Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

The Gut Microbiome and Alzheimer’s Disease: A Growing Relationship

Author(s): Maroun Bou Zerdan, Elsa Hebbo, Ali Hijazi, Maria El Gemayel, Janane Nasr, Dayana Nasr, Marita Yaghi, Youssef Bouferraa and Arun Nagarajan*

Volume 19, Issue 12, 2022

Published on: 06 January, 2023

Page: [808 - 818] Pages: 11

DOI: 10.2174/1567205020666221227090125

Price: $65

Abstract

Evidence that the gut microbiota plays a key role in the pathogenesis of Alzheimer’s disease is already unravelling. The microbiota-gut-brain axis is a bidirectional communication system that is not fully understood but includes neural, immune, endocrine, and metabolic pathways. The progression of Alzheimer’s disease is supported by mechanisms related to the imbalance in the gut microbiota and the development of amyloid plaques in the brain, which are at the origin of Alzheimer's disease. Alterations in the composition of the gut microbiome led to dysregulation in the pathways governing this system. This leads to neurodegeneration through neuroinflammation and neurotransmitter dysregulation. Neurodegeneration and disruption of the blood-brain barrier are frontiers at the origin of Alzheimer’s disease. Furthermore, bacteria populating the gut microbiota can secrete large amounts of amyloid proteins and lipopolysaccharides, which modulate signaling pathways and alter the production of proinflammatory cytokines associated with the pathogenesis of Alzheimer's disease. Importantly, through molecular mimicry, bacterial amyloids may elicit cross-seeding of misfolding and induce microglial priming at different levels of the brain-gut-microbiota axis. The potential mechanisms of amyloid spreading include neuron-to-neuron or distal neuron spreading, direct blood-brain barrier crossing, or via other cells such as astrocytes, fibroblasts, microglia, and immune system cells. Gut microbiota metabolites, including short-chain fatty acids, pro-inflammatory factors, and neurotransmitters may also affect AD pathogenesis and associated cognitive decline. The purpose of this review is to summarize and discuss the current findings that may elucidate the role of gut microbiota in the development of Alzheimer's disease. Understanding the underlying mechanisms may provide new insights into novel therapeutic strategies for Alzheimer's disease, such as probiotics and targeted oligosaccharides.

[1]
Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement 2013; 9(2): 208-45.
[2]
Prince M, Ali GC, Guerchet M, Prina AM, Albanese E, Wu YT. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 2016; 8(1): 23.
[http://dx.doi.org/10.1186/s13195-016-0188-8] [PMID: 27473681]
[3]
Makin S. The amyloid hypothesis on trial. Nature 2018; 559(7715): S4-7.
[http://dx.doi.org/10.1038/d41586-018-05719-4] [PMID: 30046080]
[4]
Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 2017; 46(1): 77-89.
[http://dx.doi.org/10.1016/j.gtc.2016.09.007] [PMID: 28164854]
[5]
Chok KC, Ng KY, Koh RY, Chye SM. Role of the gut microbiome in Alzheimer’s disease. Rev Neurosci 2021; 32(7): 767-89.
[http://dx.doi.org/10.1515/revneuro-2020-0122] [PMID: 33725748]
[6]
Hung CC, Chang CC, Huang CW, Nouchi R, Cheng CH. Gut microbiota in patients with Alzheimer’s disease spectrum: a systematic review and meta-analysis. Aging (Albany NY) 2022; 14(1): 477-96.
[http://dx.doi.org/10.18632/aging.203826] [PMID: 35027502]
[7]
Mathis SP, Bodduluri SR, Haribabu B. Interrelationship between the 5-lipoxygenase pathway and microbial dysbiosis in the progression of Alzheimer’s disease. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866(9): 158982.
[http://dx.doi.org/10.1016/j.bbalip.2021.158982] [PMID: 34062254]
[8]
Sheng C, Lin L, Lin H, Wang X, Han Y, Liu SL. Altered gut microbiota in adults with subjective cognitive decline: The SILCODE study. J Alzheimers Dis 2021; 82(2): 513-26.
[http://dx.doi.org/10.3233/JAD-210259] [PMID: 34024839]
[9]
Geva-Zatorsky N, Sefik E, Kua L, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 2017; 168(5): 928-943.e11.
[http://dx.doi.org/10.1016/j.cell.2017.01.022] [PMID: 28215708]
[10]
Schluter J, Peled JU, Taylor BP, et al. The gut microbiota is associated with immune cell dynamics in humans. Nature 2020; 588(7837): 303-7.
[http://dx.doi.org/10.1038/s41586-020-2971-8] [PMID: 33239790]
[11]
van Olst L, Roks SJM, Kamermans A, et al. Contribution of gut microbiota to immunological changes in Alzheimer’s disease. Front Immunol 2021; 12: 683068.
[http://dx.doi.org/10.3389/fimmu.2021.683068] [PMID: 34135909]
[12]
Lin C, Zhao S, Zhu Y, et al. Microbiota-gut-brain axis and toll-like receptors in Alzheimer’s disease. Comput Struct Biotechnol J 2019; 17: 1309-17.
[http://dx.doi.org/10.1016/j.csbj.2019.09.008] [PMID: 31921396]
[13]
Chen H, Meng L, Shen L. Multiple roles of short-chain fatty acids in Alzheimer disease. Nutrition 2022; 93: 111499.
[http://dx.doi.org/10.1016/j.nut.2021.111499] [PMID: 34735921]
[14]
Wu ML, Yang XQ, Xue L, Duan W, Du JR. Age-related cognitive decline is associated with microbiota-gut-brain axis disorders and neuroinflammation in mice. Behav Brain Res 2021; 402: 113125.
[http://dx.doi.org/10.1016/j.bbr.2021.113125] [PMID: 33422597]
[15]
Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein Cell 2017; 8(2): 90-102.
[http://dx.doi.org/10.1007/s13238-016-0338-6] [PMID: 27866330]
[16]
Ticinesi A, Tana C, Nouvenne A, Prati B, Lauretani F, Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clin Interv Aging 2018; 13: 1497-511.
[http://dx.doi.org/10.2147/CIA.S139163] [PMID: 30214170]
[17]
Jellinger KA. Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 2010; 14(3): 457-87.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01010.x] [PMID: 20070435]
[18]
Dogra N, Mani RJ, Katare DP. The gut-brain axis: Two ways signaling in Parkinson’s disease. Cell Mol Neurobiol 2022; 42(2): 315-32.
[http://dx.doi.org/10.1007/s10571-021-01066-7] [PMID: 33649989]
[19]
Friedland RP. Chapman MRJPp. The role of microbial amyloid in neurodegeneration 2017; 13(12): e1006654.
[20]
Nishimori JH, Newman TN, Oppong GO, et al. Microbial amyloids induce interleukin 17A (IL-17A) and IL-22 responses via Toll-like receptor 2 activation in the intestinal mucosa. 2012; 80(12): 4398-408.
[21]
Hill JM, Lukiw WJJF. Microbial-generated amyloids and Alzheimer’s disease (AD). Front Aging Neurosci 2015; 7: 9.
[22]
Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 2015; 45(2): 349-62.
[23]
Chen SG, Stribinskis V, Rane MJ, et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans 2016; 6(1): 1-10.
[http://dx.doi.org/10.1038/srep34477]
[24]
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019]
[25]
Guo L, Xu J, Du Y, et al. Effects of gut microbiota and probiotics on Alzheimer’s disease. Transl Neurosci 2021; 12(1): 573-80.
[http://dx.doi.org/10.1515/tnsci-2020-0203]
[26]
Pistollato F, Sumalla CS, Elio I, Masias VM, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 2016; 74(10): 624-34.
[http://dx.doi.org/10.1093/nutrit/nuw023] [PMID: 27634977]
[27]
Honig LS, Vellas B, Woodward M, et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 2018; 378(4): 321-30.
[http://dx.doi.org/10.1056/NEJMoa1705971]
[28]
Sweeney MD, Montagne A, Sagare AP, et al. Vascular dysfunction-the disregarded partner of Alzheimer’s disease. Alzheimers Dement 2019; 15(1): 158-67.
[29]
Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 2017; 21(4): 455-66.
[http://dx.doi.org/10.1016/j.chom.2017.03.002]
[30]
Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014; 6(263): 263ra158.
[http://dx.doi.org/10.1126/scitranslmed.3009759]
[31]
Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut reactions: Breaking down xenobiotic-microbiome interactions. Pharmacol Rev 2019; 71(2): 198-224.
[http://dx.doi.org/10.1124/pr.118.015768] [PMID: 30890566]
[32]
McCarville JL, Chen GY, Cuevas VD, Troha K, Ayres JS. Microbiota metabolites in health and disease. Annu Rev Immunol 2020; 38(1): 147-70.
[http://dx.doi.org/10.1146/annurev-immunol-071219-125715] [PMID: 32340573]
[33]
Rutsch A, Kantsjö JB, Ronchi F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 2020; 11: 604179.
[http://dx.doi.org/10.3389/fimmu.2020.604179] [PMID: 33362788]
[34]
Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: What happens in vagus…. Neuron 2019; 101(6): 998-1002.
[http://dx.doi.org/10.1016/j.neuron.2019.02.008] [PMID: 30897366]
[35]
Sun J, Xu J, Yang B, et al. Effect of Clostridium butyricum against microglia‐mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Mol Nutr Food Res 2020; 64(2): 1900636.
[http://dx.doi.org/10.1002/mnfr.201900636]
[36]
Silver R, Curley JP. Mast cells on the mind: new insights and opportunities. Trends Neurosci 2013; 36(9): 513-21.
[http://dx.doi.org/10.1016/j.tins.2013.06.001] [PMID: 23845731]
[37]
Zhang M, Zhao D, Zhou G, Li C. Dietary pattern, gut microbiota, and Alzheimer’s disease. J Agric Food Chem 2020; 68(46): 12800-9.
[http://dx.doi.org/10.1021/acs.jafc.9b08309] [PMID: 32090565]
[38]
Manyevitch R, Protas M, Scarpiello S, et al. Evaluation of metabolic and synaptic dysfunction hypotheses of Alzheimer’s disease (AD): A meta-analysis of CSF markers. Curr Alzheimer Res 2018; 15(2): 164-81.
[http://dx.doi.org/10.2174/1567205014666170921122458] [PMID: 28933272]
[39]
Wu L, Han Y, Zheng Z, et al. Altered gut microbial metabolites in amnestic mild cognitive impairment and Alzheimer’s disease: Signals in host-microbe interplay. Nutrients 2021; 13(1): 228.
[http://dx.doi.org/10.3390/nu13010228] [PMID: 33466861]
[40]
Whiley L, Chappell KE, D’Hondt E, et al. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease. Alzheimers Res Ther 2021; 13(1): 20.
[http://dx.doi.org/10.1186/s13195-020-00741-z] [PMID: 33422142]
[41]
Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and mechanisms of gut microbiota in patients with Alzheimer’s disease. Front Aging Neurosci 2021; 13: 650047.
[http://dx.doi.org/10.3389/fnagi.2021.650047]
[42]
Desler C, Lillenes MS, Tønjum T. The role of mitochondrial dysfunction in the progression of Alzheimer’s disease. Curr Med Chem 2018; 25(40): 5578-87.
[43]
Du F, Yu Q, Yan S, et al. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 2017; 140(12): 3233-51.
[44]
Wang X, Wang W, Li L, Perry G, Lee H-g. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 2014; 1842(8): 1240-7.
[45]
Franco-Obregón A, Gilbert JAJM. The microbiome-mitochondrion connection: common ancestries, common mechanisms, common goals. mSystems 2017; 2(3): e00018-17.
[http://dx.doi.org/10.1128/mSystems.00018-17]
[46]
Nagu P, Parashar A, Behl T, Mehta V. Gut microbiota composition and epigenetic molecular changes connected to the pathogenesis of Alzheimer’s disease. J Mol Neurosci 2021; 71(7): 1436-55.
[http://dx.doi.org/10.1007/s12031-021-01829-3] [PMID: 33829390]
[47]
Morsy A, Trippier PC. Current and emerging pharmacological targets for the treatment of Alzheimer’s disease. J Alzheimers Dis 2019; 72(s1): S145-76.
[http://dx.doi.org/10.3233/JAD-190744] [PMID: 31594236]
[48]
Murray ER, Kemp M, Nguyen TT. The microbiota-gut-brain axis in Alzheimer’s disease: A review of taxonomic alterations and potential avenues for interventions. Arch Clin Neuropsychol 2022; 37(3): 595-607.
[http://dx.doi.org/10.1093/arclin/acac008] [PMID: 35202456]
[49]
Aaldijk E, Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer’s disease: A narrative review. Ageing Res Rev 2022; 75: 101556.
[http://dx.doi.org/10.1016/j.arr.2021.101556] [PMID: 34990844]
[50]
Chang CH, Lin CH, Lane HY. d-glutamate and gut microbiota in Alzheimer’s disease. Int J Mol Sci 2020; 21(8): 2676.
[http://dx.doi.org/10.3390/ijms21082676] [PMID: 32290475]
[51]
Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines 2022; 10(2): 436.
[http://dx.doi.org/10.3390/biomedicines10020436] [PMID: 35203645]
[52]
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res 2018; 1693(Pt B): 128-33.
[http://dx.doi.org/10.1016/j.brainres.2018.03.015]
[53]
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161(2): 264-76.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[54]
Frost G, Sleeth ML, Sahuri-Arisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014; 5(1): 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[55]
Kaelberer MM, Buchanan KL, Klein ME, et al. A gut-brain neural circuit for nutrient sensory transduction. Science 2018; 361(6408): eaat5236.
[http://dx.doi.org/10.1126/science.aat5236] [PMID: 30237325]
[56]
Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 2021; 13(6): 2099.
[http://dx.doi.org/10.3390/nu13062099] [PMID: 34205336]
[57]
Zhou H, Zhao J, Liu C, Zhang Z, Zhang Y, Meng D. Xanthoceraside exerts anti-Alzheimer’s disease effect by remodeling gut microbiota and modulating microbial-derived metabolites level in rats. Phytomedicine 2022; 98: 153937.
[http://dx.doi.org/10.1016/j.phymed.2022.153937] [PMID: 35104764]
[58]
Zhao T, Zhong S, Xu J, et al. PAYCS alleviates scopolamine-induced memory deficits in mice by reducing oxidative and inflammatory stress and modulation of gut microbiota-fecal metabolites-brain neurotransmitter axis. J Agric Food Chem 2022; 70(9): 2864-75.
[http://dx.doi.org/10.1021/acs.jafc.1c06726] [PMID: 35174709]
[59]
Wang M, Amakye WK, Guo L, et al. Walnut‐derived peptide PW5 ameliorates cognitive impairments and alters gut microbiota in APP/PS1 transgenic mice. Mol Nutr Food Res 2019; 63(18): 1900326.
[http://dx.doi.org/10.1002/mnfr.201900326] [PMID: 31237989]
[60]
Song X, Zhao Z, Zhao Y, et al. Lactobacillus plantarum DP189 prevents cognitive dysfunction in D-galactose/AlCl3 induced mouse model of Alzheimer’s disease via modulating gut microbiota and PI3K/Akt/GSK-3beta signaling pathway. Nutr Neurosci 2021; 25(12): 1-13.
[PMID: 34755592]
[61]
Corpuz H, Ichikawa S, Arimura M, et al. Long-term diet supplementation with Lactobacillus paracasei K71 prevents age-related cognitive decline in senescence-accelerated mouse prone 8. Nutrients 2018; 10(6): 762.
[http://dx.doi.org/10.3390/nu10060762] [PMID: 29899283]
[62]
El Sayed NS, Kandil EA, Ghoneum MH. Probiotics fermentation technology, a novel kefir product, ameliorates cognitive impairment in streptozotocin-induced sporadic Alzheimer’s disease in mice. Oxid Med Cell Longev 2021; 2021: 5525306.
[http://dx.doi.org/10.1155/2021/5525306] [PMID: 34306309]
[63]
Chen D, Yang X, Yang J, et al. Prebiotic effect of fructooligosaccharides from morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci 2017; 9: 403.
[http://dx.doi.org/10.3389/fnagi.2017.00403] [PMID: 29276488]
[64]
Guo Y, Zhu X, Zeng M, et al. A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota. Transl Psychiatry 2021; 11(1): 328.
[http://dx.doi.org/10.1038/s41398-021-01443-2] [PMID: 34045460]
[65]
Pan JX, Deng FL, Zeng BH, et al. Absence of gut microbiota during early life affects anxiolytic Behaviors and monoamine neurotransmitters system in the hippocampal of mice. J Neurol Sci 2019; 400: 160-8.
[http://dx.doi.org/10.1016/j.jns.2019.03.027] [PMID: 30954660]
[66]
Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative diseases - Is metabolic deficiency the root cause? Front Neurosci 2020; 14: 213.
[http://dx.doi.org/10.3389/fnins.2020.00213] [PMID: 32296300]
[67]
Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 2012; 73(6): 1216-27.
[http://dx.doi.org/10.1016/j.neuron.2012.03.004] [PMID: 22445348]
[68]
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[69]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[70]
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 2017; 17(12): 94.
[http://dx.doi.org/10.1007/s11910-017-0802-6] [PMID: 29039142]
[71]
Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 2017; 595(2): 489-503.
[http://dx.doi.org/10.1113/JP273106] [PMID: 27641441]
[72]
Shoemark DK, Allen SJ. The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer’s disease. J Alzheimers Dis 2014; 43(3): 725-38.
[http://dx.doi.org/10.3233/JAD-141170] [PMID: 25125469]
[73]
Minter MR, Hinterleitner R, Meisel M, et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Sci Rep 2017; 7(1): 10411.
[http://dx.doi.org/10.1038/s41598-017-11047-w] [PMID: 28874832]
[74]
Harach T, Marungruang N, Duthilleul N, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7(1): 41802.
[http://dx.doi.org/10.1038/srep41802] [PMID: 28176819]
[75]
Carlino D, De Vanna M, Tongiorgi E. Is altered BDNF biosynthesis a general feature in patients with cognitive dysfunctions? Neuroscientist 2013; 19(4): 345-53.
[http://dx.doi.org/10.1177/1073858412469444] [PMID: 23242909]
[76]
Goyal D, Ali SA, Singh RK. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106: 110112.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110112] [PMID: 32949638]
[77]
Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci 2021; 264: 118627.
[http://dx.doi.org/10.1016/j.lfs.2020.118627] [PMID: 33169684]
[78]
Mekhaeil M, Dev KK, Conroy MJ. Existing Evidence for the Repurposing of PARP-1 Inhibitors in Rare Demyelinating Diseases. Cancers (Basel) 2022; 14(3): 687.
[http://dx.doi.org/10.3390/cancers14030687]
[79]
Wang K, Maayah M, Sweasy JB, Alnajjar KS. The role of cysteines in the structure and function of OGG1. J Biol Chem 2021; 296: 100093.
[http://dx.doi.org/10.1074/jbc.RA120.016126] [PMID: 33203705]
[80]
Pao PC, Patnaik D, Watson LA, et al. HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer’s disease. Nat Commun 2020; 11(1): 2484.
[http://dx.doi.org/10.1038/s41467-020-16361-y] [PMID: 32424276]
[81]
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 2020; 19(10): 711-36.
[http://dx.doi.org/10.1038/s41573-020-0076-6] [PMID: 32884152]
[82]
Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegene-rative diseases. Neurobiol Dis 2020; 134: 104621.
[http://dx.doi.org/10.1016/j.nbd.2019.104621] [PMID: 31628992]
[83]
Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262-7.
[http://dx.doi.org/10.1126/science.1223813] [PMID: 22674330]
[84]
Sherwin E, Rea K, Dinan TG, Cryan JF. A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol 2016; 32(2): 96-102.
[http://dx.doi.org/10.1097/MOG.0000000000000244] [PMID: 26760398]
[85]
Fröhlich EE, Farzi A, Mayerhofer R, et al. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav Immun 2016; 56: 140-55.
[http://dx.doi.org/10.1016/j.bbi.2016.02.020] [PMID: 26923630]
[86]
Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141(2): 599-609.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052]
[87]
Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011; 108(7): 3047-52.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[88]
Acharya NK, Levin EC, Clifford PM, et al. Diabetes and hypercholesterolemia increase blood-brain barrier permeability and brain amyloid deposition: beneficial effects of the LpPLA2 inhibitor darapladib. J Alzheimers Dis 2013; 35(1): 179-98.
[http://dx.doi.org/10.3233/JAD-122254] [PMID: 23388174]
[89]
Fiorentino M, Sapone A, Senger S, et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism 2016; 7(1): 49.
[http://dx.doi.org/10.1186/s13229-016-0110-z] [PMID: 27957319]
[90]
Holmqvist S, Chutna O, Bousset L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 2014; 128(6): 805-20.
[http://dx.doi.org/10.1007/s00401-014-1343-6] [PMID: 25296989]
[91]
Lee SW, Kim WJ, Choi YK, et al. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 2003; 9(7): 900-6.
[http://dx.doi.org/10.1038/nm889] [PMID: 12808449]
[92]
Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol 2017; 17(12): 761-73.
[http://dx.doi.org/10.1038/nri.2017.100] [PMID: 28869253]
[93]
Balan Y, Gaur A, Sakthivadivel V, Kamble B, Sundaramurthy R. Is the gut microbiota a neglected aspect of gut and brain disorders? Cureus 2021; 13(11): e19740.
[http://dx.doi.org/10.7759/cureus.19740] [PMID: 34938619]
[94]
Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 2017; 56(2): 775-88.
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[95]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[96]
Cuervo-Zanatta D, Perez-Grijalva B, González-Magaña E, et al. Modulation of the microbiota-gut-brain axis by bioactive food, prebiotics, and probiotics decelerates the course of Alzheimer’s disease. Stud Nat Prod Chem 2021; 70: 51-86.
[http://dx.doi.org/10.1016/B978-0-12-819489-8.00019-3]
[97]
Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol 2015; 209(4): 493-506.
[http://dx.doi.org/10.1083/jcb.201412147] [PMID: 26008742]
[98]
Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 2018; 6(2): 133-48.
[http://dx.doi.org/10.1016/j.jcmgh.2018.04.003] [PMID: 30023410]
[99]
Li H, Sun J, Du J, et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil 2018; 30(5): e13260.
[http://dx.doi.org/10.1111/nmo.13260] [PMID: 29193450]
[100]
Li H, Sun J, Wang F, et al. Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice. Brain Res 2016; 1642: 70-8.
[http://dx.doi.org/10.1016/j.brainres.2016.03.031] [PMID: 27017959]
[101]
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278(13): 11312-9.
[http://dx.doi.org/10.1074/jbc.M211609200] [PMID: 12496283]
[102]
Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019; 10: 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[103]
Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278(28): 25481-9.
[http://dx.doi.org/10.1074/jbc.M301403200] [PMID: 12711604]
[104]
Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 2018; 18(1): 83-90.
[http://dx.doi.org/10.1080/14737175.2018.1400909] [PMID: 29095058]
[105]
Seo D-O, Holtzman DM. Gut microbiota: from the forgotten organ to a potential key player in the pathology of Alzheimer’s disease. J Gerontol 2020; 75(7): 1232-41.
[http://dx.doi.org/10.1093/gerona/glz262]
[106]
Eimer WA, Kumar DKV, Shanmugam NKN, et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 2018; 99(1): 56-63.
[107]
Wu Y, Du S, Johnson JL, et al. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat Commun 2019; 10(1): 58.
[http://dx.doi.org/10.1038/s41467-018-07991-4] [PMID: 30610193]
[108]
Deng X, Li M, Ai W, et al. Lipolysaccharide-induced neuroinflammation is associated with Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration in rats. Adv Alzheimer Dis 2014; 3(2): 78-93.
[http://dx.doi.org/10.4236/aad.2014.32009] [PMID: 25360394]
[109]
Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 2016; 87(22): 2324-32.
[http://dx.doi.org/10.1212/WNL.0000000000003391] [PMID: 27784770]
[110]
Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 2019; 29(10): 787-803.
[http://dx.doi.org/10.1038/s41422-019-0216-x] [PMID: 31488882]
[111]
Kim MS, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 2020; 69(2): 283-94.
[http://dx.doi.org/10.1136/gutjnl-2018-317431] [PMID: 31471351]
[112]
Bonfili L, Cecarini V, Berardi S, et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 2017; 7(1): 2426.
[http://dx.doi.org/10.1038/s41598-017-02587-2] [PMID: 28546539]
[113]
Gardener SL, Sohrabi HR, Shen K-k, et al. Cerebral glucose metabolism is associated with verbal but not visual memory performance in community-dwelling older adults. J Alzheimers Dis 2016; 52(2): 661-72.
[http://dx.doi.org/10.3233/JAD-151084]
[114]
Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014; 71(4): 505-8.
[115]
Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RFJN. Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuroreport 2004; 15(6): 955-9.
[http://dx.doi.org/10.1097/00001756-200404290-00005]
[116]
Bonfili L, Cecarini V, Gogoi O, et al. Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Aging 2020; 87: 35-43.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.11.004] [PMID: 31813629]
[117]
Yang X, Yu D, Xue L, Li H, Du J. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B 2020; 10(3): 475-87.
[http://dx.doi.org/10.1016/j.apsb.2019.07.001] [PMID: 32140393]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy