Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Review Article

Water as Green Solvent for the Carbon-Nitrogen Bond Formation

Author(s): Saima*, Aditya G. Lavekar, Tripti Mishra and Bimal Krishna Banik*

Volume 26, Issue 21, 2022

Published on: 13 January, 2023

Page: [1969 - 1991] Pages: 23

DOI: 10.2174/1385272827666221230141845

Price: $65

Abstract

Background: Edifice of C-N bond attained a very impressive position in organic synthesis as it unlocks avenues for offering nitrogen in organic molecules. As we know that water has emerged as a versatile solvent for the synthesis of a variety of organic compounds. Moreover, in accordance to green chemistry, using a very optimistic environment friendly solvent is the main concern for synthetic chemists. Thus, water always comes first in mind as a solvent of choice in appeal to environmentally benign solvents. The inertness of water and its property to dissolve maximum number of compounds, its abundant sources in nature, further embrace it as a crown. Recent years witnessed advancement in green chemistry, further forcing the organic chemists for selecting the solvent for the reaction, which will be less perilous for the mother nature.

Material and Methods: Thus, in present time, many reports have been available in literature, wherein water is embellished for performing organic reactions and synthesis of an ample amount of heterocyclic compounds. Therefore, there is a need of time to compile the latest research articles wherein water has been working as solvent to focus on C-N bond forming reactions. As among the heterocyclics, the compounds with carbon nitrogen bonds also possess a significant place due to their importance in medicinal and material science.

Results: Thus, the present draft perceived some current and most impressive carbon-nitrogen bond forming reactions exploring water as a reaction media. Moreover, we have made efforts to include more application parts and synthesis of important biological nitrogen containing heterocyclic to be included in the present study.

Conclusion: Thus, we have tried here to compile all the recent reports of C-N bond foration in water, which help the reviewers to have insight in to C-N bond forming reactions employing water as reaction media.

« Previous
Graphical Abstract

[1]
(a) Cho, S.H.; Kim, J.Y.; Kwak, J.; Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. Chem. Soc. Rev., 2011, 40(10), 5068-5083.
[http://dx.doi.org/10.1039/c1cs15082k] [PMID: 21643614];
(b) Sorribes, I.; Junge, K.; Beller, M. Direct catalytic N-alkylation of amines with carboxylic acids. J. Am. Chem. Soc., 2014, 136(40), 14314-14319.
[http://dx.doi.org/10.1021/ja5093612] [PMID: 25230096];
(c) FDA new drug approvals for 2015, 2016, Available from: www.fda.gov/Drugs
[2]
Hili, R.; Yudin, A.K. Making carbon-nitrogen bonds in biological and chemical synthesis. Nat. Chem. Biol., 2006, 2(6), 284-287.
[http://dx.doi.org/10.1038/nchembio0606-284] [PMID: 16710330]
[3]
Ullmann, F. An overview of Ullmann Reaction, Itsimportance and applications in synthesis of Dibenzopyranones. Ber. Dtsch. Chem. Ges., 1903, 36(7), 2382-2384.
[http://dx.doi.org/10.1002/cber.190303602174]
[4]
(a) Shi, W.; Liu, C.; Lei, A. Transition-metal catalyzed oxidative cross-coupling reactions to form C-C bonds involving organometallic reagents as nucleophiles. Chem. Soc. Rev., 2011, 40(5), 2761-2776.
[http://dx.doi.org/10.1039/c0cs00125b] [PMID: 21283847];
(b) Rodríguez, N.; Goossen, L.J. Decarboxylative coupling reactions: a modern strategy for C-C-bond formation. Chem. Soc. Rev., 2011, 40(10), 5030-5048.
[http://dx.doi.org/10.1039/c1cs15093f] [PMID: 21792454]
[5]
Sheldon, R. Aiming for that goal of zero emission. Nature, 1999, 399(6731), 33-34.
[http://dx.doi.org/10.1038/19902]
[6]
Leitner, W. Toward benign ends. Science, 1999, 284(5421), 1780-1781.
[http://dx.doi.org/10.1126/science.284.5421.1780b]
[7]
Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Green analytical chemistry—theory and practice. Chem. Soc. Rev., 2010, 39(8), 2869-2878.
[http://dx.doi.org/10.1039/b926439f] [PMID: 20502819]
[8]
Balu, A.M.; Baruwati, B.; Serrano, E.; Cot, J.; Garcia-Martinez, J.; Varma, R.S.; Luque, R.; Luque, R. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules. Green Chem., 2011, 13(10), 2750-2758.
[http://dx.doi.org/10.1039/c1gc15692f]
[9]
Gawande, M.B.; Pandey, R.K.; Jayaram, R.V. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catal. Sci. Technol., 2012, 2(6), 1113-1125.
[http://dx.doi.org/10.1039/c2cy00490a]
[10]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. (Camb.), 2013, 49(8), 752-770.
[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208]
[11]
Nasir Baig, R.B.; Varma, R.S. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem., 2013, 15(2), 398-417.
[http://dx.doi.org/10.1039/C2GC36455G]
[12]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42(8), 3371-3393.
[http://dx.doi.org/10.1039/c3cs35480f] [PMID: 23420127]
[13]
Butler, R.N.; Coyne, A.G. Water: nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev., 2010, 110(10), 6302-6337.
[http://dx.doi.org/10.1021/cr100162c] [PMID: 20815348]
[14]
Pozharskii, A.F.; Soldatenkov, A.; Katritzky, A.R. Heterocyclesin Life and Society: An introduction to heterocyclic chemistry, biochemistry and applications; Wiley: United Kingdom, 2011.
[http://dx.doi.org/10.1002/9781119998372]
[15]
(a) Rideout, D.C.; Breslow, R. Hydrophobic acceleration of diels-alder reactions. J. Am. Chem. Soc., 1980, 102(26), 7816-7817.
[http://dx.doi.org/10.1021/ja00546a048];
(b) Breslow, R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res., 1991, 24(6), 159-164.
[http://dx.doi.org/10.1021/ar00006a001]
[16]
(a) An, J.; Bagnell, L.; Cablewski, T.; Strauss, C.R.; Trainor, R.W. Applications of high-temperature aqueous media for synthetic organic reactions. J. Org. Chem., 1997, 62(8), 2505-2511.
[http://dx.doi.org/10.1021/jo962115k] [PMID: 11671590];
(b) Strauss, C.R.; Trainor, R.W. Reactions of ethyl indole-2-carboxylate in aqueous media at high temperature. Aust. J. Chem., 1998, 51(8), 703-705.
[http://dx.doi.org/10.1071/C98084]
[17]
Grieco, P.A. Organic Synthesis in water; Blackie Academic and Professional: London, 1998.
[http://dx.doi.org/10.1007/978-94-011-4950-1];
(b) Hirai, Y.; Uozumi, Y. Clean synthesis of triarylamines: Buchwald-Hartwig reaction in water with amphiphilic resin-supported palladium complexes. Chem. Commun. (Camb.), 2010, 46(7), 1103-1105.
[http://dx.doi.org/10.1039/B918424D] [PMID: 20126727];
(c) Savant, M.M.; Pansuriya, A.M.; Bhuva, C.V.; Kapuriya, N.; Patel, A.S.; Audichya, V.B.; Pipaliya, P.V.; Naliapara, Y.T. Water mediated construction of trisubstituted pyrazoles/isoxazoles library using ketene dithioacetals. J. Comb. Chem., 2010, 12(1), 176-180.
[http://dx.doi.org/10.1021/cc900148q] [PMID: 19950975];
(d) Carril, M.; SanMartin, R.; Tellitu, I.; Domínguez, E. On-water chemistry: copper-catalyzed straightforward synthesis of benzo[b]furan derivatives in neat water. Org. Lett., 2006, 8(7), 1467-1470.
[http://dx.doi.org/10.1021/ol060274c] [PMID: 16562918];
(e) Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
[18]
(a) Tundo, P.; Anastas, P.; Black, D.S.; Breen, J.; Collins, T.J.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl. Chem., 2000, 72(7), 1207-1228.
[http://dx.doi.org/10.1351/pac200072071207];
(b) Manabe, K.; Iimura, S.; Sun, X.M.; Kobayashi, S. Dehydration reactions in water. Brønsted Acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc., 2002, 124(40), 11971-11978.
[http://dx.doi.org/10.1021/ja026241j] [PMID: 12358542];
(c) Tsukinoki, T.; Nagashima, S.; Mitoma, Y.; Tashiro, M. Organic reaction in water. Part 4. New synthesis of vicinal diamines using zinc powder-promoted carbon-carbon bond formation. Green Chem., 2000, 2(3), 117-119.
[http://dx.doi.org/10.1039/b001533o]
[19]
Bigi, F.; Conforti, M.L.; Maggi, R.; Piccinno, A.; Sartori, G. Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles. Green Chem., 2000, 2(3), 101-103.
[http://dx.doi.org/10.1039/b001246g]
[20]
Narayan, S.; Muldoon, J.; Finn, M.G.; Fokin, V.V.; Kolb, H.C.; Sharpless, K.B. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed., 2005, 44(21), 3275-3279.
[http://dx.doi.org/10.1002/anie.200462883] [PMID: 15844112]
[21]
Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
[22]
(a) Guizzetti, S.; Benaglia, M.; Raimondi, L.; Celentano, G. Enantioselective direct aldol reaction “on water” promoted by chiral organic catalysts. Org. Lett., 2007, 9(7), 1247-1250.
[http://dx.doi.org/10.1021/ol070002p] [PMID: 17323961];
(b) Gonzalez-Cruz, D.; Tejedor, D.; de Armas, P. Metal-free access to fully substituted skipped diynes. An efficient chemodifferentiating A2BB’ 4CR manifold. Chemistry, 2007, 13(14), 4823-4832.
[PMID: 17450516];
(c) Shapiro, N.; Vigalok, A. Highly efficient organic reactions “on water”, “in water”, and both. Angew. Chem. Int. Ed., 2008, 47(15), 2849-2852.
[http://dx.doi.org/10.1002/anie.200705347] [PMID: 18318031];
(d) Pirrung, M.C.; Sarma, K.D. Multicomponent reactions are accelerated in water. J. Am. Chem. Soc., 2004, 126(2), 444-445.
[http://dx.doi.org/10.1021/ja038583a] [PMID: 14719923];
(e) Klijn, J.E.; Engberts, J.B.F.N. Fast reactions ‘on water’. Nature, 2005, 435(7043), 746-747.
[http://dx.doi.org/10.1038/435746a] [PMID: 15944683];
(f) Tiwari, S.; Kumar, A. Interfacial reactivity of “on water” reactions in the presence of alcoholic cosolvents. J. Phys. Chem. A, 2009, 113(49), 13685-13693.
[http://dx.doi.org/10.1021/jp906281g] [PMID: 19860462];
(g) Demchuk, D.V.; Elinson, M.N.; Nikishin, G.I. ‘On water’ Knoevenagel condensation of isatins with malononitrile. Mendeleev Commun., 2011, 21(4), 224-225.
[http://dx.doi.org/10.1016/j.mencom.2011.07.018]
[23]
(a) Concellón, J.M.; Rodríguez-Solla, H.; Bernad, P.L.; Simal, C. Addition reactions of chloro- or iodomethyllithium to imines. Synthesis of enantiopure aziridines and β-chloroamines. J. Org. Chem., 2009, 74(6), 2452-2459.
[http://dx.doi.org/10.1021/jo802596y] [PMID: 19222246];
(b) Ellis, T.K.; Ueki, H.; Tiwari, R.; Soloshonok, V.A.; Novel, N. O-Cu(OAc)2 complex catalysed diastereo- and enantioselective 1,4-addition of glycine derivatives to alkylidene malonates. Tetrahedron Asymmetry, 2009, 20(1), 2629-2634.
[http://dx.doi.org/10.1016/j.tetasy.2009.10.006];
(c) Yazici, A.; Pyne, S.G. Intermolecular addition reactions of N-acyliminium ions (Part II). Synthesis, 2009, 4, 513-541.;
(d) Manzano, R.; Andrés, J.M.; Muruzábal, M.D.; Pedrosa, R. Stereocontrolled construction of quaternary stereocenters by inter- and intramolecular nitro-michael additions catalyzed by bifunctional thioureas. Adv. Synth. Catal., 2010, 352(18), 3364-3372.
[http://dx.doi.org/10.1002/adsc.201000612];
(e) Yalalov, D.A.; Tsogoeva, S.B.; Schmatz, S. Deciphering the roles of multiple additives in organocatalyzed Michael additions. Adv. Synth. Catal., 2006, 348(41), 826-832.
[http://dx.doi.org/10.1002/adsc.200505443]
[24]
Chatterjee, A.; Bhattacharya, P.K. Stereoselective synthesis of chiral oxepanes and pyrans through intramolecular nitrone cycloaddition in organized aqueous media. J. Org. Chem., 2006, 71(1), 345-348.
[http://dx.doi.org/10.1021/jo051414j] [PMID: 16388655]
[25]
González-Cruz, D.; Tejedor, D.; de Armas, P.; Morales, E.Q.; García-Tellado, F. Organocatalysis “on water”. Regioselective [3 + 2]-cycloaddition of nitrones and allenolates. Chem. Commun. (Camb.), 2006, (26), 2798-2800.
[http://dx.doi.org/10.1039/B606096J] [PMID: 17009467]
[26]
Xu, L.W.; Xia, C.G. A catalytic enantioselective aza‐michael reaction: novel protocols for asymmetric synthesis of β‐amino carbonyl Compounds. Eur. J. Org. Chem., 2005, 2005(4), 633-639.
[http://dx.doi.org/10.1002/ejoc.200400619]
[27]
Ranu, B.C.; Banerjee, S. Significant rate acceleration of the aza-Michael reaction in water. Tetrahedron Lett., 2007, 48(1), 141-143.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.142]
[28]
Sternativo, S.; Marini, F.; Del Verme, F.; Calandriello, A.; Testaferri, L.; Tiecco, M. One-pot synthesis of aziridines from vinyl selenones and variously functionalized primary amines. Tetrahedron, 2010, 66(34), 6851-6857.
[http://dx.doi.org/10.1016/j.tet.2010.06.055]
[29]
(a) Yella, R.; Ghosh, H.; Patel, B.K. It is “2-imino-4-thiazolidinones” and not thiohydantoins as the reaction product of 1,3-disubstituted thioureas and chloroacetylchloride. Green Chem., 2008, 10(12), 1307-1312.
[http://dx.doi.org/10.1039/b807775d];
(b) Kearney, P.C.; Fernandez, M.; Flygare, J.A. Total synthesis of (−)-epibatidine using an asymmetric diels−alder reaction with a chiral N-Acylnitroso Dienophile. J. Org. Chem., 1998, 63(23), 196-200.
[http://dx.doi.org/10.1021/jo971542a] [PMID: 11674065];
(c) Kidwai, M.; Venkataramanan, R.; Dave, B. Solventless synthesis of thiohydantoins over K2CO3. Green Chem., 2001, 3(6), 278-279.
[http://dx.doi.org/10.1039/b106034c]
[30]
Bernstein, J.; Yale, H.L.; Losee, K.; Holsing, M.; Martins, J.; Lott, W.A. The chemotherapy of experimental Tuberculosis. III. The synthesis of thiosemicarbazones and related compounds 1,2. J. Am. Chem. Soc., 1951, 73(3), 906-912.
[http://dx.doi.org/10.1021/ja01147a007]
[31]
Gan, S.F.; Wan, J.P.; Pan, Y.J.; Sun, C.R. Highly efficient and catalyst-free synthesis of substituted thioureas in water. Mol. Divers., 2011, 15(3), 809-815.
[http://dx.doi.org/10.1007/s11030-010-9298-6] [PMID: 21222031]
[32]
Song, S.; Huang, M.; Li, W.; Zhu, X.; Wan, Y. Efficient synthesis of indoles from 2-alkynylaniline derivatives in water using a recyclable copper catalyst system. Tetrahedron, 2015, 71(3), 451-456.
[http://dx.doi.org/10.1016/j.tet.2014.12.007]
[33]
Ye, D.; Wang, J.; Zhang, X.; Zhou, Y.; Ding, X.; Feng, E.; Sun, H.; Liu, G.; Jiang, H.; Liu, H. Gold-catalyzed intramolecular hydroamination of terminal alkynes in aqueous media: efficient and regioselective synthesis of indole-1-carboxamides. Green Chem., 2009, 11(8), 1201-1208.
[http://dx.doi.org/10.1039/b904044g]
[34]
Oda, Y.; Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Dehydrogenative synthesis of C3-azolylindoles via copper-promoted annulative direct coupling of o-alkynylanilines. Synthesis, 2012, 12, 1515-1520.
[35]
Ang, W.J.; Tai, C.H.; Lo, L.C.; Lam, Y. Palladium-catalyzed annulation of internal alkynes in aqueous medium. RSC Advances, 2014, 4(10), 4921-4929.
[http://dx.doi.org/10.1039/c3ra46010j]
[36]
(a) Ou, Y.X.; Chen, B.R.; Li, J.R.; Dong, S.; Li, J.J.; Jia, H.P. CNS Agents: Optical Resolution with Baker’s Yeast as Key Step in the Synthesis of Optically Active Tricyclic Amines. Heterocycles, 1994, 38(3), 1651-1664.;
(b) Ganesh, V.; Sudhir, V.S.; Kundu, T.; Chandrasekaran, S. 10 years of click chemistry: Synthesis and applications of ferrocene-derived triazoles. Chem. Asian J., 2011, 6(10), 2670-2694.
[http://dx.doi.org/10.1002/asia.201100408] [PMID: 21882351];
(c) El-Tombary, A.A.; Abdel-Ghany, Y.S.; Belal, A.S.F.; Shams El-Dine, S.A.; Soliman, F.S.G. Synthesis of some substituted furan-2(5H)-ones and derived quinoxalinones as potential anti-microbial and anti-cancer agents. Med. Chem. Res., 2011, 20(7), 865-876.
[http://dx.doi.org/10.1007/s00044-010-9394-2];
(d) Lawrence, D.S.; Copper, J.E.; Smith, C.D. Structure-activity studies of substituted quinoxalinones as multiple-drug-resistance antagonists. J. Med. Chem., 2001, 44(4), 594-601.
[http://dx.doi.org/10.1021/jm000282d] [PMID: 11170649]
[37]
(a) Verma, A.K.; Jha, R.R.; Sankar, V.K.; Aggarwal, T.; Singh, R.P.; Chandra, R. Lewis acid-catalyzed selective synthesis of diversely substituted indolo- and pyrrolo[1,2-a]quinoxalines and quinoxalinones by modified pictet-spengler reaction. Eur. J. Org. Chem., 2011, 2011(34), 6998-7010.
[http://dx.doi.org/10.1002/ejoc.201101013];
(b) Naito, Y.; Akahoshi, F.; Takeda, S.; Okada, T.; Kajii, M.; Nishimura, H.; Sugiura, M.; Fukaya, C.; Kagitani, Y. Synthesis and pharmacological activity of triazole derivatives inhibiting eosinophilia. J. Med. Chem., 1996, 39(15), 3019-3029.
[http://dx.doi.org/10.1021/jm9507993] [PMID: 8709136]
[38]
(a) Dolzhenko, A.V.; Pastorin, G.; Dolzhenko, A.V.; Chui, W.K. An aqueous medium synthesis and tautomerism study of 3(5)-amino-1,2,4-triazoles. Tetrahedron Lett., 2009, 50(18), 2124-2128.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.172];
(b) Luo, X.; Chenard, E.; Martens, P.; Cheng, Y.X.; Tomaszewski, M.J. Practical synthesis of quinoxalinones via palladium-catalyzed intramolecular N-arylations. Org. Lett., 2010, 12(16), 3574-3577.
[http://dx.doi.org/10.1021/ol101454x] [PMID: 20704396];
(c) Ballini, R.; Gabrielli, S.; Palmieri, A. β-Nitroacrylates as key starting materials for the uncatalysed one-pot synthesis of polyfunctionalized dihydroquinoxalinone derivatives, via an anti-michael reaction. Synlett, 2009, 2009(6), 965-967.
[http://dx.doi.org/10.1055/s-0028-1088197];
(d) Suschitzky, H.; Wakefield, B.J.; Whittaker, R.A. Synthesis of quinoxalinones by the reaction of o-phenylenediamines with dimethyl acetylenedicarboxylate. J. Chem. Soc., Perkin Trans. 1, 1975, (5), 401-403.
[http://dx.doi.org/10.1039/p19750000401];
(e) Mahaney, P.E.; Webb, M.B.; Ye, F.; Sabatucci, J.P.; Steffan, R.J.; Chadwick, C.C.; Harnish, D.C.; Trybulski, E.J. Synthesis and activity of a new class of pathway-selective estrogen receptor ligands: Hydroxybenzoyl-3,4-dihydroquinoxalin-2(1H)-ones. Bioorg. Med. Chem., 2006, 14(10), 3455-3466.
[http://dx.doi.org/10.1016/j.bmc.2006.01.001] [PMID: 16427291]
[39]
Murthy, S.N.; Madhav, B.; Nageswar, Y.V.D. Revisiting the hinsberg reaction: facile and expeditious synthesis of 3-substituted quinoxalin-2(1h)-ones under catalyst-free conditions in water. Helv. Chim. Acta, 2010, 93(6), 1216-1220.
[http://dx.doi.org/10.1002/hlca.200900358]
[40]
(a) Moldovan, C.M.; Oniga, O.; Pârvu, A.; Tiperciuc, B.; Verite, P.; Pîrnău, A.; Crişan, O.; Bojiţă, M.; Pop, R. Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole. Eur. J. Med. Chem., 2011, 46(2), 526-534.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.032] [PMID: 21163557];
(b) Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N. -(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084];
(c) Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.C.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A.; Batley, B.L.; Painchaud, C.A.; Rapundalo, S.T.; Michniewicz, B.M.; Olson, S.C. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057];
(d) Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzer, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: a novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33(1), 311-317.
[http://dx.doi.org/10.1021/jm00163a051] [PMID: 1967314];
(e) Bell, F.W.; Cantrell, A.S.; Hoegberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr; Noréen, R.; Oberg, B.; Palkowitz, J.A.; Parrish, C.A.; Pranc, P.; Sahlberg, C.; Ternansky, R.J.; Vasileff, R.T.; Vrang, L.; West, S.J.; Zhang, H.; Zhou, X.X. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem., 1995, 38(25), 4929-4936.
[http://dx.doi.org/10.1021/jm00025a010] [PMID: 8523406]
[41]
Potewar, T.M.; Ingale, S.A.; Srinivasan, K.V. Catalyst-free efficient synthesis of 2-aminothiazoles in water at ambient temperature. Tetrahedron, 2008, 64(22), 5019-5022.
[http://dx.doi.org/10.1016/j.tet.2008.03.082]
[42]
(a) Bräse, S.; Gil, C.; Knepper, K. The recent impact of solid-phase synthesis on medicinally relevant benzoannelated nitrogen heterocycles. Bioorg. Med. Chem., 2002, 10(8), 2415-2437.
[http://dx.doi.org/10.1016/S0968-0896(02)00025-1] [PMID: 12057632];
(b) Dolle, R.E. Comprehensive survey of combinatorial library synthesis: 2000. J. Comb. Chem., 2001, 3(6), 477-517.
[http://dx.doi.org/10.1021/cc010049g] [PMID: 11703143];
(c) Dolle, R.E. Comprehensive survey of combinatorial library synthesis: 2001. J. Comb. Chem., 2002, 4(5), 369-418.
[http://dx.doi.org/10.1021/cc020039v] [PMID: 12217012];
(d) Panayides, J.L.; Pathak, R.; de Koning, C.B.; van Otterlo, W.A.L. Organocatalytic Synthesis of Drugs and Bioactive Natural Products. Eur. J. Org. Chem., 2007, 2007(16), 4953-4961.
[http://dx.doi.org/10.1002/ejoc.200700473]
[43]
Prasad, J.V.; Prabhakar, M.; Manjulatha, K.; Rambabu, D.; Solomon, K.A.; Krishna, G.G.; Kumar, K.A. Acyl pyruvates as synthons in the Biginelli reaction. Tetrahedron Lett., 2010, 51(5), 3109-3111.
[44]
Biginelli, P. 100 years of the biginelli dihydropyrimidine synthesis. Gazz. Chim. Ital., 1893, 23(32), 360-416.
[45]
(a) Overman, L.E.; Rabinowitz, M.H.; Renhowe, P.A. Enantioselective Total Synthesis of. (-)-Ptilomycalin A. J. Am. Chem. Soc., 1995, 117(9), 2657-2658.
[http://dx.doi.org/10.1021/ja00114a034];
(b) Snider, B.B.; Shi, Z. Biomimetic synthesis of (.+-.)-crambines A, B, C1, and C2. Revision of the structure of crambines B and C1. J. Org. Chem., 1993, 58(15), 3828-3839.
[http://dx.doi.org/10.1021/jo00067a014];
(c) Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[46]
Tu, S.; Shao, Q.; Zhou, D.; Cao, L.; Shi, F.; Li, C. Microwave-assisted efficient synthesis of benzo[4,5]imidazo[1,2-a]-pyrimidine derivatives in water under catalyst-free conditions. J. Heterocycl. Chem., 2007, 44(6), 1401-1406.
[http://dx.doi.org/10.1002/jhet.5570440625]
[47]
Mukhopadhyay, C.; Das, P.; Butcher, R.J. An expeditious and efficient synthesis of highly functionalized [1,6]-naphthyridines under catalyst-free conditions in aqueous medium. Org. Lett., 2011, 13(17), 4664-4667.
[http://dx.doi.org/10.1021/ol201877v] [PMID: 21806007]
[48]
(a) Uramaru, N.; Shigematsu, H.; Toda, A.; Eyanagi, R.; Kitamura, S.; Ohta, S. Design, synthesis, and pharmacological activity of nonallergenic pyrazolone-type antipyretic analgesics. J. Med. Chem., 2010, 53(24), 8727-8733.
[http://dx.doi.org/10.1021/jm101208x] [PMID: 21121633];
(b) Sammelson, R.E.; Gurusinghe, C.D.; Kurth, J.M.; Olmstead, M.M.; Kurth, M.J. Synthesis of spiro-fused (C5)-isoxazolino-(C4)-pyrazolones (1-oxa-2,7,8-triazaspiro[4,4]-2,8-dien-6-ones) via 1,3-dipolar cycloaddition and cycloelimination. J. Org. Chem., 2002, 67(24), 876-882.
[http://dx.doi.org/10.1021/jo010895d] [PMID: 11856032]
[49]
(a) Gunasekaran, P.; Perumal, S.; Yogeeswari, P.; Sriram, D. A facile four-component sequential protocol in the expedient synthesis of novel 2-aryl-5-methyl-2,3-dihydro-1H-3-pyrazolones in water and their antitubercular evaluation. Eur. J. Med. Chem., 2011, 46(9), 4530-4536.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.029] [PMID: 21839549];
(b) Yang, Z.; Wang, Z.; Bai, S.; Liu, X.; Lin, L.; Feng, X. Asymmetric α-amination of 4-substituted pyrazolones catalyzed by a chiral Gd(OTf)3/N,N′-dioxide complex: highly enantioselective synthesis of 4-amino-5-pyrazolone derivatives. Org. Lett., 2011, 13(4), 596-599.
[http://dx.doi.org/10.1021/ol102804p] [PMID: 21214254]
[50]
Kumaravel, K.; Vasuki, G. Four-component catalyst-free reaction in water: Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives. Green Chem., 2009, 11(12), 1945-1947.
[http://dx.doi.org/10.1039/b913838b]
[51]
Zhao, L.; Zhou, B.; Li, Y. Simple and efficient synthesis of 5‐substituted 1‐H‐tetrazoles using metal‐modified clay catalysts. Heteroatom Chem., 2011, 22, 1-5.
[52]
Litvinov, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Shestopalov, A.M. New convenient four-component synthesis of 6-amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles and one-pot synthesis of 6′-aminospiro [(3H)-indol-3,4′-pyrano[2,3-c]pyrazol]-(1H)-2-on-5′-carbonitriles. J. Comb. Chem., 2009, 11(5), 914-919.
[http://dx.doi.org/10.1021/cc900076j] [PMID: 19711896]
[53]
Adib, M.; Mahdavi, M.; Noghani, M.A.; Mirzaei, P. Catalyst-free three-component reaction between 2-aminopyridines (or 2-aminothiazoles), aldehydes, and isocyanides in water. Tetrahedron Lett., 2007, 48(41), 7263-7265.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.049]
[54]
Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[55]
Shaabani, A.; Rahmati, A.; Farhangi, E. Water promoted one-pot synthesis of 2′-aminobenzothiazolomethyl naphthols and 5-(2′-aminobenzothiazolomethyl)-6-hydroxyquinolines. Tetrahedron Lett., 2007, 48(41), 7291-7294.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.042]
[56]
Kommi, D.N.; Jadhavar, P.S.; Kumar, D.; Chakraborti, A.K. “All-water” one-pot diverse synthesis of 1,2-disubstituted benzimidazoles: hydrogen bond driven ‘synergistic electrophile-nucleophile dual activation’ by water. Green Chem., 2013, 15(3), 798-813.
[http://dx.doi.org/10.1039/c3gc37004f]
[57]
Jatangi, N.; Tumula, N.; Palakodety, R.K.; Nakka, M.I. 2 -Mediated Oxidative C-N and N-S Bond Formation in Water: A Metal-Free Synthesis of 4,5-Disubstituted/N-Fused 3-Amino-1,2,4-triazoles and 3-Substituted 5-Amino-1,2,4-thiadiazoles. J. Org. Chem., 2018, 83(10), 5715-5723.
[http://dx.doi.org/10.1021/acs.joc.8b00753] [PMID: 29717614]
[58]
Rao, D.N.; Rasheed, S.; Vishwakarma, R.A.; Das, P. Hypervalent iodine(III) catalyzed oxidative C-N bond formation in water: synthesis of benzimidazole-fused heterocycles. RSC Advances, 2014, 4(49), 25600-25604.
[http://dx.doi.org/10.1039/C4RA02279C]
[59]
Sharma, S.D.; Gogoi, P.; Konwar, D. A highly efficient and green method for the synthesis of 3,4-dihydropyrimidin-2-ones and 1,5-benzodiazepines catalyzed by dodecyl sulfonic acid in water. Green Chem., 2007, 9(2), 153-157.
[http://dx.doi.org/10.1039/B611327C]
[60]
Bihani, M.; Bora, P.P.; Bez, G.; Askari, H. Amberlyst A21 catalyzed chromatography-free method for multicomponent synthesis of dihydropyrano [2, 3-c] pyrazoles in ethanol. ACS Sustain. Chem. Eng., 2013, 1(4), 440-447.
[http://dx.doi.org/10.1021/sc300173z]
[61]
Chaudhari, M.A.; Gujar, J.B.; Kawade, D.S.; Jogdand, N.R.; Shingare, M.S. A highly efficient and sustainable synthesis of dihydropyrano[2,3- c]pyrazoles using polystyrene-supported p-toluenesulfonic acid as reusable catalyst. Cogent Chem., 2015, 1(1), 1063830.
[http://dx.doi.org/10.1080/23312009.2015.1063830]
[62]
Reddy, G.R.; Reddy, T.R.; Chary, R.G.; Joseph, S.C.; Mukherjee, S.; Pal, M. β-Cyclodextrin mediated MCR in water: synthesis of dihydroisoindolo[2,1-a]quinazoline-5,11-dione derivatives under microwave irradiation. Tetrahedron Lett., 2013, 54(49), 6744-6746.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.138]
[63]
Suresh, R.; Muthusubramanian, S.; Nagaraj, M.; Manickam, G. Indium trichloride catalyzed regioselective synthesis of substituted pyrroles in water. Tetrahedron Lett., 2013, 54(14), 1779-1784.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.065]
[64]
Saiprathima, P.; Srinivas, K.; Sridhar, B.; Rao, M.M. “On water” one-pot synthesis of quaternary centered 3-hydroxy-3-(1H-tetrazol-5-yl)indolin-2-ones. RSC Advances, 2013, 3(21), 7708-7712.
[http://dx.doi.org/10.1039/c3ra00021d]
[65]
Tu, S.J.; Jiang, B.; Zhang, J.Y.; Jia, R.H.; Zhang, Y.; Yao, C.S. Efficient and direct synthesis of poly-substituted indeno[1,2-b]quinolines assisted by p-toluene sulfonic acid using high-temperature water and microwave heating via one-pot, three-component reaction. Org. Biomol. Chem., 2006, 4(21), 3980-3985.
[http://dx.doi.org/10.1039/b611462h] [PMID: 17047879]
[66]
Barnard, T.M.; Vanier, G.S.; Collins, M.J. Scale-up of the green synthesis of azacycloalkanes and isoindolinesunder microwave irradiation. Org. Process Res. Dev., 2006, 10(6), 1233-1237.
[http://dx.doi.org/10.1021/op0601722]
[67]
Polshettiwar, V.; Varma, R.S. Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure Appl. Chem., 2008, 80(4), 777-790.
[http://dx.doi.org/10.1351/pac200880040777]
[68]
(a) Hodge, C.N.; Lam, P.Y.S.; Eyermann, C.J.; Jadhav, P.K.; Ru, Y.; Fernandez, C.H.; De Lucca, G.V.; Chang, C.H.; Kaltenbach, R.F.; Holler, E.R.; Woerner, F.; Daneker, W.F.; Emmett, G.; Calabrese, J.C.; Aldrich, P.E. Calculated and experimental low-energy conformations of cyclic urea HIV protease inhibitors. J. Am. Chem. Soc., 1998, 120(19), 4570-4581.
[http://dx.doi.org/10.1021/ja972357h];
(b) Kim, Y.J.; Varma, R.S. Microwave-assisted preparation of cyclic ureas from diamines in the presence of ZnO. Tetrahedron Lett., 2004, 45(39), 7205-7208.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.042]
[69]
Reddy, M.B.M.; Jayashankara, V.P.; Pasha, M.A. Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction. Synth. Commun., 2010, 40(19), 2930-2934.
[http://dx.doi.org/10.1080/00397910903340686]
[70]
Tandon, V.K.; Maurya, H.K. ‘On water’: unprecedented nucleophilic substitution and addition reactions with 1,4-quinones in aqueous suspension. Tetrahedron Lett., 2009, 50(43), 5896-5902.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.149]
[71]
Lien, J.C.; Huang, L.J.; Wang, J.P.; Teng, C.M.; Lee, K.H.; Kuo, S.C. Synthesis and antiplatelet, antiinflammatory, and antiallergic activities of 2-substituted 3-chloro-1,4-naphthoquinone derivatives. Bioorg. Med. Chem., 1997, 5(12), 2111-2120.
[http://dx.doi.org/10.1016/S0968-0896(97)00133-8] [PMID: 9459008]
[72]
Gawande, M.B.; Branco, P.S. An efficient and expeditious Fmoc protection of amines and amino acids in aqueous media. Green Chem., 2011, 13(12), 3355-3359.
[http://dx.doi.org/10.1039/c1gc15868f]
[73]
Wang, Z.; Zeng, H.; Li, C.J. Dearomatization-rearomatization strategy for reductive cross-coupling of indoles with ketones in water. Org. Lett., 2019, 21(7), 2302-2306.
[http://dx.doi.org/10.1021/acs.orglett.9b00591] [PMID: 30908058]
[74]
Chakraborti, A.K.; Rudrawar, S.; Jadhav, K.B.; Kaur, G.; Chankeshwara, S.V. “On water” organic synthesis: a highly efficient and clean synthesis of 2-aryl/heteroaryl/styryl benzothiazoles and 2-alkyl/aryl alkyl benzothiazolines. Green Chem., 2007, 9(12), 1335-1340.
[http://dx.doi.org/10.1039/b710414f]
[75]
Tisseh, Z.N.; Dabiri, M.; Nobahar, M.; Soorki, A.A.; Bazgir, A. Catalyst-free synthesis of N-rich heterocycles via multi-component reactions. Tetrahedron, 2012, 68(16), 3351-3356.
[http://dx.doi.org/10.1016/j.tet.2012.02.051]
[76]
Dandia, A.; Sharma, R.; Indora, A.; Parewa, V. Kosmotropes perturbation and ambiphilic dual activation: responsible features for the construction of cn bond towards the synthesis of quinazolin‐4 (3H)‐ones in water. ChemistrySelect, 2018, 3(28), 8285-8290.
[http://dx.doi.org/10.1002/slct.201801224]
[77]
(a) Strecker, A. Strecker amino acid synthesis. Ann. Chem. Pharm., 1850, 75, 27.
[http://dx.doi.org/10.1002/jlac.18500750103];
(b) Nájera, C.; Sansano, J.M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev., 2007, 107(11), 4584-4671.
[http://dx.doi.org/10.1021/cr050580o] [PMID: 17915933]
[78]
Galletti, P.; Pori, M.; Giacomini, D. Catalyst-free strecker reaction in water: A simple and efficient protocol using acetone cyanohydrin as cyanide source. Eur. J. Org. Chem., 2011, 2011(20-21), 3896-3903.
[http://dx.doi.org/10.1002/ejoc.201100089]
[79]
Fan, H.; Zhang, W.; Zhao, W.; Li, F. Acceptorless dehydrogenative cyclization of o -aminobenzylamines and aldehydes to quinazolines in water catalyzed by a water-soluble metal-ligand bifunctional catalyst. ChemistrySelect, 2017, 2(20), 5735-5739.
[http://dx.doi.org/10.1002/slct.201700871]
[80]
Chakrabarti, K.; Maji, M.; Kundu, S. Cooperative iridium complex-catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water. Green Chem., 2019, 21(8), 1999-2004.
[http://dx.doi.org/10.1039/C8GC03744B]
[81]
(a) Katritzkyand, R.; Allin, S.M. Aquathermolysis: Reactions of organic compounds with superheated water. Acc. Chem. Res., 1996, 29(8), 399-406.;
(b) Savage, P.E. Photoluminescence Properties of Multinuclear Copper(I) Compounds. Chem. Rev., 1999, 99(12), 603-621.
[82]
Bryson, T.A.; Gibson, J.M.; Stewart, J.J.; Voegtle, H.; Tiwari, A.; Dawson, J.H.; Marley, W.; Harmon, B. Synthesis of quinolines, pyridine ligands and biological probes in green media. This work was presented at the Green Solvents for Catalysis Meeting, held in Bruchsal, Germany, 13-16th October 2002. Green Chem., 2003, 5(2), 177-180.
[http://dx.doi.org/10.1039/b211968d]
[83]
(a) Bonollo, S.; Lanari, D.; Marrocchi, A.; Vaccaro, L. A review on solvent-free methods in organic synthesis. Curr. Org. Synth., 2011, 8(21), 319-329.
[http://dx.doi.org/10.2174/157017911795529191];
(b) Balamurugan, R.; Kothapalli, R.B.; Thota, G.K. Gold-catalysed activation of epoxides: Application in the synthesis of bicyclic ketals. Eur. J. Org. Chem., 2011, 2011(8), 1557-1569.
[http://dx.doi.org/10.1002/ejoc.201001214];
(c) Han, L.; Choi, H.J.; Choi, S.J.; Liu, B.; Park, D.W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem., 2011, 13(4), 1023-1028.
[http://dx.doi.org/10.1039/c0gc00612b];
(d) Hasnaoui-Dijoux, G.; Majerić Elenkov, M.; Lutje Spelberg, J.H.; Hauer, B.; Janssen, D.B. Catalytic promiscuity of halohydrin dehalogenase and its application in enantioselective epoxide ring opening. ChemBioChem, 2008, 9(7), 1048-1051.
[http://dx.doi.org/10.1002/cbic.200700734] [PMID: 18357593];
(e) Halford, B. What can we do with CO? Chem. Eng. News, 2007, 85(18), 7-7.
[http://dx.doi.org/10.1021/cen-v085n036.p007];
(f) Vilotijevic, I.; Jamison, T.F. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. Angew. Chem. Int. Ed., 2009, 48(29), 5250-5281.
[http://dx.doi.org/10.1002/anie.200900600] [PMID: 19572302];
(g) Moberg, C.; Rakos, L. Synthesis and properties of new alternating copolyethers containing pendent cyano groups. React. Polym., 1991, 15(24), 25-35.
[http://dx.doi.org/10.1016/0923-1137(91)90144-D]
[84]
Azizi, N.; Saidi, M.R. Highly chemoselective addition of amines to epoxides in water. Org. Lett., 2005, 7(17), 3649-3651.
[http://dx.doi.org/10.1021/ol051220q] [PMID: 16092841]
[85]
Kommi, D.N.; Kumar, D.; Seth, K.; Chakraborti, A.K. Protecting group-free concise synthesis of (RS)/(S)-lubeluzole. Org. Lett., 2013, 15(6), 1158-1161.
[http://dx.doi.org/10.1021/ol302601b] [PMID: 23432765]
[86]
Wei, C.; Li, C.J. A highly efficient three-component coupling of aldehyde, alkyne, and amines via C-H activation catalyzed by gold in water. J. Am. Chem. Soc., 2003, 125(32), 9584-9585.
[http://dx.doi.org/10.1021/ja0359299] [PMID: 12904013]
[87]
Ai, Y.; Liu, P.; Liang, R.; Liu, Y.; Li, F. The N -alkylation of sulfonamides with alcohols in water catalyzed by a water-soluble metal-ligand bifunctional iridium complex [Cp*Ir(biimH 2)(H2O)][OTf]2. New J. Chem., 2019, 43(27), 10755-10762.
[http://dx.doi.org/10.1039/C9NJ02542A]
[88]
Li, C.J.; Wei, C. Highly efficient Grignard-type imine additions via C-H activation in water and under solvent-free conditions. Chem. Commun. (Camb.), 2002, (3), 268-269.
[http://dx.doi.org/10.1039/b108851n] [PMID: 12120398]
[89]
Xia, H.D.; Zhang, Y.D.; Wang, Y.H.; Zhang, C. Water-Soluble Hypervalent Iodine(III) Having an I-N Bond. A reagent for the synthesis of Indoles. Org. Lett., 2018, 20(13), 4052-4056.
[http://dx.doi.org/10.1021/acs.orglett.8b01615] [PMID: 29911872]
[90]
Peng, J.; Ye, M.; Zong, C.; Hu, F.; Feng, L.; Wang, X.; Wang, Y.; Chen, C. Copper-catalyzed intramolecular C-N bond formation: A straightforward synthesis of benzimidazole derivatives in water. J. Org. Chem., 2011, 76(2), 716-719.
[http://dx.doi.org/10.1021/jo1021426] [PMID: 21175149]
[91]
Xu, Y.; Xu, X.; Wu, B.; Gan, C.; Lin, X.; Wang, J.; Ke, F. Transition-metal-free, visible-light-mediated N-acylation: an efficient route to amides in water. Asian J. Org. Chem., 2020, 9(7), 1032-1035.
[http://dx.doi.org/10.1002/ajoc.202000237]
[92]
Chen, L.; Zhu, H.; Wang, J.; Liu, H. One-Pot NBS-Promoted Synthesis of Imidazoles and Thiazoles from Ethylarenes in Water. Molecules, 2019, 24(5), 893-914.
[http://dx.doi.org/10.3390/molecules24050893] [PMID: 30836604]
[93]
Yang, X-L.; Xu, C.M.; Lin, S-M.; Chen, J-X.; Ding, J-C.; Wu, H-Y.; Su, W-K. Eco-friendly synthesis of 2-substituted benzothiazoles catalyzed by cetyltrimethyl ammonium bromide (CTAB) in water. J. Braz. Chem. Soc., 2010, 21(1), 37-42.
[http://dx.doi.org/10.1590/S0103-50532010000100007]
[94]
Nam, T.K.; Jang, D.O. Microwave-enhanced on-water amination of 2-Mercaptobenzoxazoles to Prepare 2-Aminobenzoxazoles. J. Org. Chem., 2018, 83(19), 7373-7379.
[http://dx.doi.org/10.1021/acs.joc.7b03193] [PMID: 29498284]
[95]
Lee, Y.H.; Chen, Y.C.; Hsieh, J.C. Pyridine-Catalyzed Double C-N coupling reaction of an isocyanate with two benzynes. Eur. J. Org. Chem., 2012, 2012(2), 247-250.
[http://dx.doi.org/10.1002/ejoc.201101251]
[96]
Li, J.; Liu, L. Simple and efficient amination of diaryliodonium salts with aqueous ammonia in water without metal-catalyst. RSC Advances, 2012, 2(28), 10485-10487.
[http://dx.doi.org/10.1039/c2ra22046f]
[97]
Hari, D.P.; König, B.; Lin, S.; Liang, F.; Eosin, Y. Eosin Y catalyzed visible light oxidative C-C and C-P bond formation. Org. Lett., 2011, 13(15), 3852-3855.
[http://dx.doi.org/10.1021/ol201376v] [PMID: 21744842]
[98]
Keshavarzipour, F.; Tavakol, H. High-valent co(III)- and Ni(II)-catalyzed CH activation. Catal. Lett., 2015, 145(1), 1062-1065.
[http://dx.doi.org/10.1007/s10562-014-1471-6]
[99]
Chobe, S.S.; Mandawad, G.G.; Yemul, O.S.; Kinkar, S.S.; Dawane, B.S. The total synthesis of hyperpapuanone, hyperibone L, epi-clusianone and oblongifolin A. Int. J. ChemTech Res., 2011, 3, 938-943.
[100]
Kim, H.Y.; Talukdar, A.; Cushman, M. Regioselective synthesis of N-β-hydroxyethylaziridines by the ring-opening reaction of epoxides with aziridine generated in situ. Org. Lett., 2006, 8(6), 1085-1087.
[http://dx.doi.org/10.1021/ol0529703] [PMID: 16524274]
[101]
El-Remaily, M.A.E.A.A.A.; El-Remaily, A.A. Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles as efficient and reusable catalyst. Tetrahedron, 2014, 70(18), 2971-2975.
[http://dx.doi.org/10.1016/j.tet.2014.03.024]
[102]
Pradhan, K.; Paul, S.; Das, A.R. Magnetically retrievable nano crystalline CuFe2O4 catalyzed multi-component reaction: a facile and efficient synthesis of functionalized dihydropyrano[2,3-c]pyrazole, pyrano[3,2-c]coumarin and 4H-chromene derivatives in aqueous media. Catal. Sci. Technol., 2014, 4(3), 822-831.
[http://dx.doi.org/10.1039/c3cy00901g]
[103]
Galanis, A.S.; Albericio, F.; Grøtli, M. Solid-phase peptide synthesis in water using microwave-assisted heating. Org. Lett., 2009, 11(20), 4488-4491.
[http://dx.doi.org/10.1021/ol901893p] [PMID: 19757802]
[104]
Risi, C.; Calamante, M.; Cini, E.; Faltoni, V.; Petricci, E.; Rosati, F.; Taddei, M. In water alkylation of amines with alcohols through a borrowing hydrogen process catalysed by ruthenium nanoparticles. Green Chem., 2020, 22(2), 327-331.
[http://dx.doi.org/10.1039/C9GC03351C]
[105]
Thirukovela, N.S.; Balaboina, R.; Vadde, R.; Sekhar Vasam, C. Water dispersed gold nanoparticles catalyzed aerobic oxidative cross-dehydrogenative coupling: An efficient synthesis of α-ketoamides in water. Tetrahedron Lett., 2018, 59(42), 3749-3752.
[http://dx.doi.org/10.1016/j.tetlet.2018.08.042]
[106]
Kosugi, M.; Kameyama, M.; Migita, T. Palladium-catalyzed aromatic amination of aryl bromides with N, N-di-ethylamino-tributyltin. Chem. Lett., 1983, 12(6), 927-928.
[http://dx.doi.org/10.1246/cl.1983.927]
[107]
Xie, J.; Wang, X.; Wu, F.; Zhang, J. Research progress in ligand-assisted copper-catalyzed c-n cross-coupling reaction in aqueous media or pure water. Youji Huaxue, 2019, 39(11), 3026-3039.
[http://dx.doi.org/10.6023/cjoc201907051]
[108]
Carril, M.; SanMartin, R.; Domínguez, E.; Tellitu, I. Recyclable copper-catalyst in aqueous media: O- and N-arylation reactions towards the benzofuroindole framework. Green Chem., 2007, 9(3), 219-220.
[http://dx.doi.org/10.1039/B614218D]
[109]
Chakraborti, G.; Paladhi, S.; Mandal, T.; Dash, J. “On water” promoted ullmann-type c-n bond-forming reactions: application to carbazole alkaloids by selective n-arylation of aminophenols. J. Org. Chem., 2018, 83(14), 7347-7359.
[http://dx.doi.org/10.1021/acs.joc.7b03020] [PMID: 29446947]
[110]
Wang, D.; Zheng, Y.; Yang, M.; Zhang, F.; Mao, F.; Yu, J.; Xia, X. Room-temperature Cu-catalyzed N-arylation of aliphatic amines in neat water. Org. Biomol. Chem., 2017, 15(38), 8009-8012.
[http://dx.doi.org/10.1039/C7OB02126G] [PMID: 28920121]
[111]
Bollenbach, M.; Wagner, P.; Aquino, P.G.V.; Bourguignon, J.J.; Bihel, F.; Salomé, C.; Schmitt, M. D‐Glucose: An efficient reducing agent for a Copper (II)‐mediated arylation of primary amines in water. ChemSusChem, 2016, 9(22), 3244-3249.
[http://dx.doi.org/10.1002/cssc.201600801] [PMID: 27781418]
[112]
Nasrollahzadeh, M.; Azarian, A.; Ehsani, A.; Zahraei, A. Facile synthesis of Fe@Pd nanowires and their catalytic activity in ligand-free CN bond formation in water. Tetrahedron Lett., 2014, 55(17), 2813-2817.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.066]
[113]
Zerguini, A.L.; Cherouana, A.; Hardouin Duparc, V.; Schaper, F. Synthesis, crystal structure and Chan-Evans-Lam C-N cross coupling catalysis of monohydrated tetrapyrazole copper(II) sulfate. Inorg. Chem. Commun., 2019, 99, 36-39.
[http://dx.doi.org/10.1016/j.inoche.2018.10.016]
[114]
Huang, X.; Anderson, K.W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S.L. Expanding Pd-catalyzed C-N bond-forming processes: the first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions. J. Am. Chem. Soc., 2003, 125(22), 6653-6655.
[http://dx.doi.org/10.1021/ja035483w] [PMID: 12769573]
[115]
Hirai, Y.; Uozumi, Y. C-N and C-S bond forming cross coupling in water with amphiphilic resin-supported palladium complexes. Chem. Lett., 2011, 40(9), 934-935.
[http://dx.doi.org/10.1246/cl.2011.934]
[116]
Hirai, Y.; Uozumi, Y. Heterogeneous aromatic amination of aryl halides with arylamines in water with PS-PEG resin-supported palladium complexes. Chem. Asian J., 2010, 5(8), 1788-1795.
[http://dx.doi.org/10.1002/asia.201000192] [PMID: 20572283]
[117]
Xu, C.; Gong, J.F.; Wu, Y.J. Amination of aryl chlorides in water catalyzed by cyclopalladated ferrocenylimine complexes with commercially available monophosphinobiaryl ligands. Tetrahedron Lett., 2007, 48(9), 1619-1623.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.130]
[118]
Lipshutz, B.H.; Chung, D.W.; Rich, B. Aminations of aryl bromides in water at room temperature. Adv. Synth. Catal., 2009, 351(11-12), 1717-1721.
[http://dx.doi.org/10.1002/adsc.200900323] [PMID: 21804786]
[119]
Lipshutz, B.H.; Ghorai, S.; Abela, A.R.; Moser, R.; Nishikata, T.; Duplais, C.; Krasovskiy, A.; Gaston, R.D.; Gadwood, R.C. TPGS-750-M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature. J. Org. Chem., 2011, 76(11), 4379-4391.
[http://dx.doi.org/10.1021/jo101974u] [PMID: 21548658]
[120]
Wagner, P.; Bollenbach, M.; Doebelin, C.; Bihel, F.; Bourguignon, J.J.; Salomé, C.; Schmitt, M. t-BuXPhos: a highly efficient ligand for Buchwald-Hartwig coupling in water. Green Chem., 2014, 16(9), 4170-4178.
[http://dx.doi.org/10.1039/C4GC00853G]
[121]
Zhang, Y.; Takale, B.S.; Gallou, F.; Reilly, J.; Lipshutz, B.H. Sustainable ppm level palladium-catalyzed aminations in nanoreactors under mild, aqueous conditions. Chem. Sci. (Camb.), 2019, 10(45), 10556-10561.
[http://dx.doi.org/10.1039/C9SC03710A] [PMID: 32110341]
[122]
Salomé, C.; Wagner, P.; Bollenbach, M.; Bihel, F.; Bourguignon, J.J.; Schmitt, M. Buchwald-Hartwig reactions in water using surfactants. Tetrahedron, 2014, 70(21), 3413-3421.
[http://dx.doi.org/10.1016/j.tet.2014.03.083]
[123]
Sun, X.; Tu, X.; Dai, C.; Zhang, X.; Zhang, B.; Zeng, Q. Palladium-catalyzed C-N cross coupling of sulfinamides and aryl halides. J. Org. Chem., 2012, 77(9), 4454-4459.
[http://dx.doi.org/10.1021/jo3003584] [PMID: 22458413]
[124]
Bollenbach, M.; Lecroq, W.; Wagner, P.; Fessard, T.; Schmitt, M.; Salomé, C. On water N -arylation of oxetanylamines for the preparation of N -aryloxetanylamines; potentially useful aryl-amide isosteres. Chem. Commun. (Camb.), 2019, 55(11), 1623-1626.
[http://dx.doi.org/10.1039/C8CC09110B] [PMID: 30657138]
[125]
Hamid, M.H.S.A.; Slatford, P.A.; Williams, J.M.J. Borrowing hydrogen in the activation of alcohols. Adv. Synth. Catal., 2007, 349(10), 1555-1575.
[http://dx.doi.org/10.1002/adsc.200600638]
[126]
(a) Hikawa, H.; Koike, T.; Izumi, K.; Kikkawa, S.; Azumaya, I. borrowing hydrogen methodology for n‐benzylation using a π‐benzylpalladium system in water. Adv. Synth. Catal., 2016, 358(5), 784-791.
[http://dx.doi.org/10.1002/adsc.201501041];
(b) Hikawa, H.; Tan, R.; Tazawa, A.; Kikkawa, S.; Azumaya, I. A borrowing hydrogen strategy for dehydrative coupling of aminoisoquinolines with benzyl alcohols in water. Eur. J. Org. Chem., 2020, 2020(5), 539-547.
[http://dx.doi.org/10.1002/ejoc.201901606]
[127]
Hikawa, H.; Imamura, H.; Kikkawa, S.; Azumaya, I. A borrowing hydrogen methodology: Palladium-catalyzed dehydrative N-benzylation of 2-aminopyridines in water. Green Chem., 2018, 20, 3044-3049.
[http://dx.doi.org/10.1039/C8GC01028E]
[128]
Hikawa, H.; Ichinose, R.; Kikkawa, S.; Azumaya, I. Palladium-catalyzed dehydrogenation of benzyl alcohols for construction of 2-arylbenzimidazoles “on water”. Asian J. Org. Chem., 2018, 7(2), 416-423.
[http://dx.doi.org/10.1002/ajoc.201700618]
[129]
Kawahara, R.; Fujita, K.; Yamaguchi, R. N-alkylation of amines with alcohols catalyzed by a water-soluble cp*iridium complex: An efficient method for the synthesis of amines in aqueous media. Adv. Synth. Catal., 2011, 353(7), 1161-1168.
[http://dx.doi.org/10.1002/adsc.201000962]
[130]
Saidi, O.; Blacker, A.J.; Lamb, G.W.; Marsden, S.P.; Taylor, J.E.; Williams, J.M.J. Borrowing hydrogen in water and ionic liquids: iridium-catalyzed alkylation of amines with alcohols. Org. Process Res. Dev., 2010, 14(4), 1046-1049.
[http://dx.doi.org/10.1021/op100024j]
[131]
Ohta, H.; Yuyama, Y.; Uozumi, Y.; Yamada, Y.M.A. In-water dehydrative alkylation of ammonia and amines with alcohols by a polymeric bimetallic catalyst. Org. Lett., 2011, 13(15), 3892-3895.
[http://dx.doi.org/10.1021/ol201422s] [PMID: 21714487]
[132]
Li, F.; Lu, L.; Ma, J. Acceptorless dehydrogenative condensation of o-aminobenzamides with aldehydes to quinazolinones in water catalyzed by a water-soluble iridium complex [Cp*Ir(H2O)3][OTf]2. Org. Chem. Front., 2015, 2(12), 1589-1597.
[http://dx.doi.org/10.1039/C5QO00255A]
[133]
Meng, C.; Liu, P.; Tung, N.T.; Han, X.; Li, F. N-Methylation of amines with methanol in aqueous solution catalyzed by a water-soluble metal-ligand bifunctional dinuclear Iridium catalyst. J. Org. Chem., 2020, 85(9), 5815-5824.
[http://dx.doi.org/10.1021/acs.joc.9b03411] [PMID: 32237717]
[134]
Qu, P.; Sun, C.; Ma, J.; Li, F. The N‐alkylation of sulfonamides with alcohols in water catalyzed by the water‐soluble iridium complex {Cp* Ir [6, 6′(OH)2bpy](H2O)}[OTf]2. Adv. Synth. Catal., 2014, 356(2-3), 447-459.
[http://dx.doi.org/10.1002/adsc.201300711]
[135]
Geng, X.; Mao, S.; Chen, L.; Yu, J.; Han, J.; Hua, J.; Wang, L. Copper-catalyzed direct N-arylation of N-arylsulfonamides using diaryliodonium salts in water. Tetrahedron Lett., 2014, 55(29), 3856-3859.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.082]
[136]
Yang, J.M.; Jiang, R.; Wu, L.; Xu, X.P.; Wang, S.Y.; Ji, S.J. In(OTf)3 catalyzed N-benzylation of amines utilizing benzyl alcohols in water. Tetrahedron, 2013, 69(37), 7988-7994.
[http://dx.doi.org/10.1016/j.tet.2013.07.010]
[137]
Bollenbach, M.; Aquino, P.G.V.; de Araújo-Júnior, J.X.; Bourguignon, J.J.; Bihel, F.; Salomé, C.; Wagner, P.; Schmitt, M. Efficient and mild ullmann-type n-arylation of amides, carbamates, and azoles in water. Chemistry, 2017, 23(55), 13676-13683.
[http://dx.doi.org/10.1002/chem.201700832] [PMID: 28696045]
[138]
Gabriel, C.M.; Keener, M.; Gallou, F.; Lipshutz, B.H. Amide and peptide bond formation in water at room temperature. Org. Lett., 2015, 17(16), 3968-3971.
[http://dx.doi.org/10.1021/acs.orglett.5b01812] [PMID: 26251952]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy