Abstract
Metabolic reactions in the body transform the administered drug into metabolites. These metabolites exhibit diverse biological activities. Drug metabolism is the major underlying cause of drug overdose-related toxicity, adversative drug effects and the drug’s reduced efficacy. Though metabolic reactions deactivate a drug, drug metabolites are often considered pivotal agents for off-target effects or toxicity. On the other side, in combination drug therapy, one drug may influence another drug’s metabolism and clearance and is thus considered one of the primary causes of drug-drug interactions. Today with the advancement of machine learning, the metabolic fate of a drug candidate can be comprehensively studied throughout the drug development procedure. Naïve Bayes, Logistic Regression, k-Nearest Neighbours, Decision Trees, different Boosting and Ensemble methods, Support Vector Machines and Artificial Neural Network boosted Deep Learning are some machine learning algorithms which are being extensively used in such studies. Such tools are covering several attributes of drug metabolism, with an emphasis on the prediction of drug-drug interactions, drug-target-interactions, clinical drug responses, metabolite predictions, sites of metabolism, etc. These reports are crucial for evaluating metabolic stability and predicting prospective drug-drug interactions, and can help pharmaceutical companies accelerate the drug development process in a less resourcedemanding manner than what in vitro studies offer. It could also help medical practitioners to use combinatorial drug therapy in a more resourceful manner. Also, with the help of the enormous growth of deep learning, traditional fields of computational drug development like molecular interaction fields, molecular docking, quantitative structure-toactivity relationship (QSAR) studies and quantum mechanical simulations are producing results which were unimaginable couple of years back. This review provides a glimpse of a few contextually relevant machine learning algorithms and then focuses on their outcomes in different studies.
Graphical Abstract
[http://dx.doi.org/10.1016/j.apsb.2018.04.003] [PMID: 30245961]
[http://dx.doi.org/10.2174/138920112800624436] [PMID: 22201585]
[http://dx.doi.org/10.1248/yakushi.18-00190] [PMID: 30828023]
[http://dx.doi.org/10.2174/138920006775541552] [PMID: 16472106]
[http://dx.doi.org/10.3390/ijms222312808] [PMID: 34884615]
[http://dx.doi.org/10.2133/dmpk.DMPK-10-RV-062] [PMID: 20978361]
[http://dx.doi.org/10.3109/03602530903401658] [PMID: 19939207]
[http://dx.doi.org/10.2133/dmpk.DMPK-10-RV-089] [PMID: 20978360]
[http://dx.doi.org/10.2174/138161210790112674] [PMID: 19835560]
[http://dx.doi.org/10.1093/ajhp/59.21.2061] [PMID: 12434718]
[http://dx.doi.org/10.1086/501454] [PMID: 16586391]
[http://dx.doi.org/10.2533/chimia.2011.411] [PMID: 21797170]
[http://dx.doi.org/10.1111/j.1365-2125.1980.tb05825.x] [PMID: 7356902]
[http://dx.doi.org/10.1080/17425255.2021.1998454] [PMID: 34706606]
[http://dx.doi.org/10.2174/1389200215666141125121659]
[http://dx.doi.org/10.1016/j.drudis.2012.01.017] [PMID: 22305937]
[PMID: 30139042]
[PMID: 28124606]
[http://dx.doi.org/10.1111/cbdd.13445] [PMID: 30471192]
[http://dx.doi.org/10.1016/j.compbiomed.2019.01.008] [PMID: 30682640]
[http://dx.doi.org/10.1093/bioinformatics/btp140] [PMID: 19286831]
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]
[http://dx.doi.org/10.1016/j.drudis.2020.03.003] [PMID: 32171918]
[http://dx.doi.org/10.3390/molecules23092208] [PMID: 30200333]
[http://dx.doi.org/10.1007/978-1-0716-1787-8_4] [PMID: 34731466]
[http://dx.doi.org/10.1016/j.dmpk.2021.100395] [PMID: 33991751]
[http://dx.doi.org/10.1038/s41467-020-19313-8] [PMID: 33127883]
[http://dx.doi.org/10.1016/j.cld.2016.08.001] [PMID: 27842765]
[http://dx.doi.org/10.1007/BF02977789] [PMID: 15832810]
[http://dx.doi.org/10.1016/S0140-6736(02)11203-7] [PMID: 12387968]
[http://dx.doi.org/10.1146/annurev.pharmtox.39.1.1] [PMID: 10331074]
[http://dx.doi.org/10.2165/00003088-200241040-00001] [PMID: 11978143]
[http://dx.doi.org/10.1021/tx0002583] [PMID: 11409933]
[http://dx.doi.org/10.5507/bp.2010.017] [PMID: 20668491]
[http://dx.doi.org/10.1002/9780470122778.ch5] [PMID: 4892500]
[http://dx.doi.org/10.2133/dmpk.DMPK-13-PF-904] [PMID: 23979143]
[http://dx.doi.org/10.3390/brainsci9040093] [PMID: 31027219]
[http://dx.doi.org/10.1007/s00204-018-2244-6] [PMID: 29916050]
[http://dx.doi.org/10.1016/j.jpainsymman.2019.02.006] [PMID: 30776538]
[http://dx.doi.org/10.1147/rd.33.0210]
[http://dx.doi.org/10.1002/cpt.1796] [PMID: 32128792]
[http://dx.doi.org/10.1016/j.csbj.2021.08.011] [PMID: 34471498]
[http://dx.doi.org/10.1098/rstl.1763.0053]
[http://dx.doi.org/10.1109/CCIS.2011.6045027]
[http://dx.doi.org/10.1136/amiajnl-2013-002512] [PMID: 24644270]
[http://dx.doi.org/10.3390/ijms19020467] [PMID: 29401735]
[http://dx.doi.org/10.1038/s41598-021-97193-8] [PMID: 34475500]
[http://dx.doi.org/10.1109/TIT.1967.1053964]
[http://dx.doi.org/10.1186/s12859-019-3093-x] [PMID: 31874609]
[http://dx.doi.org/10.1007/978-0-387-84858-7]
[http://dx.doi.org/10.1007/BF00058655]
[http://dx.doi.org/10.1007/978-3-642-33460-3_28]
[http://dx.doi.org/10.1109/TCBB.2020.2989765]
[http://dx.doi.org/10.1016/j.bmc.2021.116388] [PMID: 34488021]
[http://dx.doi.org/10.3390/molecules26154678] [PMID: 34361831]
[http://dx.doi.org/10.4310/SII.2009.v2.n3.a8]
[http://dx.doi.org/10.1145/2939672.2939785]
[http://dx.doi.org/10.3390/cells10113092] [PMID: 34831315]
[http://dx.doi.org/10.1021/acs.jcim.9b00801] [PMID: 31644282]
[http://dx.doi.org/10.1017/CBO9780511801389]
[http://dx.doi.org/10.1109/TPWRS.2004.826018]
[http://dx.doi.org/10.1021/ci900299a] [PMID: 19883102]
[http://dx.doi.org/10.1371/journal.pone.0171839] [PMID: 28192537]
[http://dx.doi.org/10.1186/1471-2210-10-8] [PMID: 20637097]
[http://dx.doi.org/10.1007/BF02551274]
[http://dx.doi.org/10.1038/nature14539]
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00110] [PMID: 29775322]
[http://dx.doi.org/10.1093/bib/bbz103] [PMID: 31711157]
[http://dx.doi.org/10.1093/bib/bby002] [PMID: 29377981]
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[http://dx.doi.org/10.3389/fphar.2018.01134] [PMID: 30356768]
[http://dx.doi.org/10.1016/j.ygeno.2018.12.007] [PMID: 30550813]
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107536] [PMID: 34271420]
[http://dx.doi.org/10.1016/j.jbi.2019.103159] [PMID: 30926470]
[http://dx.doi.org/10.2174/18755402OTkzFMzcsTcVY] [PMID: 31267864]
[http://dx.doi.org/10.1186/s12859-016-1005-x] [PMID: 27071755]
[http://dx.doi.org/10.1517/17460440903322234] [PMID: 23480435]
[http://dx.doi.org/10.1371/journal.pcbi.1000387] [PMID: 19436720]
[http://dx.doi.org/10.1016/j.drudis.2011.12.019] [PMID: 22222943]
[http://dx.doi.org/10.3390/pharmaceutics13071026]
[http://dx.doi.org/10.1002/jat.4331] [PMID: 35429013]
[http://dx.doi.org/10.1186/s13321-022-00602-x] [PMID: 35428354]
[http://dx.doi.org/10.1186/s12859-022-04720-z]
[http://dx.doi.org/10.1016/j.compbiomed.2018.12.017] [PMID: 30771879]
[http://dx.doi.org/10.1142/S0219720018400140]
[http://dx.doi.org/10.1001/jamaoncol.2021.6987] [PMID: 34967848]
[http://dx.doi.org/10.1371/journal.pone.0254596] [PMID: 34320000]
[http://dx.doi.org/10.1007/s11095-018-2562-7] [PMID: 30617559]
[http://dx.doi.org/10.1080/10428194.2016.1263842] [PMID: 28140719]
[http://dx.doi.org/10.3390/molecules21070853]
[http://dx.doi.org/10.3389/fphar.2019.01586] [PMID: 32082146]
[http://dx.doi.org/10.1002/minf.201900178] [PMID: 32162831]
[http://dx.doi.org/10.3390/pharmaceutics13122001] [PMID: 34959282]
[http://dx.doi.org/10.1038/s41586-021-03891-8] [PMID: 34497420]
[http://dx.doi.org/10.1038/s41586-019-1291-3] [PMID: 31158845]
[http://dx.doi.org/10.1016/j.cell.2020.05.001] [PMID: 32526207]
[http://dx.doi.org/10.1021/acs.jcim.8b00851] [PMID: 30586295]
[http://dx.doi.org/10.1016/j.dmpk.2021.100401] [PMID: 34089983]