Šket, B.; Zupan, M.; Zupet, P. Role of the polymer backbone on the reactivity of polymer-supported (dichloroiodo)benzene. Tetrahedron, 1984, 40(9), 1603-1606.
[http://dx.doi.org/10.1016/S0040-4020(01)91811-3]
[32]
Yusubov, M.S.; Drygunova, L.A.; Zhdankin, V.V. 4, 4′-Bis (dichloroiodo) biphenyl and 3-(dichloroiodo) benzoic acid: New recyclable hypervalent iodine reagents for vicinal halomethoxylation of unsaturated compounds. Synthesis, 2004, 2004(14), 2289-2292.
[http://dx.doi.org/10.1055/s-2004-831175]
[33]
Shetgaonkar, S.E.; Singh, F.V. Hypervalent iodine-mediated synthesis and late-stage functionalization of heterocycles. ARKIVOC, 2020, 86-161.
[34]
Murphy, G.K.; Racicot, L.; Carle, M.S. The chemistry between hypervalent iodine(III) reagents and organophosphorus compounds. Asian J. Org. Chem., 2018, 7(5), 837-851.
[http://dx.doi.org/10.1002/ajoc.201800058]
[35]
Shetgaonkar, S.E.; Raju, A.; China, H.; Takenaga, N.; Dohi, T.; Singh, F.V. Non-palladium-catalyzed oxidative coupling reactions using hypervalent iodine reagents. Front Chem., 2022, 10, 909250.
[http://dx.doi.org/10.3389/fchem.2022.909250] [PMID: 35844643]
[36]
Pohnert, G. Phenyliodine(III) bis(trifluoroacetate) (PIFA). J. Prakt. Chem., 2000, 342(7), 731-734.
[http://dx.doi.org/10.1002/1521-3897(200009)342:7<731::AID-PRAC731>3.0.CO;2-E]
[37]
Tellitu, I.; Serna, S.; Herrero, M.T.; Moreno, I.; Domínguez, E.; SanMartin, R. Intramolecular PIFA-mediated alkyne amidation and carboxylation reaction. J. Org. Chem., 2007, 72(4), 1526-1529.
[http://dx.doi.org/10.1021/jo062320s] [PMID: 17288399]
[38]
Correa, A.; Tellitu, I.; Domínguez, E.; SanMartin, R. Novel alternative for the N-N bond formation through a PIFA-mediated oxidative cyclization and its application to the synthesis of indazol-3-ones. J. Org. Chem., 2006, 71(9), 3501-3505.
[http://dx.doi.org/10.1021/jo060070+] [PMID: 16626131]
[39]
Christodoulou, M.S.; Kasiotis, K.M.; Fokialakis, N.; Tellitu, I.; Haroutounian, S.A. PIFA-mediated synthesis of novel pyrazoloquinolin-4-ones as potential ligands for the estrogen receptor. Tetrahedron Lett., 2008, 49(50), 7100-7102.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.098]
[40]
Beltran, R.; Nocquet-Thibault, S.; Blanchard, F.; Dodd, R.H.; Cariou, K. PIFA-mediated ethoxyiodination of enamides with potassium iodide. Org. Biomol. Chem., 2016, 14(36), 8448-8451.
[http://dx.doi.org/10.1039/C6OB01673A] [PMID: 27722410]
[41]
Geary, G.C.; Hope, E.G.; Singh, K.; Stuart, A.M. Electrophilic fluorination using a hypervalent iodine reagent derived from fluoride. Chem. Commun. (Camb.), 2013, 49(81), 9263-9265.
[http://dx.doi.org/10.1039/c3cc44792h] [PMID: 23998186]
[42]
Maiti, S.; Alam, T.; Mal, P. Soft-hard acid-base-controlled C−H trifluoroethoxylation and trideuteriomethoxylation of anilides. Asian J. Org. Chem., 2018, 7(4), 715-719.
[http://dx.doi.org/10.1002/ajoc.201800069]
[43]
Nahide, P.D.; Ramadoss, V.; Juárez-Ornelas, K.A.; Satkar, Y.; Ortiz-Alvarado, R.; Cervera-Villanueva, J.M.J.; Alonso-Castro, Á.J.; Zapata-Morales, J.R.; Ramírez-Morales, M.A.; Ruiz-Padilla, A.J.; Deveze-Álvarez, M.A.; Solorio-Alvarado, C.R. In situ formed I III -based reagent for the electrophilic ortho -chlorination of phenols and phenol ethers: The use of PIFA-AlCl3 System. Eur. J. Org. Chem., 2018, 2018(4), 485-493.
[http://dx.doi.org/10.1002/ejoc.201701399]
[44]
Granados, A.; Jia, Z.; del Olmo, M.; Vallribera, A. In situ generation of hypervalent iodine reagents for the electrophilic chlorination of arenes. Eur. J. Org. Chem., 2019, 2019(17), 2812-2818.
[http://dx.doi.org/10.1002/ejoc.201900237]
[45]
Zhang, Z.; Gao, X.; Li, Z.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T. PIFA-Mediated oxidative cyclization of 1-aroyl-N-arylcyclopropane-1-carboxamides and their application in the synthesis of pyrrolo[3,2-c]quinolinones. Org. Chem. Front., 2017, 4(3), 404-408.
[http://dx.doi.org/10.1039/C6QO00598E]
[46]
Fra, L.; Muñiz, K. Indole synthesis through sequential electrophilic N-H and C-H bond activation using iodine(III) reactivity. Chem. Eur. J., 2016, 22(13), 4351-4354.
[47]
Xu, C.; Song, X.; Guo, J.; Chen, S.; Gao, J.; Jiang, J.; Gao, F.; Li, Y.; Wang, M. Synthesis of chloro (phenyl) trifluoromethyliodane and catalyst-free electrophilic trifluoromethylations. Org. Lett., 2018, 20(13), 3933-3937.
[http://dx.doi.org/10.1021/acs.orglett.8b01510] [PMID: 29923412]
[48]
Souto, J.A.; Martínez, C.; Velilla, I.; Muñiz, K. Defined hypervalent iodine(III) reagents incorporating transferable nitrogen groups: nucleophilic amination through electrophilic activation. Angew. Chem. Int. Ed., 2013, 52(4), 1324-1328.
[http://dx.doi.org/10.1002/anie.201206420] [PMID: 23208818]
[49]
Nash, T.J.; Pattison, G. Apparent electrophilic fluorination of 1,3-dicarbonyl compounds using nucleophilic fluoride mediated by PhI(OAc)2. Eur. J. Org. Chem., 2015, 2015(17), 3779-3786.
[http://dx.doi.org/10.1002/ejoc.201500370]
[50]
Zheng, G.; Ma, X.; Li, J.; Zhu, D.; Wang, M. Electrophilic N-trifluoromethylation of N–H ketimines. J. Org. Chem., 2015, 80(17), 8910-8915.
[http://dx.doi.org/10.1021/acs.joc.5b01468] [PMID: 26249672]
[51]
Xie, Y.; Zhou, S.; Li, Y.; Zhou, S.; Chen, M.; Wang, B.; Xiong, L.; Yang, N.; Li, Z. Design, synthesis, biological evaluation and SARs of Novel N -substituted sulfoximines as potential ryanodine receptor modulators. Chin. J. Chem., 2018, 36(2), 129-133.
[http://dx.doi.org/10.1002/cjoc.201700555]
[52]
Choudhuri, K.; Pramanik, M.; Mal, P. Noncovalent interactions in C–S bond formation reactions. J. Org. Chem., 2020, 85(19), 11997-12011.
[http://dx.doi.org/10.1021/acs.joc.0c01534] [PMID: 32841024]
[53]
Mowdawalla, C.; Ahmed, F.; Li, T.; Pham, K.; Dave, L.; Kim, G.; Hyatt, I.F.D. Hypervalent iodine-guided electrophilic substitution: para -selective substitution across aryl iodonium compounds with benzyl groups. Beilstein J. Org. Chem., 2018, 14, 1039-1045.
[http://dx.doi.org/10.3762/bjoc.14.91] [PMID: 29977377]
[54]
Mondal, B.; Hazra, S.; Naktode, K.; Panda, T.K.; Roy, B.PhI. (OAc)2 and BF3–OEt2 mediated heterocyclization: metal-free synthesis of pyrimidine-annulated oxazolines. Tetrahedron Lett., 2014, 55(41), 5625-5628.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.051]
[55]
Deng, Q.; Xia, W.; Hussain, M.I.; Zhang, X.; Hu, W.; Xiong, Y. Synthesis of polycyclic cyclohexadienone through alkoxy-oxylactonization and dearomatization of 3′-hydroxy-[1, 1′-biphenyl]-2-carboxylic acids promoted by hypervalent iodine. J. Org. Chem., 2020, 85(5), 3125-3133.
[http://dx.doi.org/10.1021/acs.joc.9b03012] [PMID: 31942790]
[56]
Rebrovic, L.; Koser, G.F. Reactions of alkenes with [hydroxy(tosyloxy)iodo]benzene: stereospecific syn-1,2-ditosyloxylation of the carbon-carbon double bond and other processes. J. Org. Chem., 1984, 49(13), 2462-2472.
[http://dx.doi.org/10.1021/jo00187a032]
[57]
Dohi, T.; Yamaoka, N.; Kita, Y. Fluoroalcohols: versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonium(III) salts. Tetrahedron, 2010, 66(31), 5775-5785.
[http://dx.doi.org/10.1016/j.tet.2010.04.116]
[58]
(a) Zhdankin, V.V. Hypervalent iodine chemistry: preparation, structure, and synthetic applications of polyvalent iodine compounds; Wiley, 2013. ;
(b) Wang, D.; Li, Q.; Du, Z.; Fu, Y. Recent progress in arylation reactions with diaryliodonium salts. Curr. Org. Chem., 2021, 25(11), 1298-1320.
[59]
Ghosh, H.; Baneerjee, A.; Rout, S.K.; Patel, B.K. A convenient one-pot synthesis of amines from aldoximes mediated by Koser’s reagent. ARKIVOC. J. Org. Chem., 2011, 2, 209-216.
[60]
Basdevant, B.; Legault, C.Y. Study of the reactivity of [hydroxy (tosyloxy) iodo] benzene toward enol esters to access α-tosyloxy ketones. J. Org. Chem., 2015, 80(13), 6897-6902.
[http://dx.doi.org/10.1021/acs.joc.5b00948] [PMID: 26098233]
[61]
Prakash, O.; Pannu, K.; Prakash, R.; Batra, A. [Hydroxy(tosyloxy)iodo]benzene Mediated α-Azidation of Ketones. Molecules, 2006, 11(7), 523-527.
[http://dx.doi.org/10.3390/11070523] [PMID: 17971723]
[62]
Shah, M.; Taschner, M.J.; Koser, G.F.; Rach, N.L. Tosyloxylactonization of alkenoic acids with [hydroxy(tosyloxy)iodo] benzene. Tetrahedron Lett., 1986, 27(38), 4557-4560.
[http://dx.doi.org/10.1016/S0040-4039(00)85002-9]
[63]
Shah, M.; Taschner, M.J.; Koser, G.F.; Rach, N.L.; Jenkins, T.E.; Cyr, P.; Powers, D. Bislactonizations of olefinic diacids with [hydroxy(tosyloxy)iodo]benzene. Tetrahedron Lett., 1986, 27(45), 5437-5440.
[http://dx.doi.org/10.1016/S0040-4039(00)85231-4]
[64]
Xu, B.; Gao, Y.; Han, J.; Xing, Z.; Zhao, S.; Zhang, Z.; Ren, R.; Wang, L. Hypervalent iodine(III)-mediated tosyloxylation of 4-hydroxycoumarins. J. Org. Chem., 2019, 84(16), 10136-10144.
[http://dx.doi.org/10.1021/acs.joc.9b01323] [PMID: 31190534]
[65]
Fra, L.; Millán, A.; Souto, J.A.; Muñiz, K. Indole synthesis based on a modified Koser reagent. Angew. Chem. Int. Ed., 2014, 53(28), 7349-7353.
[http://dx.doi.org/10.1002/anie.201402661] [PMID: 24890610]
[66]
Yoshimura, A.; Klasen, S.C.; Shea, M.T.; Nguyen, K.C.; Rohde, G.T.; Saito, A.; Postnikov, P.S.; Yusubov, M.S.; Nemykin, V.N.; Zhdankin, V.V. Preparation, structure, and reactivity of pseudocyclic benziodoxole tosylates: new hypervalent iodine oxidants and electrophiles. Chemistry, 2017, 23(3), 691-695.
[http://dx.doi.org/10.1002/chem.201604475] [PMID: 27794175]
[67]
Zhdankin, V.V.; Yusubov, M.S.; Postnikov, P.; Yoshimura, A. Benziodoxole-derived organosulfonates: the strongest hypervalent iodine electrophiles and oxidants. Synlett, 2020, 31(4), 315-326.
[http://dx.doi.org/10.1055/s-0039-1690761]
[68]
Ladziata, U.; Koposov, A.Y.; Lo, K.Y.; Willging, J.; Nemykin, V.N.; Zhdankin, V.V. Synthesis, structure, and chemoselective reactivity of N‐(2‐iodylphenyl) acylamides: hypervalent iodine reagents bearing a pseudo‐six‐membered ring scaffold. Angew. Chem., 2005, 117(43), 7289-7293.
[http://dx.doi.org/10.1002/ange.200502707]
[69]
Qurban, J.; Elsherbini, M.; Alharbi, H.; Wirth, T. Synthesis, characterisation, and reactivity of novel pseudocyclic hypervalent iodine reagents with heteroaryl carbonyl substituents. Chem. Commun. (Camb.), 2019, 55(55), 7998-8000.
[http://dx.doi.org/10.1039/C9CC03905H] [PMID: 31225543]
[70]
Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun. (Camb.), 2009, 16(16), 2073-2085.
[http://dx.doi.org/10.1039/b821747e] [PMID: 19360157]
[71]
Singh, F.V.; Wirth, T. Hypervalent iodine chemistry and light: photochemical reactions involving hypervalent iodine chemistry. ARKIVOC, 2021, 2021(7), 12-47.
[http://dx.doi.org/10.24820/ark.5550190.p011.483]
[72]
Hokamp, T.; Wirth, T. Hypervalent iodine(III)‐catalysed enantioselective α‐acetoxylation of ketones. Chemistry, 2020, 26(46), 10417-10421.
[http://dx.doi.org/10.1002/chem.202000927] [PMID: 32233006]
[73]
Shetgaonkar, S.E.; Singh, F.V. Hypervalent iodine reagent in palladium-catalyzed oxidative cross-coupling reactions. Front Chem., 2020, 8, 705.
[http://dx.doi.org/10.3389/fchem.2020.00705] [PMID: 33134246]
[74]
Rahman, A.U.; Zarshad, N.; Zhou, P.; Yang, W.; Li, G.; Ali, A. Hypervalent iodine(III) catalyzed regio-and diastereoselective aminochlorination of tailored electron deficient olefins via GAP chemistry. Front Chem., 2020, 8, 523.
[http://dx.doi.org/10.3389/fchem.2020.00523] [PMID: 32733847]
[75]
Cardona, F.; Goti, A. Metal-catalysed 1,2-diamination reactions. Nat. Chem., 2009, 1(4), 269-275.
[http://dx.doi.org/10.1038/nchem.256] [PMID: 21378869]
[76]
Zhu, Y.; Cornwall, R.G.; Du, H.; Zhao, B.; Shi, Y. Catalytic diamination of olefins via N-N bond activation. Acc. Chem. Res., 2014, 47(12), 3665-3678.
[http://dx.doi.org/10.1021/ar500344t] [PMID: 25402963]
[77]
Muñiz, K.; Martínez, C. Development of intramolecular vicinal diamination of alkenes: from palladium to bromine catalysis. J. Org. Chem., 2013, 78(6), 2168-2174.
[http://dx.doi.org/10.1021/jo302472w] [PMID: 23437968]
[78]
Muñiz, K.; Barreiro, L.; Romero, R.M.; Martínez, C. Catalytic asymmetric diamination of styrenes. J. Am. Chem. Soc., 2017, 139(12), 4354-4357.
[http://dx.doi.org/10.1021/jacs.7b01443] [PMID: 28277652]
[79]
Cots, E.; Flores, A.; Romero, R.M.; Muñiz, K. A practical aryliodine (I/III) catalysis for the vicinal diamination of styrenes. ChemSusChem, 2019, 12(13), 3028-3031.
[http://dx.doi.org/10.1002/cssc.201900360] [PMID: 30803150]
[80]
Cots, E.; Rintjema, J.; Bravo, F.; Muñiz, K. Deciphering the keys for high enantioselectivity in hypervalent iodine-catalyzed 1,2-difunctionalization: Improved synthesis of ishihara–muñiz precatalysts. Org. Lett., 2021, 23(16), 6429-6434.
[http://dx.doi.org/10.1021/acs.orglett.1c02252] [PMID: 34346687]
[81]
Mizar, P.; Laverny, A.; El-Sherbini, M.; Farid, U.; Brown, M.; Malmedy, F.; Wirth, T. Enantioselective diamination with novel chiral hypervalent iodine catalysts. Chemistry, 2014, 20(32), 9910-9913.
[http://dx.doi.org/10.1002/chem.201403891] [PMID: 25042733]
[82]
Wata, C.; Hashimoto, T. Organoiodine-catalyzed enantioselective intermolecular oxyamination of alkenes. J. Am. Chem. Soc., 2021, 143(4), 1745-1751.
[http://dx.doi.org/10.1021/jacs.0c11440] [PMID: 33482057]
[83]
Wu, F.; Kaur, N.; Alom, N.E.; Li, W. Chiral hypervalent iodine catalysis enables an unusual regiodivergent intermolecular olefin aminooxygenation. JACS Au, 2021, 1(6), 734-741.
[http://dx.doi.org/10.1021/jacsau.1c00103] [PMID: 34240078]
[84]
Deng, X.J.; Liu, H.X.; Zhang, L.W.; Zhang, G.Y.; Yu, Z.X.; He, W. Iodoarene-catalyzed oxyamination of unactivated alkenes to synthesize 5-imino-2-tetrahydrofuranyl methanamine derivatives. J. Org. Chem., 2021, 86(1), 235-253.
[http://dx.doi.org/10.1021/acs.joc.0c02047] [PMID: 33336571]
[85]
Hashimoto, T.; Wata, C. Organoiodine-catalyzed enantioselective intramolecular oxyaminations of alkenes with N-(Fluorosulfonyl)carbamate. Synthesis, 2021, 53(15), 2594-2601.
[http://dx.doi.org/10.1055/s-0037-1610768]
[86]
Haubenreisser, S.; Wöste, T.H.; Martínez, C.; Ishihara, K.; Muñiz, K. Structurally defined molecular hypervalent iodine catalysts for intermolecular enantioselective reactions. Angew. Chem. Int. Ed., 2016, 55(1), 413-417.
[http://dx.doi.org/10.1002/anie.201507180] [PMID: 26596513]
[87]
Muñiz, K.; Wöste, T. Enantioselective vicinal diacetoxylation of alkenes under chiral iodine(III) catalysis. Synthesis, 2016, 48(6), 816-827.
[http://dx.doi.org/10.1055/s-0035-1561313]
[88]
Aertker, K.; Rama, R.J.; Opalach, J.; Muñiz, K. Vicinal difunctionalization of alkenes under iodine(III) catalysis involving lewis base adducts. Adv. Synth. Catal., 2017, 359(8), 1290-1294.
[http://dx.doi.org/10.1002/adsc.201601178]
[89]
Yusubov, M.S.; Zhdankin, V.V. Iodine catalysis: A green alternative to transition metals in organic chemistry and technology. Resource-Efficient Technol., 2015, 1(1), 49-67.
[http://dx.doi.org/10.1016/j.reffit.2015.06.001]
[90]
Kitamura, T.; Muta, K.; Oyamada, J. Hypervalent iodine-mediated fluorination of styrene derivatives: stoichiometric and catalytic transformation to 2, 2-difluoroethylarenes. J. Org. Chem., 2015, 80(21), 10431-10436.
[http://dx.doi.org/10.1021/acs.joc.5b01929] [PMID: 26450682]
[91]
Molnár, I.G.; Gilmour, R. Catalytic difluorination of olefins. J. Am. Chem. Soc., 2016, 138(15), 5004-5007.
[http://dx.doi.org/10.1021/jacs.6b01183] [PMID: 26978593]
[92]
Scheidt, F.; Schäfer, M.; Sarie, J.C.; Daniliuc, C.G.; Molloy, J.J.; Gilmour, R. Enantioselective, catalytic vicinal difluorination of alkenes. Angew. Chem. Int. Ed., 2018, 57(50), 16431-16435.
[http://dx.doi.org/10.1002/anie.201810328] [PMID: 30255972]
[93]
Banik, S.M.; Medley, J.W.; Jacobsen, E.N. Catalytic, diastereoselective 1, 2-difluorination of alkenes. J. Am. Chem. Soc., 2016, 138(15), 5000-5003.
[http://dx.doi.org/10.1021/jacs.6b02391] [PMID: 27046019]
[94]
Banik, S.M.; Medley, J.W.; Jacobsen, E.N. Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters. Science, 2016, 353(6294), 51-54.
[http://dx.doi.org/10.1126/science.aaf8078] [PMID: 27365443]
[95]
Haj, M.K.; Banik, S.M.; Jacobsen, E.N. Catalytic, enantioselective 1, 2-difluorination of cinnamamides. Org. Lett., 2019, 21(13), 4919-4923.
[http://dx.doi.org/10.1021/acs.orglett.9b00938] [PMID: 30963766]
[96]
Levin, M.D.; Ovian, J.M.; Read, J.A.; Sigman, M.S.; Jacobsen, E.N. Catalytic enantioselective synthesis of difluorinated alkyl bromides. J. Am. Chem. Soc., 2020, 142(35), 14831-14837.
[http://dx.doi.org/10.1021/jacs.0c07043] [PMID: 32799536]
[97]
Zhou, B.; Haj, M.K.; Jacobsen, E.N.; Houk, K.N.; Xue, X.S. Mechanism and origins of chemo-and stereoselectivities of aryl iodide-catalyzed asymmetric difluorinations of β-substituted styrenes. J. Am. Chem. Soc., 2018, 140(45), 15206-15218.
[http://dx.doi.org/10.1021/jacs.8b05935] [PMID: 30350956]
[98]
Mennie, K.M.; Banik, S.M.; Reichert, E.C.; Jacobsen, E.N. Catalytic diastereo-and enantioselective fluoroamination of alkenes. J. Am. Chem. Soc., 2018, 140(14), 4797-4802.
[http://dx.doi.org/10.1021/jacs.8b02143] [PMID: 29583001]
[99]
Singh, F.V.; Mangaonkar, S.R.; Kole, P.B. Ultrasound-assisted rapid synthesis of β-cyanoepoxides using hypervalent iodine reagents. Synth. Commun., 2018, 48(17), 2169-2176.
[http://dx.doi.org/10.1080/00397911.2018.1479760]
[100]
Zhang, D.Y.; Zhang, Y.; Wu, H.; Gong, L.Z. Organoiodine‐catalyzed enantioselective alkoxylation/oxidative rearrangement of allylic alcohols. Angew. Chem. Int. Ed., 2019, 58(22), 7450-7453.
[http://dx.doi.org/10.1002/anie.201903007] [PMID: 30942948]
[101]
Abazid, A.H.; Nachtsheim, B.J. A triazole‐substituted aryl iodide with omnipotent reactivity in enantioselective oxidations. Angew. Chem. Int. Ed., 2020, 59(4), 1479-1484.
[http://dx.doi.org/10.1002/anie.201912023] [PMID: 31600009]
[102]
Boelke, A.; Nachtsheim, B.J. Evolution of N‐Heterocycle‐substituted iodoarenes (NHIAs) to efficient organocatalysts in iodine(I/III)‐mediated oxidative transformations. Adv. Synth. Catal., 2020, 362(1), 184-191.
[http://dx.doi.org/10.1002/adsc.201901356]
[103]
Hu, L.; Gao, T.; Deng, Q.; Xiong, Y. Organoiodine-induced hydroxylation as well as enantioselective alkoxylation/hydroxylation of allylic alcohols via 1,2- aryl migration. Tetrahedron, 2021, 95, 132334.
[http://dx.doi.org/10.1016/j.tet.2021.132334]
[104]
Pandey, C.B.; Azaz, T.; Verma, R.S.; Mishra, M.; Jat, J.L.; Tiwari, B. Stereoselective oxidative rearrangement of disubstituted unactivated alkenes using hypervalent iodine(III) reagent. J. Org. Chem., 2020, 85(15), 10175-10181.
[http://dx.doi.org/10.1021/acs.joc.0c00347] [PMID: 32662643]
[105]
Peraka, S.; Mameda, N.; Marri, M.R.; Kodumuri, S.; Chevella, D.; Sripadi, P.; Nama, N. Hypoiodous acid-catalyzed regioselective geminal addition of methanol to vinylarenes: synthesis of anti-Markovnikov methyl acetals. RSC Advances, 2015, 5(90), 73732-73736.
[http://dx.doi.org/10.1039/C5RA16826K]
[106]
Kodumuri, S.; Peraka, S.; Mameda, N.; Chevella, D.; Banothu, R.; Nama, N. Metal-free, catalytic regioselective oxidative conversion of vinylarenes: a mild approach to phenylacetic acid derivatives. RSC Advances, 2016, 6(8), 6719-6723.
[http://dx.doi.org/10.1039/C5RA25296B]
[107]
Ulmer, A.; Stodulski, M.; Kohlhepp, S.V.; Patzelt, C.; Pöthig, A.; Bettray, W.; Gulder, T. Iodine(III)-catalyzed rearrangements of imides: a versatile route to α,α-dialkylated α-hydroxy carboxylamides. Chemistry, 2015, 21(4), 1444-1448.
[http://dx.doi.org/10.1002/chem.201405888] [PMID: 25470246]
[108]
Sharma, H.A.; Mennie, K.M.; Kwan, E.E.; Jacobsen, E.N. Enantioselective aryl-iodide-catalyzed Wagner–Meerwein rearrangements. J. Am. Chem. Soc., 2020, 142(37), 16090-16096.
[http://dx.doi.org/10.1021/jacs.0c08150] [PMID: 32845619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy