Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Synthesis, Drug-Likeness Evaluation of Some Heterocyclic Moieties Fused Indole Derivatives as Potential Antioxidants

Author(s): Archana Kumari and Rajesh Kumar Singh*

Volume 26, Issue 11, 2023

Published on: 14 February, 2023

Page: [2077 - 2084] Pages: 8

DOI: 10.2174/1386207326666230102111810

Price: $65

conference banner
Abstract

Background: Indole and its derivatives have a wide range of pharmacological effects, including analgesic, antimicrobial, antidepressant, anti-diabetic, anti-convulsant, anti-helminthic, and anti-inflammatory properties. They are crucial structural components of many of today's powerful antioxidant medications.

Objective: Using the Schotten–Baumann reaction, the indole ring was linked to other key heterocyclic moieties such as morpholine, imidazole, piperidine, and piperazine at the active 3rd position and then tested for antioxidant activity.

Methods: Synthesis of derivatives was accomplished under appropriate conditions and characterized by IR, NMR (1H and 13C), and mass spectrum. Using the Swiss ADME online application, ADME properties were also determined. The in vitro antioxidant activity was measured using DPPH and Reducing power method.

Results: In the DPPH assay, compounds 5a (IC50=1.01±0.22 μg/mL), 5k (IC50=1.21 ± 0.07 μg/mL), whereas compounds 5a (EC50=23 ± 1.00 μg/mL), 5h (EC50=26±2.42 μg/mL) in the reducing power assay were most potent as compared with standard Ascorbic acid. Compounds 5a, 5h, and 5k demonstrated maximal potency equivalent to standard. Lipinski's rule was followed in ADME outcomes.

Conclusion: The synthesis and evaluation of indole derivatives to investigate their antioxidant action has received a lot of attention. These discoveries could lead to more effective antioxidant candidates being designed and developed.

Graphical Abstract

[1]
Kumari, A.; Singh, R.K. Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg. Chem., 2020, 96, 103578.
[http://dx.doi.org/10.1016/j.bioorg.2020.103578] [PMID: 31978684]
[2]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[3]
Sethi, N.S.; Prasad, D.N.; Singh, R.K. An insight into the synthesis and SAR of 2,4-thiazolidinediones (2,4-TZD) as multifunctional scaffold: A review. Mini Rev. Med. Chem., 2020, 20(4), 308-330.
[http://dx.doi.org/10.2174/1389557519666191029102838] [PMID: 31660809]
[4]
Kumar, S.; Singh, R.K.; Patial, B.; Goyal, S.; Bhardwaj, T.R. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria. J. Enzyme Inhib. Med. Chem., 2016, 31(2), 173-186.
[http://dx.doi.org/10.3109/14756366.2015.1016513] [PMID: 25775094]
[5]
Singh, R.K. Key heterocyclic cores for smart anticancer drugdesign, 1st Ed: Bentham Publisher 2022.
[http://dx.doi.org/10.2174/97898150400741220101]
[6]
Wójcik-Pszczoła, K.; Jankowska, A.; Ślusarczyk, M.; Jakieła, B.; Plutecka, H.; Pociecha, K.; Świerczek, A.; Popiół J.; Koczurkiewicz-Adamczyk, P.; Wyska, E.; Pękala, E.; Gosens, R.; Chłoń-Rzepa, G. Synthesis and in vitro evaluation of anti-inflammatory, antioxidant, and anti-fibrotic effects of new 8-aminopurine-2,6-dione-based phosphodiesterase inhibitors as promising anti-asthmatic agents. Bioorg. Chem., 2021, 117, 105409.
[http://dx.doi.org/10.1016/j.bioorg.2021.105409] [PMID: 34749117]
[7]
Eid, A.M.; Hawash, M.; Amer, J.; Jarrar, A.; Qadri, S.; Alnimer, I.; Sharaf, A.; Zalmoot, R.; Hammoudie, O.; Hameedi, S.; Mousa, A. Synthesis and biological evaluation of novel isoxazole-amide analogues as anticancer and antioxidant agents. BioMed Res. Int., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/6633297]
[8]
Zhou, L.C.; Liang, Y.F.; Huang, Y.; Yang, G.X.; Zheng, L.L.; Sun, J.M.; Li, Y.; Zhu, F.L.; Qian, H.W.; Wang, R.; Ma, L. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2021, 219, 113426.
[http://dx.doi.org/10.1016/j.ejmech.2021.113426] [PMID: 33848787]
[9]
Matteo, V.; Esposito, E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr. Drug Targets CNS Neurol. Disord., 2003, 2(2), 95-107.
[http://dx.doi.org/10.2174/1568007033482959] [PMID: 12769802]
[10]
Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol., 2015, 24(4), 325-340.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[11]
Mahmood, A.; Saqib, M.; Ali, M.; Abdullah, M.I.; Khalid, B. Theoretical investigation for the designing of novel antioxidants. Can. J. Chem., 2013, 91(2), 126-130.
[http://dx.doi.org/10.1139/cjc-2012-0356]
[12]
Saqib, M.; Iqbal, S.; Mahmood, A.; Akram, R. Theoretical investigation for exploring the antioxidant potential of chlorogenic acid: A density functional theory study. Int. J. Food Prop., 2016, 19(4), 745-751.
[http://dx.doi.org/10.1080/10942912.2015.1042588]
[13]
Mahmood, A.; Abdullah, M.I.; Nazar, M.F. Quantum chemical designing of novel organic non-linear optical compounds. Bull. Korean Chem. Soc., 2014, 35(5), 1391-1396.
[http://dx.doi.org/10.5012/bkcs.2014.35.5.1391]
[14]
Thanikachalam, P.V.; Maurya, R.K.; Garg, V.; Monga, V. Corrigendum to “An insight into the medicinal perspective of synthetic analogs of indole: A review” Eur. J. Med. Chem. 180 (2019) 562–612 11516. Eur. J. Med. Chem., 2019, 183, 111680.
[http://dx.doi.org/10.1016/j.ejmech.2019.111680] [PMID: 31520927]
[15]
Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027.
[http://dx.doi.org/10.1016/j.apsb.2022.03.021] [PMID: 35865090]
[16]
Kumari, A.; Singh, R.K. Synthesis, molecular docking and ADME prediction of 1H-indole/5-substituted indole derivatives as potential antioxidant and anti-inflammatory agents. Med. Chem., 2022, 18.
[http://dx.doi.org/10.2174/1573406418666220812152950] [PMID: 35959908]
[17]
Kumari, A.; Singh, R.K. Synthesis, molecular docking and biological evaluation of n ‐substituted indole derivatives as potential anti‐inflammatory and antioxidant agents. Chem. Biodivers., 2022, 19(9), e202200290.
[http://dx.doi.org/10.1002/cbdv.202200290] [PMID: 35818885]
[18]
Yanagimoto, K.; Lee, K.G.; Ochi, H.; Shibamoto, T. Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by Maillard reaction. J. Agric. Food Chem., 2002, 50(19), 5480-5484.
[http://dx.doi.org/10.1021/jf025616h] [PMID: 12207495]
[19]
Tsolaki, E.; Nobelos, P.; Geronikaki, A.; Rekka, E.A. Selected heterocyclic compounds as antioxidants. Synthesis and biological evaluation. Curr. Top. Med. Chem., 2014, 14(22), 2462-2477.
[http://dx.doi.org/10.2174/1568026614666141203120425] [PMID: 25478888]
[20]
Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; Hammouti, B.; El Kodadi, M.; Alsalme, A.; Al-Zaqri, N.; Warad, I.; Touzani, R. New heterocyclic compounds: synthesis, antioxidant activity and computational insights of nano-antioxidant as ascorbate peroxidase inhibitor by various cyclodextrins as drug delivery systems. Curr. Drug Deliv., 2021, 18(3), 334-349.
[http://dx.doi.org/10.2174/1567201817999201001205627] [PMID: 33023446]
[21]
Ochi, M.; Kataoka, K.; Ariki, S.; Iwatsuki, C.; Kodama, M.; Fukuyama, Y. Antioxidative bromoindole derivatives from the mid-intestinal gland of the muricid gastropod Drupella fragum. J. Nat. Prod., 1998, 61(8), 1043-1045.
[http://dx.doi.org/10.1021/np980097r] [PMID: 9722496]
[22]
Longeon, A.; Copp, B.R.; Quévrain, E.; Roué, M.; Kientz, B.; Cresteil, T.; Petek, S.; Debitus, C.; Bourguet-Kondracki, M.L. Bioactive indole derivatives from the South Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp. Mar. Drugs, 2011, 9(5), 879-888.
[http://dx.doi.org/10.3390/md9050879] [PMID: 21673896]
[23]
Gurer-Orhan, H.; Karaaslan, C.; Ozcan, S.; Firuzi, O.; Tavakkoli, M.; Saso, L.; Suzen, S. Novel indole-based melatonin analogues: Evaluation of antioxidant activity and protective effect against amyloid β-induced damage. Bioorg. Med. Chem., 2016, 24(8), 1658-1664.
[http://dx.doi.org/10.1016/j.bmc.2016.02.039] [PMID: 26970662]
[24]
Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res., 2016, 61(3), 253-278.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[25]
Estevão, M.S.; Carvalho, L.C.; Ribeiro, D.; Couto, D.; Freitas, M.; Gomes, A.; Ferreira, L.M.; Fernandes, E.; Marques, M.M.B. Antioxidant activity of unexplored indole derivatives: Synthesis and screening. Eur. J. Med. Chem., 2010, 45(11), 4869-4878.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.059] [PMID: 20727623]
[26]
Nayak, B.N.; Buttar, H.S. Evaluation of the antioxidant properties of tryptophan and its metabolites in in vitro assay. J. Complement. Integr. Med., 2016, 13(2), 129-136.
[http://dx.doi.org/10.1515/jcim-2015-0051] [PMID: 26641976]
[27]
Karaaslan, C.; Suzen, S. Antioxidant properties of melatonin and its potential action in diseases. Curr. Top. Med. Chem., 2015, 15(9), 894-903.
[http://dx.doi.org/10.2174/1568026615666150220120946] [PMID: 25697560]
[28]
de Sá Alves, F.; Barreiro, E.; Manssour Fraga, C. From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[29]
Kumari, A.; Singh, R.K. Synthesis, characterization and ADME prediction study of heterocyclic moieties linked indole derivatives as potential antimicrobial agents. Lett. Drug Des. Discov., 2022, 19.
[http://dx.doi.org/10.2174/1570180819666220404084045]
[30]
Ladopoulou, E.M.; Matralis, A.N.; Nikitakis, A.; Kourounakis, A.P. Antihyperlipidemic morpholine derivatives with antioxidant activity: An investigation of the aromatic substitution. Bioorg. Med. Chem., 2015, 23(21), 7015-7023.
[http://dx.doi.org/10.1016/j.bmc.2015.09.034] [PMID: 26433631]
[31]
Brahmbhatt, H.; Molnar, M. Pavić V. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents. Karbala Inter. J. Mod. Sci., 2018, 4(2), 200-206.
[http://dx.doi.org/10.1016/j.kijoms.2018.01.006]
[32]
K, M.R.; Begum, S.; Begum, A.; K, B. Antioxidant potential of piperidine containing compounds-a short review. Asian J. Pharm. Clin. Res., 2018, 11(8), 66-73.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i8.26536]
[33]
Patel, R.V.; Mistry, B.; Syed, R.; Rathi, A.K.; Lee, Y.J.; Sung, J.S.; Shinf, H.S.; Keum, Y.S. Chrysin-piperazine conjugates as antioxidant and anticancer agents. Eur. J. Pharm. Sci., 2016, 88, 166-177.
[http://dx.doi.org/10.1016/j.ejps.2016.02.011] [PMID: 26924226]
[34]
Oliveira, D.L.; Pugine, S.M.P.; Ferreira, M.S.L.; Lins, P.G.; Costa, E.J.X.; de Melo, M.P. Influence of indole acetic acid on antioxidant levels and enzyme activities of glucose metabolism in rat liver. Cell Biochem. Funct., 2007, 25(2), 195-201.
[http://dx.doi.org/10.1002/cbf.1307] [PMID: 16317662]
[35]
de Melo, M.P.; de Lima, T.M.; Pithon-Curi, T.C.; Curi, R. The mechanism of indole acetic acid cytotoxicity. Toxicol. Lett., 2004, 148(1-2), 103-111.
[http://dx.doi.org/10.1016/j.toxlet.2003.12.067] [PMID: 15019094]
[36]
Cano, A.; Alcaraz, O.; Arnao, M.B. Free radical-scavenging activity of indolic compounds in aqueous and ethanolic media. Anal. Bioanal. Chem., 2003, 376(1), 33-37.
[http://dx.doi.org/10.1007/s00216-003-1848-7] [PMID: 12734615]
[37]
Oprea, T.I.; Davis, A.M.; Teague, S.J.; Leeson, P.D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci., 2001, 41(5), 1308-1315.
[http://dx.doi.org/10.1021/ci010366a] [PMID: 11604031]
[38]
Singh, P.; Verma, P.; Yadav, B.; Komath, S.S. Synthesis and evaluation of indole-based new scaffolds for antimicrobial activities-Identification of promising candidates. Bioorg. Med. Chem. Lett., 2011, 21(11), 3367-3372.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.001] [PMID: 21524574]
[39]
Aubry, C.; Patel, A.; Mahale, S.; Chaudhuri, B.; Maréchal, J.D.; Sutcliffe, M.J.; Jenkins, P.R. The design and synthesis of novel 3-[2-indol-1-yl-ethyl]-1H-indole derivatives as selective inhibitors of CDK4. Tetrahedron Lett., 2005, 46(9), 1423-1425.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.054]
[40]
Jasiewicz, B.; Kozanecka-Okupnik, W.; Przygodzki, M. Warżajtis, B.; Rychlewska, U.; Pospieszny, T.; Mrówczyńska, L. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci. Rep., 2021, 11(1), 15425.
[http://dx.doi.org/10.1038/s41598-021-94904-z] [PMID: 34326403]
[41]
Oyaizu, M. Studies on products of browning reaction-Antioxidative activities of products of browning reaction. Prepared from glucosamine. Japan. J. Nutr., 1986, 44, 307-315.
[43]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Synthesis in vitro/in vivo evaluation and in silico physicochemical study of prodrug approach for brain targeting of alkylating agent. Med. Chem. Res., 2013, 22(11), 5324-5336.
[http://dx.doi.org/10.1007/s00044-013-0537-0]
[44]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[45]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): A long march towards synthesis of safer NSAIDs. Mini Rev. Med. Chem., 2018, 18(14), 1199-1219.
[http://dx.doi.org/10.2174/1389557518666180330112416] [PMID: 29600762]
[46]
Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/5276130] [PMID: 27803762]
[47]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm. (Weinheim), 2019, 352(7), 1800339.
[http://dx.doi.org/10.1002/ardp.201800339] [PMID: 31231875]
[48]
Naik, N.; Kumar, H.V.; Shubhavathi, T. Synthesis and antioxidant evaluation of novel 5-methoxy indole analogues. Int. J. Curr. Pharm. Res., 2011, 3, 109113.
[49]
Das, P. K.; Sahu, R.; Garnaik, B. Comparative evaluation of bactericidal, antifungal and antioxidant properties of biologically active schiff bases of substituted indoles and their inclusion complexes With Β-CD. IOSR J. Appl. Chem. (IOSR-JAC), 2016, 9, 24-30.
[50]
Mistry, B.M.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Synthesis of 9-O-3-(1-piperazinyl/morpholinyl/piperidinyl)pentyl-berberines as potential antioxidant and cytotoxic agents. Anticancer. Agents Med. Chem., 2016, 16(6), 713-721.
[http://dx.doi.org/10.2174/1871520615666151009114759] [PMID: 26453450]
[51]
Putri, T. N.; Bachtiar, A.; Hayun, D. H. Synthesis, antioxidant, and anti-inflammatory activity of morpholine mannich base of AMACs ((2E, 6E)-2-({4-hydroxy-3-[morpholin-4-yl-)methyl]phenyl} methylidene)- 6-(phenylmethylidene) cyclohexan-1-one) and Its Analogs. J. Appl. Pharm. Sci., 2018, 8(05), 019-025.
[52]
Siwach, A.; Verma, P.K. Synthesis and therapeutic potential of imidazole containing compounds. BMC Chem., 2021, 15(1), 12.
[http://dx.doi.org/10.1186/s13065-020-00730-1] [PMID: 33602331]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy