Abstract
Background: Edifice of C-N bond attained a very impressive position in organic synthesis as it unlocks avenues for offering nitrogen in organic molecules. As we know that water has emerged as a versatile solvent for the synthesis of a variety of organic compounds. Moreover, in accordance to green chemistry, using a very optimistic environment friendly solvent is the main concern for synthetic chemists. Thus, water always comes first in mind as a solvent of choice in appeal to environmentally benign solvents. The inertness of water and its property to dissolve maximum number of compounds, its abundant sources in nature, further embrace it as a crown. Recent years witnessed advancement in green chemistry, further forcing the organic chemists for selecting the solvent for the reaction, which will be less perilous for the mother nature.
Material and Methods: Thus, in present time, many reports have been available in literature, wherein water is embellished for performing organic reactions and synthesis of an ample amount of heterocyclic compounds. Therefore, there is a need of time to compile the latest research articles wherein water has been working as solvent to focus on C-N bond forming reactions. As among the heterocyclics, the compounds with carbon nitrogen bonds also possess a significant place due to their importance in medicinal and material science.
Results: Thus, the present draft perceived some current and most impressive carbon-nitrogen bond forming reactions exploring water as a reaction media. Moreover, we have made efforts to include more application parts and synthesis of important biological nitrogen containing heterocyclic to be included in the present study.
Conclusion: Thus, we have tried here to compile all the recent reports of C-N bond foration in water, which help the reviewers to have insight in to C-N bond forming reactions employing water as reaction media.
Graphical Abstract
[http://dx.doi.org/10.1039/c1cs15082k] [PMID: 21643614];
(b) Sorribes, I.; Junge, K.; Beller, M. Direct catalytic N-alkylation of amines with carboxylic acids. J. Am. Chem. Soc., 2014, 136(40), 14314-14319.
[http://dx.doi.org/10.1021/ja5093612] [PMID: 25230096];
(c) FDA new drug approvals for 2015, 2016, Available from: www.fda.gov/Drugs
[http://dx.doi.org/10.1038/nchembio0606-284] [PMID: 16710330]
[http://dx.doi.org/10.1002/cber.190303602174]
[http://dx.doi.org/10.1039/c0cs00125b] [PMID: 21283847];
(b) Rodríguez, N.; Goossen, L.J. Decarboxylative coupling reactions: a modern strategy for C-C-bond formation. Chem. Soc. Rev., 2011, 40(10), 5030-5048.
[http://dx.doi.org/10.1039/c1cs15093f] [PMID: 21792454]
[http://dx.doi.org/10.1038/19902]
[http://dx.doi.org/10.1126/science.284.5421.1780b]
[http://dx.doi.org/10.1039/b926439f] [PMID: 20502819]
[http://dx.doi.org/10.1039/c1gc15692f]
[http://dx.doi.org/10.1039/c2cy00490a]
[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208]
[http://dx.doi.org/10.1039/C2GC36455G]
[http://dx.doi.org/10.1039/c3cs35480f] [PMID: 23420127]
[http://dx.doi.org/10.1021/cr100162c] [PMID: 20815348]
[http://dx.doi.org/10.1002/9781119998372]
[http://dx.doi.org/10.1021/ja00546a048];
(b) Breslow, R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res., 1991, 24(6), 159-164.
[http://dx.doi.org/10.1021/ar00006a001]
[http://dx.doi.org/10.1021/jo962115k] [PMID: 11671590];
(b) Strauss, C.R.; Trainor, R.W. Reactions of ethyl indole-2-carboxylate in aqueous media at high temperature. Aust. J. Chem., 1998, 51(8), 703-705.
[http://dx.doi.org/10.1071/C98084]
[http://dx.doi.org/10.1007/978-94-011-4950-1];
(b) Hirai, Y.; Uozumi, Y. Clean synthesis of triarylamines: Buchwald-Hartwig reaction in water with amphiphilic resin-supported palladium complexes. Chem. Commun. (Camb.), 2010, 46(7), 1103-1105.
[http://dx.doi.org/10.1039/B918424D] [PMID: 20126727];
(c) Savant, M.M.; Pansuriya, A.M.; Bhuva, C.V.; Kapuriya, N.; Patel, A.S.; Audichya, V.B.; Pipaliya, P.V.; Naliapara, Y.T. Water mediated construction of trisubstituted pyrazoles/isoxazoles library using ketene dithioacetals. J. Comb. Chem., 2010, 12(1), 176-180.
[http://dx.doi.org/10.1021/cc900148q] [PMID: 19950975];
(d) Carril, M.; SanMartin, R.; Tellitu, I.; Domínguez, E. On-water chemistry: copper-catalyzed straightforward synthesis of benzo[b]furan derivatives in neat water. Org. Lett., 2006, 8(7), 1467-1470.
[http://dx.doi.org/10.1021/ol060274c] [PMID: 16562918];
(e) Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
[http://dx.doi.org/10.1351/pac200072071207];
(b) Manabe, K.; Iimura, S.; Sun, X.M.; Kobayashi, S. Dehydration reactions in water. Brønsted Acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc., 2002, 124(40), 11971-11978.
[http://dx.doi.org/10.1021/ja026241j] [PMID: 12358542];
(c) Tsukinoki, T.; Nagashima, S.; Mitoma, Y.; Tashiro, M. Organic reaction in water. Part 4. New synthesis of vicinal diamines using zinc powder-promoted carbon-carbon bond formation. Green Chem., 2000, 2(3), 117-119.
[http://dx.doi.org/10.1039/b001533o]
[http://dx.doi.org/10.1039/b001246g]
[http://dx.doi.org/10.1002/anie.200462883] [PMID: 15844112]
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
[http://dx.doi.org/10.1021/ol070002p] [PMID: 17323961];
(b) Gonzalez-Cruz, D.; Tejedor, D.; de Armas, P. Metal-free access to fully substituted skipped diynes. An efficient chemodifferentiating A2BB’ 4CR manifold. Chemistry, 2007, 13(14), 4823-4832.
[PMID: 17450516];
(c) Shapiro, N.; Vigalok, A. Highly efficient organic reactions “on water”, “in water”, and both. Angew. Chem. Int. Ed., 2008, 47(15), 2849-2852.
[http://dx.doi.org/10.1002/anie.200705347] [PMID: 18318031];
(d) Pirrung, M.C.; Sarma, K.D. Multicomponent reactions are accelerated in water. J. Am. Chem. Soc., 2004, 126(2), 444-445.
[http://dx.doi.org/10.1021/ja038583a] [PMID: 14719923];
(e) Klijn, J.E.; Engberts, J.B.F.N. Fast reactions ‘on water’. Nature, 2005, 435(7043), 746-747.
[http://dx.doi.org/10.1038/435746a] [PMID: 15944683];
(f) Tiwari, S.; Kumar, A. Interfacial reactivity of “on water” reactions in the presence of alcoholic cosolvents. J. Phys. Chem. A, 2009, 113(49), 13685-13693.
[http://dx.doi.org/10.1021/jp906281g] [PMID: 19860462];
(g) Demchuk, D.V.; Elinson, M.N.; Nikishin, G.I. ‘On water’ Knoevenagel condensation of isatins with malononitrile. Mendeleev Commun., 2011, 21(4), 224-225.
[http://dx.doi.org/10.1016/j.mencom.2011.07.018]
[http://dx.doi.org/10.1021/jo802596y] [PMID: 19222246];
(b) Ellis, T.K.; Ueki, H.; Tiwari, R.; Soloshonok, V.A.; Novel, N. O-Cu(OAc)2 complex catalysed diastereo- and enantioselective 1,4-addition of glycine derivatives to alkylidene malonates. Tetrahedron Asymmetry, 2009, 20(1), 2629-2634.
[http://dx.doi.org/10.1016/j.tetasy.2009.10.006];
(c) Yazici, A.; Pyne, S.G. Intermolecular addition reactions of N-acyliminium ions (Part II). Synthesis, 2009, 4, 513-541.;
(d) Manzano, R.; Andrés, J.M.; Muruzábal, M.D.; Pedrosa, R. Stereocontrolled construction of quaternary stereocenters by inter- and intramolecular nitro-michael additions catalyzed by bifunctional thioureas. Adv. Synth. Catal., 2010, 352(18), 3364-3372.
[http://dx.doi.org/10.1002/adsc.201000612];
(e) Yalalov, D.A.; Tsogoeva, S.B.; Schmatz, S. Deciphering the roles of multiple additives in organocatalyzed Michael additions. Adv. Synth. Catal., 2006, 348(41), 826-832.
[http://dx.doi.org/10.1002/adsc.200505443]
[http://dx.doi.org/10.1021/jo051414j] [PMID: 16388655]
[http://dx.doi.org/10.1039/B606096J] [PMID: 17009467]
[http://dx.doi.org/10.1002/ejoc.200400619]
[http://dx.doi.org/10.1016/j.tetlet.2006.10.142]
[http://dx.doi.org/10.1016/j.tet.2010.06.055]
[http://dx.doi.org/10.1039/b807775d];
(b) Kearney, P.C.; Fernandez, M.; Flygare, J.A. Total synthesis of (−)-epibatidine using an asymmetric diels−alder reaction with a chiral N-Acylnitroso Dienophile. J. Org. Chem., 1998, 63(23), 196-200.
[http://dx.doi.org/10.1021/jo971542a] [PMID: 11674065];
(c) Kidwai, M.; Venkataramanan, R.; Dave, B. Solventless synthesis of thiohydantoins over K2CO3. Green Chem., 2001, 3(6), 278-279.
[http://dx.doi.org/10.1039/b106034c]
[http://dx.doi.org/10.1021/ja01147a007]
[http://dx.doi.org/10.1007/s11030-010-9298-6] [PMID: 21222031]
[http://dx.doi.org/10.1016/j.tet.2014.12.007]
[http://dx.doi.org/10.1039/b904044g]
[http://dx.doi.org/10.1039/c3ra46010j]
(b) Ganesh, V.; Sudhir, V.S.; Kundu, T.; Chandrasekaran, S. 10 years of click chemistry: Synthesis and applications of ferrocene-derived triazoles. Chem. Asian J., 2011, 6(10), 2670-2694.
[http://dx.doi.org/10.1002/asia.201100408] [PMID: 21882351];
(c) El-Tombary, A.A.; Abdel-Ghany, Y.S.; Belal, A.S.F.; Shams El-Dine, S.A.; Soliman, F.S.G. Synthesis of some substituted furan-2(5H)-ones and derived quinoxalinones as potential anti-microbial and anti-cancer agents. Med. Chem. Res., 2011, 20(7), 865-876.
[http://dx.doi.org/10.1007/s00044-010-9394-2];
(d) Lawrence, D.S.; Copper, J.E.; Smith, C.D. Structure-activity studies of substituted quinoxalinones as multiple-drug-resistance antagonists. J. Med. Chem., 2001, 44(4), 594-601.
[http://dx.doi.org/10.1021/jm000282d] [PMID: 11170649]
[http://dx.doi.org/10.1002/ejoc.201101013];
(b) Naito, Y.; Akahoshi, F.; Takeda, S.; Okada, T.; Kajii, M.; Nishimura, H.; Sugiura, M.; Fukaya, C.; Kagitani, Y. Synthesis and pharmacological activity of triazole derivatives inhibiting eosinophilia. J. Med. Chem., 1996, 39(15), 3019-3029.
[http://dx.doi.org/10.1021/jm9507993] [PMID: 8709136]
[http://dx.doi.org/10.1016/j.tetlet.2009.02.172];
(b) Luo, X.; Chenard, E.; Martens, P.; Cheng, Y.X.; Tomaszewski, M.J. Practical synthesis of quinoxalinones via palladium-catalyzed intramolecular N-arylations. Org. Lett., 2010, 12(16), 3574-3577.
[http://dx.doi.org/10.1021/ol101454x] [PMID: 20704396];
(c) Ballini, R.; Gabrielli, S.; Palmieri, A. β-Nitroacrylates as key starting materials for the uncatalysed one-pot synthesis of polyfunctionalized dihydroquinoxalinone derivatives, via an anti-michael reaction. Synlett, 2009, 2009(6), 965-967.
[http://dx.doi.org/10.1055/s-0028-1088197];
(d) Suschitzky, H.; Wakefield, B.J.; Whittaker, R.A. Synthesis of quinoxalinones by the reaction of o-phenylenediamines with dimethyl acetylenedicarboxylate. J. Chem. Soc., Perkin Trans. 1, 1975, (5), 401-403.
[http://dx.doi.org/10.1039/p19750000401];
(e) Mahaney, P.E.; Webb, M.B.; Ye, F.; Sabatucci, J.P.; Steffan, R.J.; Chadwick, C.C.; Harnish, D.C.; Trybulski, E.J. Synthesis and activity of a new class of pathway-selective estrogen receptor ligands: Hydroxybenzoyl-3,4-dihydroquinoxalin-2(1H)-ones. Bioorg. Med. Chem., 2006, 14(10), 3455-3466.
[http://dx.doi.org/10.1016/j.bmc.2006.01.001] [PMID: 16427291]
[http://dx.doi.org/10.1002/hlca.200900358]
[http://dx.doi.org/10.1016/j.ejmech.2010.11.032] [PMID: 21163557];
(b) Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N. -(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084];
(c) Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.C.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A.; Batley, B.L.; Painchaud, C.A.; Rapundalo, S.T.; Michniewicz, B.M.; Olson, S.C. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057];
(d) Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzer, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: a novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33(1), 311-317.
[http://dx.doi.org/10.1021/jm00163a051] [PMID: 1967314];
(e) Bell, F.W.; Cantrell, A.S.; Hoegberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr; Noréen, R.; Oberg, B.; Palkowitz, J.A.; Parrish, C.A.; Pranc, P.; Sahlberg, C.; Ternansky, R.J.; Vasileff, R.T.; Vrang, L.; West, S.J.; Zhang, H.; Zhou, X.X. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem., 1995, 38(25), 4929-4936.
[http://dx.doi.org/10.1021/jm00025a010] [PMID: 8523406]
[http://dx.doi.org/10.1016/j.tet.2008.03.082]
[http://dx.doi.org/10.1016/S0968-0896(02)00025-1] [PMID: 12057632];
(b) Dolle, R.E. Comprehensive survey of combinatorial library synthesis: 2000. J. Comb. Chem., 2001, 3(6), 477-517.
[http://dx.doi.org/10.1021/cc010049g] [PMID: 11703143];
(c) Dolle, R.E. Comprehensive survey of combinatorial library synthesis: 2001. J. Comb. Chem., 2002, 4(5), 369-418.
[http://dx.doi.org/10.1021/cc020039v] [PMID: 12217012];
(d) Panayides, J.L.; Pathak, R.; de Koning, C.B.; van Otterlo, W.A.L. Organocatalytic Synthesis of Drugs and Bioactive Natural Products. Eur. J. Org. Chem., 2007, 2007(16), 4953-4961.
[http://dx.doi.org/10.1002/ejoc.200700473]
[http://dx.doi.org/10.1021/ja00114a034];
(b) Snider, B.B.; Shi, Z. Biomimetic synthesis of (.+-.)-crambines A, B, C1, and C2. Revision of the structure of crambines B and C1. J. Org. Chem., 1993, 58(15), 3828-3839.
[http://dx.doi.org/10.1021/jo00067a014];
(c) Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[http://dx.doi.org/10.1002/jhet.5570440625]
[http://dx.doi.org/10.1021/ol201877v] [PMID: 21806007]
[http://dx.doi.org/10.1021/jm101208x] [PMID: 21121633];
(b) Sammelson, R.E.; Gurusinghe, C.D.; Kurth, J.M.; Olmstead, M.M.; Kurth, M.J. Synthesis of spiro-fused (C5)-isoxazolino-(C4)-pyrazolones (1-oxa-2,7,8-triazaspiro[4,4]-2,8-dien-6-ones) via 1,3-dipolar cycloaddition and cycloelimination. J. Org. Chem., 2002, 67(24), 876-882.
[http://dx.doi.org/10.1021/jo010895d] [PMID: 11856032]
[http://dx.doi.org/10.1016/j.ejmech.2011.07.029] [PMID: 21839549];
(b) Yang, Z.; Wang, Z.; Bai, S.; Liu, X.; Lin, L.; Feng, X. Asymmetric α-amination of 4-substituted pyrazolones catalyzed by a chiral Gd(OTf)3/N,N′-dioxide complex: highly enantioselective synthesis of 4-amino-5-pyrazolone derivatives. Org. Lett., 2011, 13(4), 596-599.
[http://dx.doi.org/10.1021/ol102804p] [PMID: 21214254]
[http://dx.doi.org/10.1039/b913838b]
[http://dx.doi.org/10.1021/cc900076j] [PMID: 19711896]
[http://dx.doi.org/10.1016/j.tetlet.2007.08.049]
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[http://dx.doi.org/10.1016/j.tetlet.2007.08.042]
[http://dx.doi.org/10.1039/c3gc37004f]
[http://dx.doi.org/10.1021/acs.joc.8b00753] [PMID: 29717614]
[http://dx.doi.org/10.1039/C4RA02279C]
[http://dx.doi.org/10.1039/B611327C]
[http://dx.doi.org/10.1021/sc300173z]
[http://dx.doi.org/10.1080/23312009.2015.1063830]
[http://dx.doi.org/10.1016/j.tetlet.2013.09.138]
[http://dx.doi.org/10.1016/j.tetlet.2012.11.065]
[http://dx.doi.org/10.1039/c3ra00021d]
[http://dx.doi.org/10.1039/b611462h] [PMID: 17047879]
[http://dx.doi.org/10.1021/op0601722]
[http://dx.doi.org/10.1351/pac200880040777]
[http://dx.doi.org/10.1021/ja972357h];
(b) Kim, Y.J.; Varma, R.S. Microwave-assisted preparation of cyclic ureas from diamines in the presence of ZnO. Tetrahedron Lett., 2004, 45(39), 7205-7208.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.042]
[http://dx.doi.org/10.1080/00397910903340686]
[http://dx.doi.org/10.1016/j.tetlet.2009.07.149]
[http://dx.doi.org/10.1016/S0968-0896(97)00133-8] [PMID: 9459008]
[http://dx.doi.org/10.1039/c1gc15868f]
[http://dx.doi.org/10.1021/acs.orglett.9b00591] [PMID: 30908058]
[http://dx.doi.org/10.1039/b710414f]
[http://dx.doi.org/10.1016/j.tet.2012.02.051]
[http://dx.doi.org/10.1002/slct.201801224]
[http://dx.doi.org/10.1002/jlac.18500750103];
(b) Nájera, C.; Sansano, J.M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev., 2007, 107(11), 4584-4671.
[http://dx.doi.org/10.1021/cr050580o] [PMID: 17915933]
[http://dx.doi.org/10.1002/ejoc.201100089]
[http://dx.doi.org/10.1002/slct.201700871]
[http://dx.doi.org/10.1039/C8GC03744B]
(b) Savage, P.E. Photoluminescence Properties of Multinuclear Copper(I) Compounds. Chem. Rev., 1999, 99(12), 603-621.
[http://dx.doi.org/10.1039/b211968d]
[http://dx.doi.org/10.2174/157017911795529191];
(b) Balamurugan, R.; Kothapalli, R.B.; Thota, G.K. Gold-catalysed activation of epoxides: Application in the synthesis of bicyclic ketals. Eur. J. Org. Chem., 2011, 2011(8), 1557-1569.
[http://dx.doi.org/10.1002/ejoc.201001214];
(c) Han, L.; Choi, H.J.; Choi, S.J.; Liu, B.; Park, D.W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem., 2011, 13(4), 1023-1028.
[http://dx.doi.org/10.1039/c0gc00612b];
(d) Hasnaoui-Dijoux, G.; Majerić Elenkov, M.; Lutje Spelberg, J.H.; Hauer, B.; Janssen, D.B. Catalytic promiscuity of halohydrin dehalogenase and its application in enantioselective epoxide ring opening. ChemBioChem, 2008, 9(7), 1048-1051.
[http://dx.doi.org/10.1002/cbic.200700734] [PMID: 18357593];
(e) Halford, B. What can we do with CO? Chem. Eng. News, 2007, 85(18), 7-7.
[http://dx.doi.org/10.1021/cen-v085n036.p007];
(f) Vilotijevic, I.; Jamison, T.F. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. Angew. Chem. Int. Ed., 2009, 48(29), 5250-5281.
[http://dx.doi.org/10.1002/anie.200900600] [PMID: 19572302];
(g) Moberg, C.; Rakos, L. Synthesis and properties of new alternating copolyethers containing pendent cyano groups. React. Polym., 1991, 15(24), 25-35.
[http://dx.doi.org/10.1016/0923-1137(91)90144-D]
[http://dx.doi.org/10.1021/ol051220q] [PMID: 16092841]
[http://dx.doi.org/10.1021/ol302601b] [PMID: 23432765]
[http://dx.doi.org/10.1021/ja0359299] [PMID: 12904013]
[http://dx.doi.org/10.1039/C9NJ02542A]
[http://dx.doi.org/10.1039/b108851n] [PMID: 12120398]
[http://dx.doi.org/10.1021/acs.orglett.8b01615] [PMID: 29911872]
[http://dx.doi.org/10.1021/jo1021426] [PMID: 21175149]
[http://dx.doi.org/10.1002/ajoc.202000237]
[http://dx.doi.org/10.3390/molecules24050893] [PMID: 30836604]
[http://dx.doi.org/10.1590/S0103-50532010000100007]
[http://dx.doi.org/10.1021/acs.joc.7b03193] [PMID: 29498284]
[http://dx.doi.org/10.1002/ejoc.201101251]
[http://dx.doi.org/10.1039/c2ra22046f]
[http://dx.doi.org/10.1021/ol201376v] [PMID: 21744842]
[http://dx.doi.org/10.1007/s10562-014-1471-6]
[http://dx.doi.org/10.1021/ol0529703] [PMID: 16524274]
[http://dx.doi.org/10.1016/j.tet.2014.03.024]
[http://dx.doi.org/10.1039/c3cy00901g]
[http://dx.doi.org/10.1021/ol901893p] [PMID: 19757802]
[http://dx.doi.org/10.1039/C9GC03351C]
[http://dx.doi.org/10.1016/j.tetlet.2018.08.042]
[http://dx.doi.org/10.1246/cl.1983.927]
[http://dx.doi.org/10.6023/cjoc201907051]
[http://dx.doi.org/10.1039/B614218D]
[http://dx.doi.org/10.1021/acs.joc.7b03020] [PMID: 29446947]
[http://dx.doi.org/10.1039/C7OB02126G] [PMID: 28920121]
[http://dx.doi.org/10.1002/cssc.201600801] [PMID: 27781418]
[http://dx.doi.org/10.1016/j.tetlet.2014.03.066]
[http://dx.doi.org/10.1016/j.inoche.2018.10.016]
[http://dx.doi.org/10.1021/ja035483w] [PMID: 12769573]
[http://dx.doi.org/10.1246/cl.2011.934]
[http://dx.doi.org/10.1002/asia.201000192] [PMID: 20572283]
[http://dx.doi.org/10.1016/j.tetlet.2006.12.130]
[http://dx.doi.org/10.1002/adsc.200900323] [PMID: 21804786]
[http://dx.doi.org/10.1021/jo101974u] [PMID: 21548658]
[http://dx.doi.org/10.1039/C4GC00853G]
[http://dx.doi.org/10.1039/C9SC03710A] [PMID: 32110341]
[http://dx.doi.org/10.1016/j.tet.2014.03.083]
[http://dx.doi.org/10.1021/jo3003584] [PMID: 22458413]
[http://dx.doi.org/10.1039/C8CC09110B] [PMID: 30657138]
[http://dx.doi.org/10.1002/adsc.200600638]
[http://dx.doi.org/10.1002/adsc.201501041];
(b) Hikawa, H.; Tan, R.; Tazawa, A.; Kikkawa, S.; Azumaya, I. A borrowing hydrogen strategy for dehydrative coupling of aminoisoquinolines with benzyl alcohols in water. Eur. J. Org. Chem., 2020, 2020(5), 539-547.
[http://dx.doi.org/10.1002/ejoc.201901606]
[http://dx.doi.org/10.1039/C8GC01028E]
[http://dx.doi.org/10.1002/ajoc.201700618]
[http://dx.doi.org/10.1002/adsc.201000962]
[http://dx.doi.org/10.1021/op100024j]
[http://dx.doi.org/10.1021/ol201422s] [PMID: 21714487]
[http://dx.doi.org/10.1039/C5QO00255A]
[http://dx.doi.org/10.1021/acs.joc.9b03411] [PMID: 32237717]
[http://dx.doi.org/10.1002/adsc.201300711]
[http://dx.doi.org/10.1016/j.tetlet.2014.05.082]
[http://dx.doi.org/10.1016/j.tet.2013.07.010]
[http://dx.doi.org/10.1002/chem.201700832] [PMID: 28696045]
[http://dx.doi.org/10.1021/acs.orglett.5b01812] [PMID: 26251952]