Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Mini-Review Article

The Influences and Mechanisms of High-altitude Hypoxia Exposure on Drug Metabolism

Author(s): Anpeng Zhao, Wenbin Li and Rong Wang*

Volume 24, Issue 3, 2023

Published on: 11 January, 2023

Page: [152 - 161] Pages: 10

DOI: 10.2174/1389200224666221228115526

Price: $65

Abstract

Background: The special environment of high-altitude hypoxia not only changes the physiological state of the body but also affects the metabolic process of many drugs, which may affect the safety and efficacy of these drugs. The number of drugs is huge, so it is not wise to blindly repeat the pharmacokinetic studies of all of them on the plateau. Mastering the law of drug metabolism on the plateau is conducive to the comprehensive development of rational drug use on the plateau. Therefore, it is very important to determine the impacts and elucidate the mechanism of drug metabolism in hypobaric hypoxia conditions.

Methods: In this review, we searched published studies on changes in drug metabolism in hypoxia conditions to summarize and analyze the mechanisms by which hypoxia alters drug metabolism.

Results: Although the reported effects of high-altitude hypoxia on drug metabolism are sometimes controversial, metabolism kinetics for most of the tested drugs are found to be affected. Mechanism studies showed that the major reasons causing metabolism changes are: regulated drug-metabolizing enzymes expression and activity mediated by HIF-1, nuclear receptors and inflammatory cytokines, and change in direct or indirect effects of intestinal microflora on drug metabolism by itself or the host mediated by microflora-derived drug-metabolizing enzymes, metabolites, and immunoregulation.

Conclusion: Altered enzyme expression and activity in the liver and altered intestinal microflora are the two major reasons to cause altered drug metabolism in hypoxia conditions.

Graphical Abstract

[1]
Hui, L.; Rong, W.; Zheng-ping, J.; Juan, X.; Hua, X. Effects of high altitude exposure on physiology and pharmacokinetics. Curr. Drug Metab., 2016, 17(6), 559-565.
[http://dx.doi.org/10.2174/1389200216666151015113948] [PMID: 26467068]
[2]
Johnson, N.J.; Luks, A.M. High-altitude medicine. Med. Clin. North Am., 2016, 100(2), 357-369.
[http://dx.doi.org/10.1016/j.mcna.2015.09.002] [PMID: 26900119]
[3]
Barry, P.W.; Pollard, A.J. Altitude illness. BMJ, 2003, 326(7395), 915-919.
[http://dx.doi.org/10.1136/bmj.326.7395.915] [PMID: 12714473]
[4]
Ritschel, W.A.; Paulos, C.; Arancibia, A.; Agrawal, M.A.; Wetzelsberger, K.M.; Lücker, P.W. Pharmacokinetics of acetazolamide in healthy volunteers after short- and long-term exposure to high altitude. J. Clin. Pharmacol., 1998, 38(6), 533-539.
[http://dx.doi.org/10.1002/j.1552-4604.1998.tb05791.x] [PMID: 9650543]
[5]
Yamamoto, K.; Tsubokawa, T.; Yagi, T.; Ishizuka, S.; Ohmura, S.; Kobayashi, T. The influence of hypoxia and hyperoxia on the kinetics of propofol emulsion. Can. J. Anaesth., 1999, 46(12), 1150-1155.
[http://dx.doi.org/10.1007/BF03015525] [PMID: 10608210]
[6]
Zhang, J.; Chen, Y.; Sun, Y.; Wang, R.; Zhang, J.; Jia, Z. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine. Drug Deliv., 2018, 25(1), 1175-1181.
[http://dx.doi.org/10.1080/10717544.2018.1469687] [PMID: 29790376]
[7]
Powell, J.R.; Vozeh, S.; Hopewell, P.; Costello, J.; Sheiner, L.B.; Riegelman, S. Theophylline disposition in acutely ill hospitalized patients. The effect of smoking, heart failure, severe airway obstruction, and pneumonia. Am. Rev. Respir. Dis., 1978, 118(2), 229-238.
[PMID: 697173]
[8]
Ritschel, W.A.; Paulos, C.; Arancibia, A.; Pezzani, M.; Agrawal, M.A.; Wetzelsberger, K.M.; Lücker, P.W. Pharmacokinetics of meperidine in healthy volunteers after short- and long-term exposure to high altitude. J. Clin. Pharmacol., 1996, 36(7), 610-616.
[http://dx.doi.org/10.1002/j.1552-4604.1996.tb04225.x] [PMID: 8844443]
[9]
Arancibia, A.; Paulos, C.; Chávez, J.; Ritschel, W.A. Pharmacokinetics of lithium in healthy volunteers after exposure to high altitude. Int. J. Clin. Pharmacol. Ther., 2003, 41(5), 200-206.
[http://dx.doi.org/10.5414/CPP41200] [PMID: 12776810]
[10]
Arancibia, A.; Gai, M.N.; Chávez, J.; Paulos, C.; Pinilla, E.; González, C.; Villanueva, S.; Ritschel, W.A. Pharmacokinetics of prednisolone in man during acute and chronic exposure to high altitude. Int. J. Clin. Pharmacol. Ther., 2005, 43(2), 85-91.
[http://dx.doi.org/10.5414/CPP43085] [PMID: 15726877]
[11]
Kamimori, G.H.; Brunhart, A.E.; Eddington, N.D.; Lugo, S.; Hoyt, R.W.; Fulco, C.S.; Durkot, M.J.; Cymerman, A. Effects of altitude (4300 M) on the pharmacokinetics of caffeine and cardio-green in humans. Eur. J. Clin. Pharmacol., 1995, 48(2), 167-170.
[http://dx.doi.org/10.1007/BF00192744] [PMID: 7589033]
[12]
Li, X.Y.; Gao, F.; Li, Z.Q.; Guan, W.; Feng, W.L.; Ge, R.L. Comparison of the pharmacokinetics of sulfamethoxazole in male chinese volunteers at low altitude and acute exposure to high altitude versus subjects living chronically at high altitude: An open-label, controlled, prospective study. Clin. Ther., 2009, 31(11), 2744-2754.
[http://dx.doi.org/10.1016/j.clinthera.2009.11.019] [PMID: 20110016]
[13]
Zhang, J.; Zhu, J.; Yao, X.; Duan, Y.; Zhou, X.; Yang, M.; Li, X. Pharmacokinetics of lidocaine hydrochloride metabolized by CYP3A4 in Chinese han volunteers living at low altitude and in native han and tibetan chinese volunteers living at high altitude. Pharmacology, 2016, 97(3-4), 107-113.
[http://dx.doi.org/10.1159/000443332] [PMID: 26730802]
[14]
du Souich, P.; Courteau, H.; Kobusch, A.B.; Dalkara, S.; Ong, H. Effect of hypoxia on the cytochrome P-450 and theophylline metabolism. Eur. J. Pharmacol., 1990, 183(6), 2122-2123.
[http://dx.doi.org/10.1016/0014-2999(90)93641-3]
[15]
Gavalakis, J.; du Souich, P.; Sharkawi, M. Acute moderate hypoxia reduces ethanol elimination in the conscious rabbit. Toxicology, 1999, 137(2), 109-116.
[http://dx.doi.org/10.1016/S0300-483X(99)00071-2] [PMID: 10521147]
[16]
du Souich, P.; Hartemann, D.; Saunier, C. Effect of acute and chronic moderate hypoxia on diltiazem kinetics and metabolism in the dog. Pharmacology, 1993, 47(6), 378-385.
[http://dx.doi.org/10.1159/000139121] [PMID: 8278460]
[17]
du Souich, P.; Saunier, C.; Hartemann, D.; Allam, M. Effect of acute and chronic moderate hypoxia on the kinetics of lidocaine and its metabolites and on regional blood flow. Pulm. Pharmacol., 1992, 5(1), 9-16.
[http://dx.doi.org/10.1016/0952-0600(92)90012-6] [PMID: 1591467]
[18]
Gola, S.; Keshri, G.K.; Gupta, A. Hepatic metabolism of ibuprofen in rats under acute hypobaric hypoxia. Exp. Toxicol. Pathol., 2013, 65(6), 751-758.
[http://dx.doi.org/10.1016/j.etp.2012.11.001] [PMID: 23218936]
[19]
Gola, S.; Gupta, A.; Keshri, G.K.; Nath, M.; Velpandian, T. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude. J. Pharm. Biomed. Anal., 2016, 121, 114-122.
[http://dx.doi.org/10.1016/j.jpba.2016.01.018] [PMID: 26799979]
[20]
Zhu, J.; Yang, J.; Nian, Y.; Liu, G.; Duan, Y.; Bai, X.; Wang, Q.; Zhou, Y.; Wang, X.; Qu, N.; Li, X. Pharmacokinetics of acetaminophen and metformin hydrochloride in rats after exposure to simulated high altitude hypoxia. Front. Pharmacol., 2021, 12, 692349.
[http://dx.doi.org/10.3389/fphar.2021.692349] [PMID: 34220516]
[21]
Zhang, J.; Zhang, M.; Zhang, J.; Wang, R. Enhanced P-glycoprotein expression under high-altitude hypoxia contributes to increased phenytoin levels and reduced clearance in rats. Eur. J. Pharm. Sci., 2020, 153, 105490.
[http://dx.doi.org/10.1016/j.ejps.2020.105490] [PMID: 32721527]
[22]
Wenbin, L.; Rong, W.; Hua, X.; Juanhong, Z.; Xiaoyu, W.; Zhengping, J. Effects on pharmacokinetics of propranolol and other factors in rats after acute exposure to high altitude at 4,010 m. Cell Biochem. Biophys., 2015, 72(1), 27-36.
[http://dx.doi.org/10.1007/s12013-014-0397-3] [PMID: 25417059]
[23]
Zhang, J.; Wang, R.; Xie, H.; Yin, Q.; Jia, Z.; Li, W. Effect of acute exposure to high altitude on pharmacokinetics of propranolol and metoprolol in rats. Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34(11), 1616-1620.
[PMID: 25413060]
[24]
Luo, B.; Li, J.; Yang, T.; Li, W.; Zhang, J.; Wang, C.; Zhao, A.; Wang, R. Evaluation of renal excretion and pharmacokinetics of furosemide in rats after acute exposure to high altitude at 4300 m. Biopharm. Drug Dispos., 2018, 39(8), 378-387.
[http://dx.doi.org/10.1002/bdd.2154] [PMID: 30120768]
[25]
Li, W.B.; Wang, R.; Xie, H.; Zhang, J.H.; Xie, X.H.; Wu, X.Y.; Jia, Z.P. Effects on the pharmacokinetics of furosemide after acute exposure to high altitude at 4010 meters in rats. Yao Xue Xue Bao, 2012, 47(12), 1718-1721.
[PMID: 23460981]
[26]
Luo, B.; Wang, R.; Li, W.; Yang, T.; Wang, C.; Lu, H.; Zhao, A.; Zhang, J.; Jia, Z. Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300 m. Biomed. Pharmacother., 2017, 89, 1078-1085.
[http://dx.doi.org/10.1016/j.biopha.2017.02.092] [PMID: 28292016]
[27]
Zhang, J.; Wang, R. Changes in CYP3A4 enzyme expression and biochemical markers under acute hypoxia affect the pharmacokinetics of sildenafil. Front. Physiol., 2022, 13, 755769.
[PMID: 35153825]
[28]
Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician, 2007, 76(3), 391-396.
[PMID: 17708140]
[29]
Fradette, C.; Souich, P. Hypoxia-inducible factor-1 and activator protein-1 modulate the upregulation of CYP3A6 induced by hypoxia. Br. J. Pharmacol., 2003, 140(6), 1146-1154.
[http://dx.doi.org/10.1038/sj.bjp.0705543] [PMID: 14559859]
[30]
Fradette, C.; Batonga, J.; Teng, S.; Piquette-Miller, M.; du Souich, P. Animal models of acute moderate hypoxia are associated with a down-regulation of CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulation of CYP3A6 and P-glycoprotein in liver. Drug Metab. Dispos., 2007, 35(5), 765-771.
[http://dx.doi.org/10.1124/dmd.106.013508] [PMID: 17303624]
[31]
Wang, R.; Sun, Y.; Yin, Q.; Xie, H.; Li, W.; Wang, C.; Guo, J.; Hao, Y.; Tao, R.; Jia, Z. The effects of metronidazole on Cytochrome P450 activity and expression in rats after acute exposure to high altitude of 4300 m. Biomed. Pharmacother., 2017, 85, 296-302.
[http://dx.doi.org/10.1016/j.biopha.2016.11.024] [PMID: 27899252]
[32]
Li, W.; Jia, Z.; Xie, H.; Zhang, J.; Wang, Y.; Hao, Y.; Wang, R. Effects of acute exposure to high altitude on hepatic function and CYP1A2 and CYP3A4 activities in rats. Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34(8), 1203-1206.
[PMID: 25176097]
[33]
Li, J.; Wu, Y.; Ma, Y.; Bai, L.; Li, Q.; Zhou, X.; Xu, P.; Li, X.; Xue, M.A. UPLC-MS/MS method reveals the pharmacokinetics and metabolism characteristics of kaempferol in rats under hypoxia. Drug Metab. Pharmacokinet., 2022, 43, 100440.
[http://dx.doi.org/10.1016/j.dmpk.2021.100440] [PMID: 35051732]
[34]
Duan, Y.; Zhu, J.; Yang, J.; Liu, G.; Bai, X.; Qu, N.; Wang, X.; Li, X. Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 mediated by PXR and CAR. Front. Pharmacol., 2020, 11, 574176.
[http://dx.doi.org/10.3389/fphar.2020.574176] [PMID: 33041817]
[35]
Li, X.; Wang, X.; Li, Y.; Zhu, J.; Su, X.; Yao, X.; Fan, X.; Duan, Y. The activity, protein, and mRNA expression of CYP2E1 and CYP3A1 in rats after exposure to acute and chronic high altitude hypoxia. High Alt. Med. Biol., 2014, 15(4), 491-496.
[http://dx.doi.org/10.1089/ham.2014.1026] [PMID: 25330250]
[36]
Li, X.; Wang, X.; Li, Y.; Yuan, M.; Zhu, J.; Su, X.; Yao, X.; Fan, X.; Duan, Y. Effect of exposure to acute and chronic high-altitude hypoxia on the activity and expression of CYP1A2, CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats. Pharmacology, 2014, 93(1-2), 76-83.
[http://dx.doi.org/10.1159/000358128] [PMID: 24557547]
[37]
Jürgens, G.; Christensen, H.R.; Brøsen, K.; Sonne, J.; Loft, S.; Olsen, N.V. Acute hypoxia and cytochrome P450-mediated hepatic drug metabolism in humans. Clin. Pharmacol. Ther., 2002, 71(4), 214-220.
[http://dx.doi.org/10.1067/mcp.2002.121789] [PMID: 11956503]
[38]
Shan, X.; Smith, E.R.; Ingelman-Sundberg, M.; Mannervik, B.; Iyanagi, T.; Jones, D.P.; Jones, D.P. Effect of chronic hypoxia on detoxication enzymes in rat liver. Biochem. Pharmacol., 1992, 43(11), 2421-2426.
[http://dx.doi.org/10.1016/0006-2952(92)90322-A] [PMID: 1610406]
[39]
Go, R.E.; Hwang, K.A.; Choi, K.C. Cytochrome P450 1 family and cancers. J. Steroid Biochem. Mol. Biol., 2015, 147, 24-30.
[http://dx.doi.org/10.1016/j.jsbmb.2014.11.003] [PMID: 25448748]
[40]
Takano, H.; Yamaguchi, J.; Kato, S.; Hamada, M.; Tada, M.; Endo, H. Downregulation of CYP1A2, CYP2B6, and CYP3A4 in human hepatocytes by prolyl hydroxylase domain 2 inhibitors via hypoxia-inducible factor- α stabilization. Drug Metab. Dispos., 2021, 49(1), 20-30.
[http://dx.doi.org/10.1124/dmd.120.000124] [PMID: 33087449]
[41]
Bain, D.L.; Heneghan, A.F.; Connaghan-Jones, K.D.; Miura, M.T. Nuclear receptor structure: Implications for function. Annu. Rev. Physiol., 2007, 69(1), 201-220.
[http://dx.doi.org/10.1146/annurev.physiol.69.031905.160308] [PMID: 17137423]
[42]
Goodwin, B.; Hodgson, E.; Liddle, C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol., 1999, 56(6), 1329-1339.
[http://dx.doi.org/10.1124/mol.56.6.1329] [PMID: 10570062]
[43]
Honkakoski, P.; Sueyoshi, T.; Negishi, M. Drug-activated nuclear receptors CAR and PXR. Ann. Med., 2003, 35(3), 172-182.
[http://dx.doi.org/10.1080/07853890310008224] [PMID: 12822739]
[44]
Wang, C.; Wang, R.; Xie, H.; Sun, Y.; Tao, R.; Liu, W.; Li, W.; Lu, H.; Jia, Z. Effect of acetazolamide on cytokines in rats exposed to high altitude. Cytokine, 2016, 83, 110-117.
[http://dx.doi.org/10.1016/j.cyto.2016.04.003] [PMID: 27104804]
[45]
Fradette, C.; Bleau, A.M.; Pichette, V.; Chauret, N.; Du Souich, P. Hypoxia-induced down-regulation of CYP1A1/1A2 and up-regulation of CYP3A6 involves serum mediators. Br. J. Pharmacol., 2002, 137(6), 881-891.
[http://dx.doi.org/10.1038/sj.bjp.0704933] [PMID: 12411420]
[46]
Simon, F.; Garcia, J.; Guyot, L.; Guitton, J.; Vilchez, G.; Bardel, C.; Chenel, M.; Tod, M.; Payen, L. Impact of interleukin-6 on drug-metabolizing enzymes and transporters in intestinal cells. AAPS J., 2020, 22(1), 16.
[http://dx.doi.org/10.1208/s12248-019-0395-x] [PMID: 31863204]
[47]
Zordoky, B.; El-Kadi, A. Role of NF-kappaB in the regulation of cytochrome P450 enzymes. Curr. Drug Metab., 2009, 10(2), 164-178.
[http://dx.doi.org/10.2174/138920009787522151] [PMID: 19275551]
[48]
Zhang, J.; Zhang, J.; Wang, R.; Jia, Z. Effects of gut microbiota on drug metabolism and guidance for rational drug use under hypoxic conditions at high altitudes. Curr. Drug Metab., 2019, 20(2), 155-165.
[http://dx.doi.org/10.2174/1389200219666181019145159] [PMID: 30338735]
[49]
Han, N.; Pan, Z.; Liu, G.; Yang, R.; Yujing, B. Hypoxia: The “invisible pusher” of gut microbiota. Front. Microbiol., 2021, 12, 690600.
[http://dx.doi.org/10.3389/fmicb.2021.690600] [PMID: 34367091]
[50]
Adak, A.; Maity, C.; Ghosh, K.; Pati, B.R.; Mondal, K.C. Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation. Folia Microbiol. (Praha), 2013, 58(6), 523-528.
[http://dx.doi.org/10.1007/s12223-013-0241-y] [PMID: 23536261]
[51]
Suzuki, T.A.; Martins, F.M.; Nachman, M.W. Altitudinal variation of the gut microbiota in wild house mice. Mol. Ecol., 2019, 28(9), 2378-2390.
[http://dx.doi.org/10.1111/mec.14905] [PMID: 30346069]
[52]
Wang, F.; Zhang, H.; Xu, T.; Hu, Y.; Jiang, Y. Acute exposure to simulated high-altitude hypoxia alters gut microbiota in mice. Arch. Microbiol., 2022, 204(7), 412.
[http://dx.doi.org/10.1007/s00203-022-03031-4] [PMID: 35731330]
[53]
Zeng, B.; Zhang, S.; Xu, H.; Kong, F.; Yu, X.; Wang, P.; Yang, M.; Li, D.; Zhang, M.; Ni, Q.; Li, Y.; Fan, X.; Yang, D.; Ning, R.; Zhao, J.; Li, Y. Gut microbiota of Tibetans and Tibetan pigs varies between high and low altitude environments. Microbiol. Res., 2020, 235, 126447.
[http://dx.doi.org/10.1016/j.micres.2020.126447] [PMID: 32114362]
[54]
Li, L.; Zhao, X. Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Sci. Rep., 2015, 5(1), 14682.
[http://dx.doi.org/10.1038/srep14682] [PMID: 26443005]
[55]
Ma, Y.; Ma, S.; Chang, L.; Wang, H.; Ga, Q.; Ma, L.; Bai, Z.; Shen, Y.; Ge, R.L. Gut microbiota adaptation to high altitude in indigenous animals. Biochem. Biophys. Res. Commun., 2019, 516(1), 120-126.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.085] [PMID: 31196622]
[56]
Wu, Y.; Yao, Y.; Dong, M.; Xia, T.; Li, D.; Xie, M.; Wu, J.; Wen, A.; Wang, Q.; Zhu, G.; Ni, Q.; Zhang, M.; Xu, H. Characterisation of the gut microbial community of Rhesus macaques in high-altitude environments. BMC Microbiol., 2020, 20(1), 68.
[http://dx.doi.org/10.1186/s12866-020-01747-1] [PMID: 32216756]
[57]
Fan, Q.; Wanapat, M.; Yan, T.; Hou, F. Altitude influences microbial diversity and herbage fermentation in the rumen of yaks. BMC Microbiol., 2020, 20(1), 370.
[http://dx.doi.org/10.1186/s12866-020-02054-5] [PMID: 33276718]
[58]
Sun, Y.; Zhang, J.; Zhao, A.; Li, W.; Feng, Q.; Wang, R. Effects of intestinal flora on the pharmacokinetics and pharmacodynamics of aspirin in high-altitude hypoxia. PLoS One, 2020, 15(3), e0230197.
[http://dx.doi.org/10.1371/journal.pone.0230197] [PMID: 32163488]
[59]
Juanhong, Z.H.A.N.G.Z.Y.Z.J. In vivo metabolism of pyridostigmine bromide mediated by intestinal flora in condition of high altitude. Yaowu Pingjia Yanjiu, 2022, 45, 428-433.
[60]
Peppercorn, M.A.; Goldman, P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J. Pharmacol. Exp. Ther., 1972, 181(3), 555-562.
[PMID: 4402374]
[61]
Stringer, A.M.; Gibson, R.J.; Logan, R.M.; Bowen, J.M.; Yeoh, A.S.J.; Keefe, D.M.K. Faecal microflora and β-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biol. Ther., 2008, 7(12), 1919-1925.
[http://dx.doi.org/10.4161/cbt.7.12.6940] [PMID: 18927500]
[62]
Gong, S.; Lan, T.; Zeng, L.; Luo, H.; Yang, X.; Li, N.; Chen, X.; Liu, Z.; Li, R.; Win, S.; Liu, S.; Zhou, H.; Schnabl, B.; Jiang, Y.; Kaplowitz, N.; Chen, P. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J. Hepatol., 2018, 69(1), 51-59.
[http://dx.doi.org/10.1016/j.jhep.2018.02.024] [PMID: 29524531]
[63]
Juřica, J.; Dovrtělová, G.; Nosková, K.; Zendulka, O. Bile acids, nuclear receptors and cytochrome P450. Physiol. Res., 2016, 65(Suppl. 4), S427-S440.
[http://dx.doi.org/10.33549/physiolres.933512] [PMID: 28006925]
[64]
Ya-ting, Z.; Long-ji, H.; An-peng, Z.; Yue-mei, S.; Wen-bin, L.; Juan-hong, Z.; Rong, W. The effect of acute hypobaric hypoxia on bile acid composition in the small intestine of rats. Yao Xue Xue Bao, 2021, 56, 2260-2265.
[65]
Toda, T.; Saito, N.; Ikarashi, N.; Ito, K.; Yamamoto, M.; Ishige, A.; Watanabe, K.; Sugiyama, K. Intestinal flora induces the expression of Cyp3a in the mouse liver. Xenobiotica, 2009, 39(4), 323-334.
[http://dx.doi.org/10.1080/00498250802651984] [PMID: 19350455]
[66]
Björkholm, B.; Bok, C.M.; Lundin, A.; Rafter, J.; Hibberd, M.L.; Pettersson, S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One, 2009, 4(9), e6958.
[http://dx.doi.org/10.1371/journal.pone.0006958] [PMID: 19742318]
[67]
Hooper, L.V.; Wong, M.H.; Thelin, A.; Hansson, L.; Falk, P.G.; Gordon, J.I. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001, 291(5505), 881-884.
[http://dx.doi.org/10.1126/science.291.5505.881] [PMID: 11157169]
[68]
Mendes, V.; Galvão, I.; Vieira, A.T. Mechanisms by which the gut microbiota influences cytokine production and modulates host inflammatory responses. J. Interferon Cytokine Res., 2019, 39(7), 393-409.
[http://dx.doi.org/10.1089/jir.2019.0011] [PMID: 31013453]
[69]
McKenna, Z.J.; Gorini Pereira, F.; Gillum, T.L.; Amorim, F.T.; Deyhle, M.R.; Mermier, C.M. High-altitude exposures and intestinal barrier dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2022, 322(3), R192-R203.
[http://dx.doi.org/10.1152/ajpregu.00270.2021] [PMID: 35043679]
[70]
Lolodi, O.; Wang, Y.M.; Wright, W.C.; Chen, T. Differential regulation of CYP3A4 and CYP3A5 and its implication in drug discovery. Curr. Drug Metab., 2018, 18(12), 1095-1105.
[http://dx.doi.org/10.2174/1389200218666170531112038] [PMID: 28558634]
[71]
Kwon, M.; Lim, D.Y.; Lee, C.H.; Jeon, J.H.; Choi, M.K.; Song, I.S. Enhanced intestinal absorption and pharmacokinetic modulation of berberine and its metabolites through the inhibition of p-glycoprotein and intestinal metabolism in rats using a berberine mixed micelle formulation. Pharmaceutics, 2020, 12(9), 882.
[http://dx.doi.org/10.3390/pharmaceutics12090882] [PMID: 32957491]
[72]
Pearson, D.; Jin, Y.; Romeo, A.; Birlinger, B.L.; Schiller, H.; Ji, Y.; Gunduz, M.; Baldoni, D.; Walles, M. Species-dependent hepatic and intestinal metabolism of selective oestrogen receptor degrader LSZ102 by sulphation and glucuronidation. Xenobiotica, 2022, 52(1), 26-37.
[http://dx.doi.org/10.1080/00498254.2022.2037027] [PMID: 35098863]
[73]
Li, W.; Yan, B.; Wang, R.; Jia, Z. Role of drug transporters in rational use of drugs at high altitude area. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2018, 43(3), 327-332.
[PMID: 29701197]
[74]
Almazroo, O.A.; Miah, M.K.; Venkataramanan, R. Drug Metabolism in the Liver. Clin. Liver Dis., 2017, 21(1), 1-20.
[http://dx.doi.org/10.1016/j.cld.2016.08.001] [PMID: 27842765]
[75]
Dufek, M.B.; Knight, B.M.; Bridges, A.S.; Thakker, D.R. P-glycoprotein increases portal bioavailability of loperamide in mouse by reducing first-pass intestinal metabolism. Drug Metab. Dispos., 2013, 41(3), 642-650.
[http://dx.doi.org/10.1124/dmd.112.049965] [PMID: 23288866]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy