Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Taste Receptors Function as Nutrient Sensors in Pancreatic Islets: A Potential Therapeutic Target for Diabetes

Author(s): Xiaojuan Zhang, David A. Ostrov and Haoming Tian*

Volume 23, Issue 9, 2023

Published on: 20 March, 2023

Page: [1137 - 1150] Pages: 14

DOI: 10.2174/1871530323666221229115230

Price: $65

conference banner
Abstract

Glucose, amino acids, and free fatty acids are critical nutrients participating in stimulating or regulating the hormone secretion of islets. These nutrients are believed to be metabolized by pancreatic endocrine cells to function. However, recent evidence suggests that taste receptors, which play key roles in the oral cavity to sense glucose (sweet taste), amino acids (umami taste), and free fatty acids (fatty taste), are expressed in pancreatic islet cells and may act to sense these nutrients to regulate pancreatic hormone secretion, including insulin and glucagon. Disorders in these taste receptor pathways in islets may contribute to the pathogenesis of diabetes, or it may influence hyperglycemia, disturbance in amino acid metabolism, or hyperlipidemia. In this review, we su mMarize the expression and hormone-regulating functions of sweet, umami, and fatty taste receptors acting as nutrient sensors in pancreatic islets in vitro and in vivo. We discuss the potential roles of these taste receptor-nutrient sensor pathways in islets targeted to develop therapeutic strategies for diabetes and related disease.

Graphical Abstract

[1]
Besnard, P.; Passilly-Degrace, P.; Khan, N.A. Taste of fat: A sixth taste modality? Physiol. Rev., 2016, 96(1), 151-176.
[http://dx.doi.org/10.1152/physrev.00002.2015] [PMID: 26631596]
[2]
Nelson, G.; Hoon, M.A.; Chandrashekar, J.; Zhang, Y.; Ryba, N.J.P.; Zuker, C.S. Ma mMalian sweet taste receptors. Cell, 2001, 106(3), 381-390.
[http://dx.doi.org/10.1016/S0092-8674(01)00451-2] [PMID: 11509186]
[3]
Nelson, G.; Chandrashekar, J.; Hoon, M.A.; Feng, L.; Zhao, G.; Ryba, N.J.P.; Zuker, C.S. An amino-acid taste receptor. Nature, 2002, 416(6877), 199-202.
[http://dx.doi.org/10.1038/nature726] [PMID: 11894099]
[4]
Adler, E.; Hoon, M.A.; Mueller, K.L.; Chandrashekar, J.; Ryba, N.J.P.; Zuker, C.S. A novel family of ma mMalian taste receptors. Cell, 2000, 100(6), 693-702.
[http://dx.doi.org/10.1016/S0092-8674(00)80705-9] [PMID: 10761934]
[5]
Ishimaru, Y.; Inada, H.; Kubota, M.; Zhuang, H.; Tominaga, M.; Matsunami, H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl. Acad. Sci., 2006, 103(33), 12569-12574.
[http://dx.doi.org/10.1073/pnas.0602702103] [PMID: 16891422]
[6]
Chandrashekar, J.; Kuhn, C.; Oka, Y.; Yarmolinsky, D.A. Hu mMler, E.; Ryba, N.J.P.; Zuker, C.S. The cells and peripheral representation of sodium taste in mice. Nature, 2010, 464(7286), 297-301.
[http://dx.doi.org/10.1038/nature08783] [PMID: 20107438]
[7]
Lee, S.J.; Depoortere, I.; Hatt, H. Therapeutic potential of ectopic olfactory and taste receptors. Nat. Rev. Drug Discov., 2019, 18(2), 116-138.
[http://dx.doi.org/10.1038/s41573-018-0002-3] [PMID: 30504792]
[8]
Krasteva, G.; Canning, B.J.; Papadakis, T. Ku mMer, W. Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci., 2012, 91(21-22), 992-996.
[http://dx.doi.org/10.1016/j.lfs.2012.06.014] [PMID: 22749863]
[9]
Liszt, K.I.; Ley, J.P.; Lieder, B.; Behrens, M.; Stöger, V.; Reiner, A.; Hochkogler, C.M.; Köck, E.; Marchiori, A.; Hans, J.; Widder, S. Kra mMer, G.; Sanger, G.J.; Somoza, M.M.; Meyerhof, W.; So-moza, V. Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proc. Natl. Acad. Sci., 2017, 114(30), E6260-E6269.
[http://dx.doi.org/10.1073/pnas.1703728114] [PMID: 28696284]
[10]
Jang, H.J.; Kokrashvili, Z.; Theodorakis, M.J.; Carlson, O.D.; Kim, B.J.; Zhou, J.; Kim, H.H.; Xu, X.; Chan, S.L.; Juhaszova, M.; Bernier, M.; Mosinger, B.; Margolskee, R.F.; Egan, J.M. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl. Acad. Sci., 2007, 104(38), 15069-15074.
[http://dx.doi.org/10.1073/pnas.0706890104] [PMID: 17724330]
[11]
Kyriazis, G.A.; Soundarapandian, M.M.; Tyrberg, B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc. Natl. Acad. Sci., 2012, 109(8), E524-E532.
[http://dx.doi.org/10.1073/pnas.1115183109] [PMID: 22315413]
[12]
Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.; Fukusumi, S.; Ogi, K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; Tanaka, H.; Maruyama, M.; Satoh, R.; Okubo, S.; Kizawa, H.; Komatsu, H.; Matsumura, F.; Noguchi, Y.; Shinohara, T.; Hinuma, S.; Fujisawa, Y.; Fujino, M. Free fatty acids reg-ulate insulin secretion from pancreatic β cells through GPR40. Nature, 2003, 422(6928), 173-176.
[http://dx.doi.org/10.1038/nature01478] [PMID: 12629551]
[13]
Udagawa, H.; Hiramoto, M.; Kawaguchi, M.; Uebanso, T.; Ohara-Imaizumi, M. Na mMo, T.; Nishi-mura, W.; Yasuda, K. Characterization of the taste receptor‐related G‐protein, α‐gustducin, in pancre-atic β‐cells. J. Diabetes Investig., 2020, 11(4), 814-822.
[http://dx.doi.org/10.1111/jdi.13214] [PMID: 31957256]
[14]
Serrano, J.; Meshram, N.N.; Soundarapandian, M.M.; Smith, K.R.; Mason, C.; Brown, I.S.; Tyrberg, B.; Kyriazis, G.A. Saccharin stimulates insulin secretion dependent on sweet taste receptor-induced activation of PLC signaling axis. Biomedicines, 2022, 10(1), 120.
[http://dx.doi.org/10.3390/biomedicines10010120] [PMID: 35052799]
[15]
Herrera Moro Chao, D.; Argmann, C.; Van Eijk, M.; Boot, R.G.; Ottenhoff, R.; Van Roomen, C.; Foppen, E.; Siljee, J.E.; Unmehopa, U.A.; Kalsbeek, A.; Aerts, J.M.F.G. Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Sci. Rep., 2016, 6(1), 29094.
[http://dx.doi.org/10.1038/srep29094] [PMID: 27388805]
[16]
Clark, A.A.; Dotson, C.D.; Elson, A.E.T.; Voigt, A.; Boehm, U.; Meyerhof, W.; Steinle, N.I.; Munger, S.D. TAS2R bitter taste receptors regulate thyroid function. FASEB J., 2015, 29(1), 164-172.
[http://dx.doi.org/10.1096/fj.14-262246] [PMID: 25342133]
[17]
Malki, A.; Fiedler, J.; Fricke, K.; Ballweg, I.; Pfaffl, M.W.; Krautwurst, D. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J. Leukoc. Biol., 2015, 97(3), 533-545.
[http://dx.doi.org/10.1189/jlb.2A0714-331RR] [PMID: 25624459]
[18]
Palmer, R.K. A pharmacological perspective on the study of taste. Pharmacol. Rev., 2019, 71(1), 20-48.
[http://dx.doi.org/10.1124/pr.118.015974] [PMID: 30559245]
[19]
D’Urso, O.; Drago, F. Pharmacological significance of extra-oral taste receptors. Eur. J. Pharmacol., 2021, 910, 174480.
[http://dx.doi.org/10.1016/j.ejphar.2021.174480] [PMID: 34496302]
[20]
Malaisse, W.J.; Sener, A.; Herchuelz, A.; Hutton, J.C. Insulin release: The fuel hypothesis. Metabolism, 1979, 28(4), 373-386.
[http://dx.doi.org/10.1016/0026-0495(79)90111-2] [PMID: 36543]
[21]
Hedeskov, C.J. Mechanism of glucose-induced insulin secretion. Physiol. Rev., 1980, 60(2), 442-509.
[http://dx.doi.org/10.1152/physrev.1980.60.2.442] [PMID: 6247727]
[22]
Ashcroft, S.J.H. Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia, 1980, 18(1), 5-15.
[http://dx.doi.org/10.1007/BF01228295] [PMID: 6245006]
[23]
Malaisse, W.J. Insulin release: the receptor hypothesis. Diabetologia, 2014, 57(7), 1287-1290.
[http://dx.doi.org/10.1007/s00125-014-3221-0] [PMID: 24700279]
[24]
Kojima, I.; Nakagawa, Y.; Ohtsu, Y.; Hamano, K.; Medina, J.; Nagasawa, M. Return of the glucore-ceptor: Glucose activates the glucose‐sensing receptor T1R3 and facilitates metabolism in pancreatic β‐cells. J. Diabetes Investig., 2015, 6(3), 256-263.
[http://dx.doi.org/10.1111/jdi.12304] [PMID: 25969708]
[25]
Henquin, J.C. Do pancreatic β cells “taste” nutrients to secrete insulin? Sci. Signal., 2012, 5(239), pe36.
[http://dx.doi.org/10.1126/scisignal.2003325] [PMID: 22932700]
[26]
Wauson, E.M.; Zaganjor, E.; Lee, A.Y.; Guerra, M.L.; Ghosh, A.B.; Bookout, A.L.; Chambers, C.P.; Jivan, A.; McGlynn, K.; Hutchison, M.R.; Deberardinis, R.J.; Cobb, M.H. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol. Cell, 2012, 47(6), 851-862.
[http://dx.doi.org/10.1016/j.molcel.2012.08.001] [PMID: 22959271]
[27]
Reimann, F.; Habib, A.M.; Tolhurst, G.; Parker, H.E.; Rogers, G.J.; Gribble, F.M. Glucose sensing in L cells: a primary cell study. Cell Metab., 2008, 8(6), 532-539.
[http://dx.doi.org/10.1016/j.cmet.2008.11.002] [PMID: 19041768]
[28]
Oya, M.; Suzuki, H.; Watanabe, Y.; Sato, M.; Tsuboi, T. Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells. Genes Cells, 2011, 16(5), 608-616.
[http://dx.doi.org/10.1111/j.1365-2443.2011.01509.x] [PMID: 21470345]
[29]
Nakagawa, Y.; Nagasawa, M.; Yamada, S.; Hara, A.; Mogami, H.; Nikolaev, V.O.; Lohse, M.J.; Shi-gemura, N.; Ninomiya, Y.; Kojima, I. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One, 2009, 4(4), e5106.
[http://dx.doi.org/10.1371/journal.pone.0005106] [PMID: 19352508]
[30]
Danzer, C.; Eckhardt, K.; Schmidt, A.; Fankhauser, N.; Ribrioux, S.; Wollscheid, B.; Müller, L.; Schiess, R.; Züllig, R.; Lehmann, R.; Spinas, G.; Aebersold, R.; Krek, W. Comprehensive description of the N-glycoproteome of mouse pancreatic β-cells and human islets. J. Proteome Res., 2012, 11(3), 1598-1608.
[http://dx.doi.org/10.1021/pr2007895] [PMID: 22148984]
[31]
Noushmehr, H.; D’Amico, E.; Farilla, L.; Hui, H.; Wawrowsky, K.A.; Mlynarski, W.; Doria, A.; Abumrad, N.A.; Perfetti, R. Fatty acid translocase (FAT/CD36) is localized on insulin-containing granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Diabetes, 2005, 54(2), 472-481.
[http://dx.doi.org/10.2337/diabetes.54.2.472] [PMID: 15677505]
[32]
Dalgaard, L.T.; Thams, P.; Gaarn, L.W.; Jensen, J.; Lee, Y.C.; Nielsen, J.H. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic β-cells. Biochem. Biophys. Res. Co mMun., 2011, 410(2), 345-350.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.010] [PMID: 21679697]
[33]
Kim, Y.W.; Moon, J.S.; Seo, Y.J.; Park, S.Y.; Kim, J.Y.; Yoon, J.S.; Lee, I.K.; Lee, H.W.; Won, K.C. Inhibition of fatty acid translocase cluster determinant 36 (CD36), stimulated by hyperglycemia, pre-vents glucotoxicity in INS-1 cells. Biochem. Biophys. Res. ComMun., 2012, 420(2), 462-466.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.020] [PMID: 22430143]
[34]
Ren, X.; Zhou, L.; Terwilliger, R.; Newton, S.S.; de Araujo, I.E. Sweet taste signaling functions as a hypothalamic glucose sensor. Front. Integr. Nuerosci., 2009, 3, 12.
[http://dx.doi.org/10.3389/neuro.07.012.2009] [PMID: 19587847]
[35]
Meidute Abaraviciene, S. Muha mMed, S.J.; Amisten, S.; Lundquist, I.; Salehi, A. GPR40 protein levels are crucial to the regulation of stimulated hormone secretion in pancreatic islets. Lessons from spontaneous obesity-prone and non-obese type 2 diabetes in rats. Mol. Cell. Endocrinol., 2013, 381(1-2), 150-159.
[http://dx.doi.org/10.1016/j.mce.2013.07.025] [PMID: 23911664]
[36]
Hirasawa, A.; Itsubo, C.; Sadakane, K.; Hara, T.; Shinagawa, S.; Koga, H.; Nose, H.; Koshimizu, T.; Tsujimoto, G. Production and characterization of a monoclonal antibody against GPR40 (FFAR1; free fatty acid receptor 1). Biochem. Biophys. Res. Co mMun., 2008, 365(1), 22-28.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.142] [PMID: 17980148]
[37]
Stone, V.M.; Dhayal, S.; Brocklehurst, K.J.; Lenaghan, C.; Sörhede Winzell, M. Ha mMar, M.; Xu, X.; Smith, D.M.; Morgan, N.G. GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia, 2014, 57(6), 1182-1191.
[http://dx.doi.org/10.1007/s00125-014-3213-0] [PMID: 24663807]
[38]
Blodgett, D.M.; Nowosielska, A.; Afik, S.; Pechhold, S.; Cura, A.J.; Kennedy, N.J.; Kim, S.; Kucukural, A.; Davis, R.J.; Kent, S.C.; Greiner, D.L.; Garber, M.G.; Harlan, D.M.; diIorio, P. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes, 2015, 64(9), 3172-3181.
[http://dx.doi.org/10.2337/db15-0039] [PMID: 25931473]
[39]
Jiang, P.; Cui, M.; Zhao, B.; Liu, Z.; Snyder, L.A.; Benard, L.M.J.; Osman, R.; Margolskee, R.F.; Max, M. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J. Biol. Chem., 2005, 280(15), 15238-15246.
[http://dx.doi.org/10.1074/jbc.M414287200] [PMID: 15668251]
[40]
Taniguchi, K. Expression of the sweet receptor protein, T1R3, in the human liver and pancreas. J. Vet. Med. Sci., 2004, 66(11), 1311-1314.
[http://dx.doi.org/10.1292/jvms.66.1311] [PMID: 15585941]
[41]
Nagao, M.; Esguerra, J.L.S.; Asai, A.; Ofori, J.K.; Edlund, A.; Wendt, A.; Sugihara, H.; Wollheim, C.B.; Oikawa, S.; Eliasson, L. Potential protection against type 2 diabetes in obesity through lower CD36 expression and improved exocytosis in beta-cells. Diabetes, 2020, 69(6), 1193-1205.
[http://dx.doi.org/10.2337/db19-0944] [PMID: 32198214]
[42]
Tomita, T.; Masuzaki, H.; Iwakura, H.; Fujikura, J.; Noguchi, M.; Tanaka, T.; Ebihara, K.; Kawamura, J.; Komoto, I.; Kawaguchi, Y.; Fujimoto, K.; Doi, R.; Shimada, Y.; Hosoda, K.; Imamura, M.; Nakao, K. Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tu-mours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion. Diabetologia, 2006, 49(5), 962-968.
[http://dx.doi.org/10.1007/s00125-006-0193-8] [PMID: 16525841]
[43]
Taneera, J.; Lang, S.; Sharma, A.; Fadista, J.; Zhou, Y.; Ahlqvist, E.; Jonsson, A.; Lyssenko, V.; Vikman, P.; Hansson, O.; Parikh, H.; Korsgren, O.; Soni, A.; Krus, U.; Zhang, E.; Jing, X.J.; Esguerra, J.L.S.; Wollheim, C.B.; Salehi, A.; Rosengren, A.; Renström, E.; Groop, L. A systems genetics ap-proach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab., 2012, 16(1), 122-134.
[http://dx.doi.org/10.1016/j.cmet.2012.06.006] [PMID: 22768844]
[44]
Doyle, M.E.; Fiori, J.L.; Gonzalez Mariscal, I.; Liu, Q.R.; Goodstein, E.; Yang, H.; Shin, Y.K.; Santa-Cruz Calvo, S.; Indig, F.E.; Egan, J.M. Insulin is transcribed and translated in ma mMalian taste bud cells. Endocrinology, 2018, 159(9), 3331-3339.
[http://dx.doi.org/10.1210/en.2018-00534] [PMID: 30060183]
[45]
Elson, A.E.T.; Dotson, C.D.; Egan, J.M.; Munger, S.D. Glucagon signaling modulates sweet taste re-sponsiveness. FASEB J., 2010, 24(10), 3960-3969.
[http://dx.doi.org/10.1096/fj.10-158105] [PMID: 20547661]
[46]
Kokrashvili, Z.; Yee, K.K.; Ilegems, E.; Iwatsuki, K.; Li, Y.; Mosinger, B.; Margolskee, R.F. Endo-crine taste cells. Br. J. Nutr., 2014, 111(S1), S23-S29.
[http://dx.doi.org/10.1017/S0007114513002262] [PMID: 24382120]
[47]
Calvo, S.S.C.; Egan, J.M. The endocrinology of taste receptors. Nat. Rev. Endocrinol., 2015, 11(4), 213-227.
[http://dx.doi.org/10.1038/nrendo.2015.7] [PMID: 25707779]
[48]
Shin, Y.K.; Martin, B.; Golden, E.; Dotson, C.D.; Maudsley, S.; Kim, W.; Jang, H.J.; Mattson, M.P.; Drucker, D.J.; Egan, J.M.; Munger, S.D. Modulation of taste sensitivity by GLP-1 signaling. J. Neurochem., 2008, 106(1), 455-463.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05397.x] [PMID: 18397368]
[49]
Straub, S.G.; Mulvaney-Musa, J.; Yajima, H.; Weiland, G.A.; Sharp, G.W.G. Stimulation of insulin secretion by denatonium, one of the most bitter-tasting substances known. Diabetes, 2003, 52(2), 356-364.
[http://dx.doi.org/10.2337/diabetes.52.2.356] [PMID: 12540608]
[50]
Bergwitz, C.; Brabant, G.; Trautwein, C.; Manns, M.P. A patient with autoi mMune hepatitis type I, Addison’s disease, atrophic thyroiditis, atrophic gastritis, exocrine pancreatic insufficiency, and heter-ozygous alpha1-antitrypsin deficiency. Am. J. Gastroenterol., 2002, 97(4), 1050-1052.
[http://dx.doi.org/10.1111/j.1572-0241.2002.05628.x] [PMID: 12003388]
[51]
Jeppesen, P.B.; Gregersen, S.; Poulsen, C.R.; Hermansen, K. Stevioside acts directly on pancreatic β cells to secrete insulin: Actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitivie K+-channel activity. Metabolism, 2000, 49(2), 208-214.
[http://dx.doi.org/10.1016/S0026-0495(00)91325-8] [PMID: 10690946]
[52]
Abudula, R.; Jeppesen, P.B.; Rolfsen, S.E.D.; Xiao, J.; Hermansen, K. Rebaudioside A potently stimulates insulin secretion from isolated mouse islets: Studies on the dose-, glucose-, and calcium-dependency. Metabolism, 2004, 53(10), 1378-1381.
[http://dx.doi.org/10.1016/j.metabol.2004.04.014] [PMID: 15375798]
[53]
Philippaert, K.; Pironet, A.; Mesuere, M.; Sones, W.; Vermeiren, L.; Kerselaers, S.; Pinto, S.; Segal, A.; Antoine, N.; Gysemans, C.; Laureys, J.; Lemaire, K.; Gilon, P.; Cuypers, E.; Tytgat, J.; Mathieu, C.; Schuit, F.; Rorsman, P.; Talavera, K.; Voets, T.; Vennekens, R. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat. ComMun., 2017, 8(1), 14733.
[http://dx.doi.org/10.1038/ncomMs14733] [PMID: 28361903]
[54]
Mejia, E.; Pearlman, M. Natural alternative sweeteners and diabetes management. Curr. Diab. Rep., 2019, 19(12), 142.
[http://dx.doi.org/10.1007/s11892-019-1273-8] [PMID: 31754814]
[55]
Sener, A.; Malaisse, W.J. Hexose metabolism in pancreatic islets: apparent dissociation between the secretory and metabolic effects of D-fructose. Biochem. Mol. Med., 1996, 59(2), 182-186.
[http://dx.doi.org/10.1006/bmMe.1996.0085] [PMID: 8986642]
[56]
Malaisse, W.J.; Vanonderbergen, A.; Louchami, K.; Jijakli, H.; Malaisse-Lagae, F. Effects of artificial sweeteners on insulin release and cationic fluxes in rat pancreatic islets. Cell. Signal., 1998, 10(10), 727-733.
[http://dx.doi.org/10.1016/S0898-6568(98)00017-5] [PMID: 9884024]
[57]
Evans, R.A.; Frese, M.; Romero, J.; Cunningham, J.H.; Mills, K.E. Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycer-ides: a systematic review and meta-analysis. Am. J. Clin. Nutr., 2017, 106(2), 519-529.
[http://dx.doi.org/10.3945/ajcn.116.145169] [PMID: 28592603]
[58]
Nakagawa, Y.; Ohtsu, Y.; Nagasawa, M.; Shibata, H.; Kojima, I. Glucose promotes its own metabolism by acting on the cell-surface glucose-sensing receptor T1R3. Endocr. J., 2014, 61(2), 119-131.
[http://dx.doi.org/10.1507/endocrj.EJ13-0431] [PMID: 24200979]
[59]
Medina, A.; Nakagawa, Y.; Ma, J.; Li, L.; Hamano, K.; Akimoto, T.; Ninomiya, Y.; Kojima, I. Ex-pression of the glucose-sensing receptor T1R3 in pancreatic islet: changes in the expression levels in various nutritional and metabolic states. Endocr. J., 2014, 61(8), 797-805.
[http://dx.doi.org/10.1507/endocrj.EJ14-0221] [PMID: 24898279]
[60]
Henquin, J.C. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia, 2009, 52(5), 739-751.
[http://dx.doi.org/10.1007/s00125-009-1314-y] [PMID: 19288076]
[61]
Nakagawa, Y.; Nagasawa, M.; Medina, J.; Kojima, I. Glucose evokes rapid Ca2+ and cyclic AMP signals by activating the cell-surface glucose-sensing receptor in pancreatic beta-Cells. PLoS One, 2015, 10(12), e0144053.
[http://dx.doi.org/10.1371/journal.pone.0144053] [PMID: 26630567]
[62]
Sanchez-Andres, J.V.; Malaisse, W.J.; Kojima, I. Electrophysiology of the pancreatic islet β-cell sweet taste receptor TIR3. Pflugers Arch., 2019, 471(4), 647-654.
[http://dx.doi.org/10.1007/s00424-018-2237-6] [PMID: 30552496]
[63]
Nakagawa, Y.; Nagasawa, M.; Mogami, H.; Lohse, M.; Ninomiya, Y.; Kojima, I. Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intra-cellular signals by sweet agonists. Endocr. J., 2013, 60(10), 1191-1206.
[http://dx.doi.org/10.1507/endocrj.EJ13-0282] [PMID: 23933592]
[64]
Ohtsu, Y.; Nakagawa, Y.; Nagasawa, M.; Takeda, S.; Arakawa, H.; Kojima, I. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells. Mol. Cell. Endocrinol., 2014, 394(1-2), 70-79.
[http://dx.doi.org/10.1016/j.mce.2014.07.004] [PMID: 25017733]
[65]
Li, L.; Ohtsu, Y.; Nakagawa, Y.; Masuda, K.; Kojima, I. Sucralose, an activator of the glucose-sensing receptor, increases ATP by calcium-dependent and -independent mechanisms. Endocr. J., 2016, 63(8), 715-725.
[http://dx.doi.org/10.1507/endocrj.EJ16-0217] [PMID: 27250218]
[66]
Murovets, V.O.; Bachmanov, A.A.; Zolotarev, V.A. Impaired glucose metabolism in mice lacking the tas1r3 taste receptor gene. PLoS One, 2015, 10(6), e0130997.
[http://dx.doi.org/10.1371/journal.pone.0130997] [PMID: 26107521]
[67]
Murovets, V.O.; Bachmanov, A.A.; Travnikov, S.V.; Churikova, A.A.; Zolotarev, V.A. The involvement of the T1R3 receptor protein in the control of glucose metabolism in mice at different levels of glycemia. J. Evol. Biochem. Physiol., 2014, 50(4), 334-344.
[http://dx.doi.org/10.1134/S0022093014040061] [PMID: 25983343]
[68]
Murovets, V.O.; Sozontov, E.A.; Zachepilo, T.G. The effect of the taste receptor protein T1R3 on the development of islet tissue of the murine pancreas. Dokl. Biol. Sci., 2019, 484(1), 1-4.
[http://dx.doi.org/10.1134/S0012496619010010] [PMID: 31016494]
[69]
Kyriazis, G.A.; Smith, K.R.; Tyrberg, B.; Hussain, T.; Pratley, R.E. Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 2014, 155(6), 2112-2121.
[http://dx.doi.org/10.1210/en.2013-2015] [PMID: 24712876]
[70]
Smith, K.R.; Hussain, T.; Karimian Azari, E.; Steiner, J.L.; Ayala, J.E.; Pratley, R.E.; Kyriazis, G.A. Disruption of the sugar-sensing receptor T1R2 attenuates metabolic derangements associated with dietinduced obesity. Am. J. Physiol. Endocrinol. Metab., 2016, 310(8), E688-E698.
[http://dx.doi.org/10.1152/ajpendo.00484.2015] [PMID: 26884387]
[71]
Kojima, I.; Nakagawa, Y.; Hamano, K.; Medina, J.; Li, L.; Nagasawa, M. Glucose-sensing receptor T1R3: a new signaling receptor activated by glucose in pancreatic beta-cells. Biol. Pharm. Bull., 2015, 38(5), 674-679.
[http://dx.doi.org/10.1248/bpb.b14-00895] [PMID: 25947913]
[72]
Kojima, I.; Medina, J.; Nakagawa, Y. Role of the glucose-sensing receptor in insulin secretion. Diabetes Obes. Metab., 2017, 19(S1), 54-62.
[http://dx.doi.org/10.1111/dom.13013] [PMID: 28880472]
[73]
Serrano, J.; Seflova, J.; Park, J.; Pribadi, M.; Sanematsu, K.; Shigemura, N.; Serna, V.; Yi, F.; Mari, A.; Procko, E.; Pratley, R.E.; Robia, S.L.; Kyriazis, G.A. The Ile191Val is a partial loss-of-function variant of the TAS1R2 sweet-taste receptor and is associated with reduced glucose excursions in humans. Mol. Metab., 2021, 54, 101339.
[http://dx.doi.org/10.1016/j.molmet.2021.101339] [PMID: 34509698]
[74]
Tucker, R.M.; Tan, S.Y. Do non-nutritive sweeteners influence acute glucose homeostasis in humans? A systematic review. Physiol. Behav., 2017, 182, 17-26.
[http://dx.doi.org/10.1016/j.physbeh.2017.09.016] [PMID: 28939430]
[75]
Ahmad, S.Y.; Azad, M.B.; Friel, J.; MacKay, D. Recent evidence for the effects of nonnutritive sweeteners on glycaemic control. Curr. Opin. Clin. Nutr. Metab. Care, 2019, 22(4), 278-283.
[http://dx.doi.org/10.1097/MCO.0000000000000566] [PMID: 31033578]
[76]
Anton, S.D.; Martin, C.K.; Han, H.; Coulon, S.; Cefalu, W.T.; Geiselman, P.; Williamson, D.A. Ef-fects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite, 2010, 55(1), 37-43.
[http://dx.doi.org/10.1016/j.appet.2010.03.009] [PMID: 20303371]
[77]
Brown, R.J.; Walter, M.; Rother, K.I. Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care, 2012, 35(5), 959-964.
[http://dx.doi.org/10.2337/dc11-2424] [PMID: 22410815]
[78]
Pepino, M.Y.; Tiemann, C.D.; Patterson, B.W.; Wice, B.M.; Klein, S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care, 2013, 36(9), 2530-2535.
[http://dx.doi.org/10.2337/dc12-2221] [PMID: 23633524]
[79]
Temizkan, S.; Deyneli, O.; Yasar, M.; Arpa, M.; Gunes, M.; Yazici, D.; Sirikci, O.; Haklar, G.; Imeryuz, N.; Yavuz, D.G. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur. J. Clin. Nutr., 2015, 69(2), 162-166.
[http://dx.doi.org/10.1038/ejcn.2014.208] [PMID: 25271009]
[80]
Tey, S.L.; Salleh, N.B.; Henry, J.; Forde, C.G. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int. J. Obes., 2017, 41(3), 450-457.
[http://dx.doi.org/10.1038/ijo.2016.225] [PMID: 27956737]
[81]
Dhillon, J.; Lee, J.Y.; Mattes, R.D. The cephalic phase insulin response to nutritive and low-calorie sweeteners in solid and beverage form. Physiol. Behav., 2017, 181, 100-109.
[http://dx.doi.org/10.1016/j.physbeh.2017.09.009] [PMID: 28899680]
[82]
Nichol, A.D.; Salame, C.; Rother, K.I.; Pepino, M.Y. Effects of sucralose ingestion versus sucralose taste on metabolic responses to an oral glucose tolerance test in participants with normal weight and obesity: a randomized crossover trial. Nutrients, 2019, 12(1), 29.
[http://dx.doi.org/10.3390/nu12010029] [PMID: 31877631]
[83]
Evans, R.A.; Frese, M.; Romero, J.; Cunningham, J.H.; Mills, K.E. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am. J. Clin. Nutr., 2017, 106(2), 506-518.
[http://dx.doi.org/10.3945/ajcn.116.145151] [PMID: 28592611]
[84]
Noronha, J.; Braunstein, C.; Blanco Mejia, S.; Khan, T.; Kendall, C.; Wolever, T.; Leiter, L.; Sievenpiper, J. The Effect of small doses of fructose and its epimers on glycemic control: a systematic review and meta-analysis of controlled feeding trials. Nutrients, 2018, 10(11), 1805.
[http://dx.doi.org/10.3390/nu10111805] [PMID: 30463314]
[85]
Choo, V.L.; Viguiliouk, E.; Blanco Mejia, S.; Cozma, A.I.; Khan, T.A.; Ha, V.; Wolever, T.M.S.; Lei-ter, L.A.; Vuksan, V.; Kendall, C.W.C.; de Souza, R.J.; Jenkins, D.J.A.; Sievenpiper, J.L. Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ, 2018, 363, k4644.
[http://dx.doi.org/10.1136/bmj.k4644] [PMID: 30463844]
[86]
DeFronzo, R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North Am., 2004, 88(4), 787-835. ix
[http://dx.doi.org/10.1016/j.mcna.2004.04.013] [PMID: 15308380]
[87]
Hamano, K.; Nakagawa, Y.; Ohtsu, Y.; Li, L.; Medina, J.; Tanaka, Y.; Masuda, K.; Komatsu, M.; Kojima, I. Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells. J. Endocrinol., 2015, 226(1), 57-66.
[http://dx.doi.org/10.1530/JOE-15-0102] [PMID: 25994004]
[88]
Nolan, C.J.; Prentki, M. The islet β-cell: fuel responsive and vulnerable. Trends Endocrinol. Metab., 2008, 19(8), 285-291.
[http://dx.doi.org/10.1016/j.tem.2008.07.006] [PMID: 18774732]
[89]
Nakamura, H.; Jinzu, H.; Nagao, K.; Noguchi, Y.; Shimba, N.; Miyano, H.; Watanabe, T.; Iseki, K. Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 dia-betic patients. Nutr. Diabetes, 2014, 4(9), e133.
[http://dx.doi.org/10.1038/nutd.2014.32] [PMID: 25177913]
[90]
Gar, C.; Rottenkolber, M.; Prehn, C.; Adamski, J.; Seissler, J.; Lechner, A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit. Rev. Clin. Lab. Sci., 2018, 55(1), 21-32.
[http://dx.doi.org/10.1080/10408363.2017.1414143] [PMID: 29239245]
[91]
Bloomgarden, Z. Diabetes and branched-chain amino acids: What is the link? J. Diabetes, 2018, 10(5), 350-352.
[http://dx.doi.org/10.1111/1753-0407.12645] [PMID: 29369529]
[92]
van Loon, L.J.C.; Kruijshoop, M.; Menheere, P.P.C.A.; Wagenmakers, A.J.M.; Saris, W.H.M.; Keizer, H.A. Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabe-tes. Diabetes Care, 2003, 26(3), 625-630.
[http://dx.doi.org/10.2337/diacare.26.3.625] [PMID: 12610012]
[93]
Marquard, J.; Otter, S.; Welters, A.; Stirban, A.; Fischer, A.; Eglinger, J.; Herebian, D.; Kletke, O.; Klemen, M.S.; Stožer, A.; Wnendt, S.; Piemonti, L.; Köhler, M.; Ferrer, J.; Thorens, B.; Schliess, F.; Rupnik, M.S.; Heise, T.; Berggren, P.O.; Klöcker, N.; Meissner, T.; Mayatepek, E.; Eberhard, D.; Kragl, M. La mMert, E. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat. Med., 2015, 21(4), 363-372.
[http://dx.doi.org/10.1038/nm.3822] [PMID: 25774850]
[94]
Uehara, S.; Muroyama, A.; Echigo, N.; Morimoto, R.; Otsuka, M.; Yatsushiro, S.; Moriyama, Y. Metabotropic glutamate receptor type 4 is involved in autoinhibitory cascade for glucagon secretion by alpha-cells of islet of Langerhans. Diabetes, 2004, 53(4), 998-1006.
[http://dx.doi.org/10.2337/diabetes.53.4.998] [PMID: 15047615]
[95]
Cabrera, O.; Jacques-Silva, M.C.; Speier, S.; Yang, S.N.; Köhler, M.; Fachado, A.; Vieira, E.; Zierath, J.R.; Kibbey, R.; Berman, D.M.; Kenyon, N.S.; Ricordi, C.; Caicedo, A.; Berggren, P.O. Glutamate is a positive autocrine signal for glucagon release. Cell Metab., 2008, 7(6), 545-554.
[http://dx.doi.org/10.1016/j.cmet.2008.03.004] [PMID: 18522835]
[96]
Gill, S.S.; Pulido, O.M. Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol. Pathol., 2001, 29(2), 208-223.
[http://dx.doi.org/10.1080/019262301317052486] [PMID: 11421488]
[97]
Yasumatsu, K.; Ogiwara, Y.; Takai, S.; Yoshida, R.; Iwatsuki, K.; Torii, K.; Margolskee, R.F.; Ninomiya, Y. Umami taste in mice uses multiple receptors and transduction pathways. J. Physiol., 2012, 590(5), 1155-1170.
[http://dx.doi.org/10.1113/jphysiol.2011.211920] [PMID: 22183726]
[98]
Davalli, A.M.; Perego, C.; Folli, F.B. The potential role of glutamate in the current diabetes epidemic. Acta Diabetol., 2012, 49(3), 167-183.
[http://dx.doi.org/10.1007/s00592-011-0364-z] [PMID: 22218826]
[99]
Hayashi, Y.; Seino, Y. Regulation of amino acid metabolism and α-cell proliferation by glucagon. J. Diabetes Investig., 2018, 9(3), 464-472.
[http://dx.doi.org/10.1111/jdi.12797] [PMID: 29314731]
[100]
Prentki, M.; Matschinsky, F.M.; Madiraju, S.R.M. Metabolic signaling in fuel-induced insulin secretion. Cell Metab., 2013, 18(2), 162-185.
[http://dx.doi.org/10.1016/j.cmet.2013.05.018] [PMID: 23791483]
[101]
Mancini, A.D.; Poitout, V. The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol. Metab., 2013, 24(8), 398-407.
[http://dx.doi.org/10.1016/j.tem.2013.03.003] [PMID: 23631851]
[102]
Burant, C.F. Activation of GPR40 as a therapeutic target for the treatment of type 2 diabetes. Diabetes Care, 2013, 36(S2), S175-S179.
[http://dx.doi.org/10.2337/dcS13-2037] [PMID: 23882043]
[103]
Del Guerra, S.; Bugliani, M.; D’Aleo, V.; Del Prato, S.; Boggi, U.; Mosca, F.; Filipponi, F.; Lupi, R. G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: The role of type 2 diabetes and fatty acids. Nutr. Metab. Cardiovasc. Dis., 2010, 20(1), 22-25.
[http://dx.doi.org/10.1016/j.numecd.2009.02.008] [PMID: 19758793]
[104]
Li, Z.; Qiu, Q.; Geng, X.; Yang, J.; Huang, W.; Qian, H. Free fatty acid receptor agonists for the treatment of type 2 diabetes: drugs in preclinical to phase II clinical development. Expert Opin. Investig. Drugs, 2016, 25(8), 871-890.
[http://dx.doi.org/10.1080/13543784.2016.1189530] [PMID: 27171154]
[105]
Kaku, K.; Araki, T.; Yoshinaka, R. Randomized, double-blind, dose-ranging study of TAK-875, a novel GPR40 agonist, in Japanese patients with inadequately controlled type 2 diabetes. Diabetes Care, 2013, 36(2), 245-250.
[http://dx.doi.org/10.2337/dc12-0872] [PMID: 23086138]
[106]
Kaku, K.; Enya, K.; Nakaya, R.; Ohira, T.; Matsuno, R. Long-term safety and efficacy of fasiglifam (TAK-875), a G-protein-coupled receptor 40 agonist, as monotherapy and combination therapy in Jap-anese patients with type 2 diabetes: a 52-week open-label phase III study. Diabetes Obes. Metab., 2016, 18(9), 925-929.
[http://dx.doi.org/10.1111/dom.12693] [PMID: 27178047]
[107]
Milligan, G.; Alvarez-Curto, E.; Hudson, B.D.; Prihandoko, R.; Tobin, A.B. FFA4/GPR120: pharmacology and therapeutic opportunities. Trends Pharmacol. Sci., 2017, 38(9), 809-821.
[http://dx.doi.org/10.1016/j.tips.2017.06.006] [PMID: 28734639]
[108]
Müller, T.D.; Finan, B. Cle mMensen, C.; DiMarchi, R.D.; Tschöp, M.H. The new biology and pharmacology of glucagon. Physiol. Rev., 2017, 97(2), 721-766.
[http://dx.doi.org/10.1152/physrev.00025.2016] [PMID: 28275047]
[109]
Flodgren, E.; Olde, B.; Meidute-Abaraviciene, S.; Winzell, M.S.; Ahrén, B.; Salehi, A. GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem. Biophys. Res. ComMun., 2007, 354(1), 240-245.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.193] [PMID: 17214971]
[110]
Wang, L.; Zhao, Y.; Gui, B.; Fu, R.; Ma, F.; Yu, J.; Qu, P.; Dong, L.; Chen, C. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic is-let α-cells. J. Endocrinol., 2011, 210(2), 173-179.
[http://dx.doi.org/10.1530/JOE-11-0132] [PMID: 21565851]
[111]
Verma, M.K.; Biswas, S.; Chandravanshi, B.; Neelima, K. Oo mMen, A.M.; Jagannath, M.R.; Somesh, B.P. A novel GPR40 agonist, CNX-011-67, suppresses glucagon secretion in pancreatic islets under chronic glucolipotoxic conditions in vitro. BMC Res. Notes, 2014, 7(1), 595.
[http://dx.doi.org/10.1186/1756-0500-7-595] [PMID: 25186493]
[112]
Yashiro, H.; Tsujihata, Y.; Takeuchi, K.; Hazama, M.; Johnson, P.R.V.; Rorsman, P. The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J. Pharmacol. Exp. Ther., 2012, 340(2), 483-489.
[http://dx.doi.org/10.1124/jpet.111.187708] [PMID: 22106100]
[113]
Kennedy, D.J.; Kashyap, S.R. Pathogenic role of scavenger receptor CD36 in the metabolic syn-drome and diabetes. Metab. Syndr. Relat. Disord., 2011, 9(4), 239-245.
[http://dx.doi.org/10.1089/met.2011.0003] [PMID: 21428745]
[114]
Choromańska, B.; Myśliwiec, P.; Choromańska, K.; Dadan, J.; Chabowski, A. The role of CD36 re-ceptor in the pathogenesis of atherosclerosis. Adv. Clin. Exp. Med., 2017, 26(4), 717-722.
[http://dx.doi.org/10.17219/acem/62325] [PMID: 28691408]
[115]
Wallin, T.; Ma, Z.; Ogata, H.; Jørgensen, I.H.; Iezzi, M.; Wang, H.; Wollheim, C.B.; Björklund, A. Facilitation of fatty acid uptake by CD36 in insulin-producing cells reduces fatty-acid-induced insulin secretion and glucose regulation of fatty acid oxidation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2010, 1801(2), 191-197.
[http://dx.doi.org/10.1016/j.bbalip.2009.11.002] [PMID: 19931418]
[116]
Suckow, A.T.; Polidori, D.; Yan, W.; Chon, S.; Ma, J.Y.; Leonard, J.; Briscoe, C.P. Alteration of the glucagon axis in GPR120 (FFAR4) knockout mice: a role for GPR120 in glucagon secretion. J. Biol. Chem., 2014, 289(22), 15751-15763.
[http://dx.doi.org/10.1074/jbc.M114.568683] [PMID: 24742677]
[117]
Zhang, D.; So, W.Y.; Wang, Y.; Wu, S.Y.; Cheng, Q.; Leung, P.S. Insulinotropic effects of GPR120 agonists are altered in obese diabetic and obese non-diabetic states. Clin. Sci. (Lond.), 2017, 131(3), 247-260.
[http://dx.doi.org/10.1042/CS20160545] [PMID: 27980130]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy