Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Recent Advances on Natural and Non-Natural Xanthones as Potential Anticancer Agents: A Review

Author(s): Urvashee Gogoi*, Kalyani Pathak, Riya Saikia, Manash Pratim Pathak, Tirna Paul, Shah Alam Khan and Aparoop Das

Volume 19, Issue 8, 2023

Published on: 07 February, 2023

Page: [757 - 784] Pages: 28

DOI: 10.2174/1573406419666221226093311

Price: $65

Abstract

Background: Xanthones, natural or synthetic, due to their wide range of biological activities, have become an interesting subject of investigation for many researchers. Xanthonic scaffold has proven to have a vital role in anticancer drug development since many of its derivatives have shown anticancer activities on various cell lines. In addition, targeting epigenetic markers in cancer has yielded promising results. There have also been reports on the impact of xanthone and related polyphenolic compounds on epigenetics markers in cancer prevention and therapy.

Objective: The objective of this review is to comprehensively highlight the main natural and nonnatural sources of xanthones having potential anti-cancer effects along with their key structural elements, structure-activity relationships (SARs), mechanisms of action, and epigenetic profile of xanthone- based anti-cancer compounds. The challenges and future directions of xanthone-based therapies are also discussed briefly.

Method: The methods involved in the preparation of the present review included the collection of all recent information up to November 2021 from various scientific databases, indexed periodicals, and search engines such as Medline Scopus, Google Scholar, PubMed, PubMed Central, Web of Science, and Science Direct.

Results: Exploration of the diversity of the xanthone scaffold led to the identification of several derivatives having prominent anti-cancer activity. Their unique structural diversity and synthetic modifications showed the ongoing endeavour of enriching the chemical diversity of the xanthone molecular framework to discover pharmacologically interesting compounds. However, studies regarding their modes of action, pharmacokinetic properties, clinical data, epigenetics, and safety are limited.

Conclusion: Elucidation of the exact biological mechanisms and the associated targets of xanthones will yield better opportunities for these compounds to be developed as potential anticancer drugs. Further clinical studies with conclusive results are required to implement xanthones as treatment modalities in cancer.

Graphical Abstract

[1]
Wender, P.A.; Quiroz, R.V.; Stevens, M.C. Function through synthesis-informed design. Acc. Chem. Res., 2015, 48(3), 752-760.
[http://dx.doi.org/10.1021/acs.accounts.5b00004] [PMID: 25742599]
[2]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[3]
Kinghorn, A.D.; Pan, L.; Fletcher, J.N.; Chai, H. The relevance of higher plants in lead compound discovery programs. J. Nat. Prod., 2011, 74(6), 1539-1555.
[http://dx.doi.org/10.1021/np200391c] [PMID: 21650152]
[4]
Na, Y. Recent cancer drug development with xanthone structures. J. Pharm. Pharmacol., 2010, 61(6), 707-712.
[http://dx.doi.org/10.1211/jpp.61.06.0002] [PMID: 19505360]
[5]
Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E. Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr. Mol. Med., 2011, 11(8), 666-677.
[http://dx.doi.org/10.2174/156652411797536679] [PMID: 21902651]
[6]
Pinto, M.M.M.; Sousa, M.E.; Nascimento, M.S.J. Xanthone derivatives: New insights in biological activities. Curr. Med. Chem., 2005, 12(21), 2517-2538.
[http://dx.doi.org/10.2174/092986705774370691] [PMID: 16250875]
[7]
Menezes, J.C.J.M.D.S.; Orlikova, B.; Morceau, F.; Diederich, M. Natural and synthetic flavonoids: structure–activity relationship and chemotherapeutic potential for the treatment of leukemia. Crit. Rev. Food Sci. Nutr., 2016, 56(Suppl. 1), S4-S28.
[http://dx.doi.org/10.1080/10408398.2015.1074532] [PMID: 26463658]
[8]
Klein-Júnior, L.C.; Corrêa, R.; Vander Heyden, Y.; Cechinel Filho, V. All that glitters is not gold: Panning cytotoxic natural products and derivatives with a fused tricyclic backbone by the estimation of their leadlikeness for cancer treatment. Eur. J. Med. Chem., 2019, 166, 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.028] [PMID: 30684866]
[9]
Vieira, L.M.M.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem., 2005, 12(21), 2413-2446.
[http://dx.doi.org/10.2174/092986705774370682] [PMID: 16250871]
[10]
Zhao, Y.; Liu, J.P.; Lu, D.; Li, P.Y.; Zhang, L.X. A new antioxidant xanthone from the pericarp of Garcinia mangostana Linn. Nat. Prod. Res., 2010, 24(17), 1664-1670.
[http://dx.doi.org/10.1080/14786419.2010.499539] [PMID: 20954095]
[11]
Mahendran, G.; Manoj, M.; Prasad, K.R.; Bai, V.N. Evaluation of anti-inflammatory and anti-noceceptive activity of xanthones from Swertia corymbosa (Griseb.) Wight ex CB Clarke. Int. J. Pharm. Pharm. Sci., 2013, 5(3), 523-529.
[12]
Wang, A.; Liu, Q.; Ye, Y.; Wang, Y.; Lin, L. Identification of hepatoprotective xanthones from the pericarps of Garcinia mangostana, guided with tert-butyl hydroperoxide induced oxidative injury in HL-7702 cells. Food Funct., 2015, 6(9), 3013-3021.
[http://dx.doi.org/10.1039/C5FO00573F] [PMID: 26189454]
[13]
Wan, L.S.; Min, Q.X.; Wang, Y.L.; Yue, Y.D.; Chen, J.C. Xanthone glycoside constituents of Swertia kouitchensis with α-glucosidase inhibitory activity. J. Nat. Prod., 2013, 76(7), 1248-1253.
[http://dx.doi.org/10.1021/np400082g] [PMID: 23805995]
[14]
Malik, A.; Ardalani, H.; Anam, S.; McNair, L.M.; Kromphardt, K.J.K.; Frandsen, R.J.N.; Franzyk, H.; Staerk, D.; Kongstad, K.T. Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia, 2020, 142104522
[http://dx.doi.org/10.1016/j.fitote.2020.104522] [PMID: 32088281]
[15]
Zhang, H.; Tan, Y.P.; Zhao, L.; Wang, L.; Fu, N.J.; Zheng, S.P.; Shen, X.F. Anticancer activity of dietary xanthone α-mangostin against hepatocellular carcinoma by inhibition of STAT3 signaling via stabilization of SHP1. Cell Death Dis., 2020, 11(1), 1-7.
[http://dx.doi.org/10.1038/s41419-019-2182-0] [PMID: 31911576]
[16]
Chen, J.J.; Long, Z.J.; Xu, D.F.; Xiao, R.Z.; Liu, L.L.; Xu, Z.F.; Qiu, S.X.; Lin, D.J.; Liu, Q. Inhibition of autophagy augments the anticancer activity of α-mangostin in chronic myeloid leukemia cells. Leuk. Lymphoma, 2014, 55(3), 628-638.
[http://dx.doi.org/10.3109/10428194.2013.802312] [PMID: 23734655]
[17]
Ovalle-Magallanes, B.; Eugenio-Pérez, D.; Pedraza-Chaverri, J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem. Toxicol., 2017, 109(Pt 1), 102-122.
[http://dx.doi.org/10.1016/j.fct.2017.08.021] [PMID: 28842267]
[18]
Zhang, X.; Li, X.; Sun, H.; Wang, X.; Zhao, L.; Gao, Y.; Liu, X.; Zhang, S.; Wang, Y.; Yang, Y.; Zeng, S.; Guo, Q.; You, Q. Garcinia xanthones as orally active antitumor agents. J. Med. Chem., 2013, 56(1), 276-292.
[http://dx.doi.org/10.1021/jm301593r] [PMID: 23167526]
[19]
Barbosa, J.; Lima, R.; Sousa, D.; Gomes, A.; Palmeira, A.; Seca, H.; Choosang, K.; Pakkong, P.; Bousbaa, H.; Pinto, M.; Sousa, E.; Vasconcelos, M.; Pedro, M. Screening a small library of xanthones for antitumor activity and identification of a hit compound which induces apoptosis. Molecules, 2016, 21(1), 81.
[http://dx.doi.org/10.3390/molecules21010081] [PMID: 26771595]
[20]
Tangpong, J.; Miriyala, S.; Noel, T.; Sinthupibulyakit, C.; Jungsuwadee, P.; St Clair, D.K. Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience, 2011, 175, 292-299.
[http://dx.doi.org/10.1016/j.neuroscience.2010.11.007] [PMID: 21074598]
[21]
Esteves, C.I.; Santos, C.M.; Brito, C.M.; Silva, A.M.; Cavaleiro, J.A. Synthesis of Novel 1-Aryl-9H-xanthen-9-ones. Synlett, 2011, 10, 1403-1406.
[22]
Odrowaz-Sypniewski, M.R.; Tsoungas, P.G.; Varvounis, G.; Cordopatis, P. Xanthone in synthesis: A reactivity profile via directed lithiation of its dimethyl ketal. Tetrahedron Lett., 2009, 50(44), 5981-5983.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.050]
[23]
Gales, L.; Damas, A.M. Xanthones-a structural perspective. Curr. Med. Chem., 2005, 12(21), 2499-2515.
[http://dx.doi.org/10.2174/092986705774370727] [PMID: 16250874]
[24]
Wu, J.; Dai, J.; Zhang, Y.; Wang, J.; Huang, L.; Ding, H.; Li, T.; Zhang, Y.; Mao, J.; Yu, S. Synthesis of novel xanthone analogues and their growth inhibitory activity against human lung cancer A549 cells. Drug Des. Devel. Ther., 2019, 13, 4239-4246.
[http://dx.doi.org/10.2147/DDDT.S217827] [PMID: 31853172]
[25]
Daei Farshchi Adli, A.; Jahanban-Esfahlan, R.; Seidi, K.; Samandari-Rad, S.; Zarghami, N. An overview on Vadimezan (DMXAA): The vascular disrupting agent. Chem. Biol. Drug Des., 2018, 91(5), 996-1006.
[http://dx.doi.org/10.1111/cbdd.13166] [PMID: 29288534]
[26]
El-Seedi, H.; El-Barbary, M.; El-Ghorab, D.; Bohlin, L.; Borg-Karlson, A.K.; Göransson, U.; Verpoorte, R. Recent insights into the biosynthesis and biological activities of natural xanthones. Curr. Med. Chem., 2010, 17(9), 854-901.
[http://dx.doi.org/10.2174/092986710790712147] [PMID: 20156171]
[27]
Salman, Z; Yu-Qing, J; Bin, L; Cai-Yun, P; Iqbal, CM; Atta-ur, R; Wei, W Antioxidant nature adds further therapeutic value: an updated review on natural xanthones and their glycosides. Digital Chinese Med., 2019, 2(3), 166-192.
[http://dx.doi.org/10.1016/j.dcmed.2019.12.005]
[28]
Roberts, J.C. Naturally occurring xanthones. Chem. Rev., 1961, 61(6), 591-605.
[http://dx.doi.org/10.1021/cr60214a003]
[29]
El-Seedi, H.; El-Ghorab, D.; El-Barbary, M.; Zayed, M.; Göransson, U.; Larsson, S.; Verpoorte, R. Naturally occurring xanthones; latest investigations: isolation, structure elucidation and chemosystematic significance. Curr. Med. Chem., 2009, 16(20), 2581-2626.
[http://dx.doi.org/10.2174/092986709788682056] [PMID: 19601799]
[30]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[31]
Kupchan, S.M.; Streelman, D.R.; Sneden, A.T. Psorospermin, a new antileukemic xanthone from Psorospermum febrifugum. J. Nat. Prod., 1980, 43(2), 296-301.
[http://dx.doi.org/10.1021/np50008a010] [PMID: 7189773]
[32]
Lu, G.B.; Yang, X.X.; Huang, Q.S. Isolation and structure of neo-gambogic acid from Gamboge (Garcinia hanburryi). Yao Xue Xue Bao, 1984, 19(8), 636-639.
[PMID: 6549529]
[33]
Lin, L.J.; Lin, L.Z.; Pezzuto, J.M.; Cordell, G.A.; Ruangrungsi, N. Isogambogic acid and isomorellinol fromGarcinia hanburyi. Magn. Reson. Chem., 1993, 31(4), 340-347.
[http://dx.doi.org/10.1002/mrc.1260310406]
[34]
Asano, J.; Chiba, K.; Tada, M.; Yoshii, T. Cytotoxic xanthones from Garcinia hanburyi. Phytochemistry, 1996, 41(3), 815-820.
[http://dx.doi.org/10.1016/0031-9422(95)00682-6] [PMID: 8835458]
[35]
Wu, J.; Xu, Y.J.; Cheng, X.F.; Harrison, L.J.; Sim, K.Y.; Goh, S.H. A highly rearranged tetraprenylxanthonoid from Garcinia gaudichaudii (Guttiferae). Tetrahedron Lett., 2001, 42(4), 727-729.
[http://dx.doi.org/10.1016/S0040-4039(00)01955-9]
[36]
Reutrakul, V.; Anantachoke, N.; Pohmakotr, M.; Jaipetch, T.; Sophasan, S.; Yoosook, C.; Kasisit, J.; Napaswat, C.; Santisuk, T.; Tuchinda, P. Cytotoxic and anti-HIV-1 caged xanthones from the resin and fruits of Garcinia hanburyi. Planta Med., 2007, 73(1), 33-40.
[http://dx.doi.org/10.1055/s-2006-951748] [PMID: 17117343]
[37]
Han, Q.B.; Wang, Y.L.; Yang, L.; Tso, T.F.; Qiao, C.F.; Song, J.Z.; Xu, L.J.; Chen, S.L.; Yang, D.J.; Xu, H.X. Cytotoxic polyprenylated xanthones from the resin of Garcinia hanburyi. Chem. Pharm. Bull., 2006, 54(2), 265-267.
[http://dx.doi.org/10.1248/cpb.54.265] [PMID: 16462081]
[38]
Han, Q.; Yang, L.; Liu, Y.; Wang, Y.; Qiao, C.; Song, J.; Xu, L.; Yang, D.; Chen, S.; Xu, H. Gambogic acid and epigambogic acid, C-2 epimers with novel anticancer effects from Garcinia hanburyi. Planta Med., 2006, 72(3), 281-284.
[http://dx.doi.org/10.1055/s-2005-916193] [PMID: 16534739]
[39]
Han, Q.B.; Yang, L.; Wang, Y.L.; Qiao, C.F.; Song, J.Z.; Sun, H.D.; Xu, H.X. A pair of novel cytotoxic polyprenylated xanthone epimers from gamboges. Chem. Biodivers., 2006, 3(1), 101-105.
[http://dx.doi.org/10.1002/cbdv.200690000] [PMID: 17193222]
[40]
Song, J.Z.; Yip, Y.K.; Han, Q.B.; Qiao, C.F.; Xu, H.X. Rapid determination of polyprenylated xanthones in gamboge resin of Garcinia hanburyi by HPLC. J. Sep. Sci., 2007, 30(3), 304-309.
[http://dx.doi.org/10.1002/jssc.200600294] [PMID: 17396587]
[41]
Feng, F.E.N.G.; Liu, W.E.N-Y.U.A.N.; Chen, Y.O.U-S.H.E.N.G.; Guo, Q.I.N.G-L.O.N.G.; You, Q.I.D.O.N.G. Five novel prenylated xanthones from Resina Garciniae. J. Asian Nat. Prod. Res., 2007, 9(8), 735-741.
[http://dx.doi.org/10.1080/10286020701189146] [PMID: 17994391]
[42]
Tao, S.J.; Guan, S.H.; Wang, W.; Lu, Z.Q.; Chen, G.T.; Sha, N.; Yue, Q.X.; Liu, X.; Guo, D.A. Cytotoxic polyprenylated xanthones from the resin of Garcinia hanburyi. J. Nat. Prod., 2009, 72(1), 117-124.
[http://dx.doi.org/10.1021/np800460b] [PMID: 19072548]
[43]
Deng, Y.X.; Pan, S.L.; Zhao, S.Y.; Wu, M.Q.; Sun, Z.Q.; Chen, X.H.; Shao, Z.Y. Cytotoxic alkoxylated xanthones from the resin of Garcinia hanburyi. Fitoterapia, 2012, 83(8), 1548-1552.
[http://dx.doi.org/10.1016/j.fitote.2012.08.023] [PMID: 22981505]
[44]
Deng, Y.X.; Guo, T.; Shao, Z.Y.; Xie, H.; Pan, S.L. Three new xanthones from the resin of Garcinia hanburyi. Planta Med., 2013, 79(9), 792-796.
[http://dx.doi.org/10.1055/s-0032-1328537] [PMID: 23670620]
[45]
Dong, B.; Zheng, Y.F.; Wen, H.M.; Wang, X.Z.; Xiong, H.W.; Wu, H.; Li, W. Two new xanthone epimers from the processed gamboge. Nat. Prod. Res., 2017, 31(7), 817-821.
[http://dx.doi.org/10.1080/14786419.2016.1247079] [PMID: 27809607]
[46]
Chen, Y.; He, S.; Tang, C.; Li, J.; Yang, G. Caged polyprenylated xanthones from the resin of Garcinia hanburyi. Fitoterapia, 2016, 109, 106-112.
[http://dx.doi.org/10.1016/j.fitote.2015.12.002] [PMID: 26688377]
[47]
Leão, M.; Gomes, S.; Pedraza-Chaverri, J.; Machado, N.; Sousa, E.; Pinto, M.; Inga, A.; Pereira, C.; Saraiva, L. Α-mangostin and gambogic acid as potential inhibitors of the p53-MDM2 interaction revealed by a yeast approach. J. Nat. Prod., 2013, 76(4), 774-778.
[http://dx.doi.org/10.1021/np400049j] [PMID: 23540934]
[48]
Han, Q.B.; Cheung, S.; Tai, J.; Qiao, C.F.; Song, J.Z.; Xu, H.X. Stability and cytotoxicity of gambogic acid and its derivative, gambogoic acid. Biol. Pharm. Bull., 2005, 28(12), 2335-2337.
[http://dx.doi.org/10.1248/bpb.28.2335] [PMID: 16327177]
[49]
Akao, Y.; Nakagawa, Y.; Nozawa, Y.; Nozawa, Y. Anti-cancer effects of xanthones from pericarps of mangosteen. Int. J. Mol. Sci., 2008, 9(3), 355-370.
[http://dx.doi.org/10.3390/ijms9030355] [PMID: 19325754]
[50]
Chu, Y.F.; Sun, J.I.; Wu, X.; Liu, R.H. Antioxidant and anti-proliferative activities of common fruits. J. Agric. Food Chem., 2002, 50(25), 749-754.
[51]
Suksamrarn, S.; Komutiban, O.; Ratananukul, P.; Chimnoi, N.; Lartpornmatulee, N.; Suksamrarn, A. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem. Pharm. Bull., 2006, 54(3), 301-305.
[http://dx.doi.org/10.1248/cpb.54.301] [PMID: 16508181]
[52]
Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol., 2008, 46(10), 3227-3239.
[http://dx.doi.org/10.1016/j.fct.2008.07.024] [PMID: 18725264]
[53]
Failla, M.L.; Gutiérrez-Orozco, F. Mangosteen xanthones: bioavailability and bioactivities. Fruit and vegetable phytochemicals: chemistry and human health, 2nd ed; John Wiley & Sons Ltd, 2017.
[54]
Hung, S.H.; Shen, K.H.; Wu, C.H.; Liu, C.L.; Shih, Y.W. Alpha-mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway. J. Agric. Food Chem., 2009, 57(4), 1291-1298.
[http://dx.doi.org/10.1021/jf8032683] [PMID: 19178296]
[55]
Cao, S.G.; Sng, V.H.L.; Wu, X.H.; Sim, K.Y.; Tan, B.H.K.; Pereira, J.T.; Goh, S.H. Novel cytotoxic polyprenylated xanthonoids from Garcinia gaudichaudii (Guttiferae). Tetrahedron, 1998, 54(36), 10915-10924.
[http://dx.doi.org/10.1016/S0040-4020(98)00644-9]
[56]
Xu, Y.J.; Yip, S.C.; Kosela, S.; Fitri, E.; Hana, M.; Goh, S.H.; Sim, K.Y. Novel cytotoxic, polyprenylated heptacyclic xanthonoids from Indonesian Garcinia gaudichaudii (Guttiferae). Org. Lett., 2000, 2(24), 3945-3948.
[http://dx.doi.org/10.1021/ol006730t] [PMID: 11101460]
[57]
Krick, A.; Kehraus, S.; Gerhäuser, C.; Klimo, K.; Nieger, M.; Maier, A.; Fiebig, H.H.; Atodiresei, I.; Raabe, G.; Fleischhauer, J.; König, G.M. Potential cancer chemopreventive in vitro activities of monomeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J. Nat. Prod., 2007, 70(3), 353-360.
[http://dx.doi.org/10.1021/np060505o] [PMID: 17291041]
[58]
Shao, C.; Wang, C.; Wei, M.; Gu, Y.; Xia, X.; She, Z.; Lin, Y. Structure elucidation of two new xanthone derivatives from the marine fungus Penicillium sp. (ZZF 32#) from the South China Sea. Magn. Reson. Chem., 2008, 46(11), 1066-1069.
[http://dx.doi.org/10.1002/mrc.2293] [PMID: 18759333]
[59]
Peres, V.; Nagem, T.J. Trioxygenated naturally occurring xanthones. Phytochemistry, 1997, 44(2), 191-214.
[http://dx.doi.org/10.1016/S0031-9422(96)00421-9]
[60]
Saraiva, L.; Fresco, P.; Pinto, E.; Sousa, E.; Pinto, M.; Gonçalves, J. Synthesis and in vivo modulatory activity of protein kinase C of xanthone derivatives. Bioorg. Med. Chem., 2002, 10(10), 3219-3227.
[http://dx.doi.org/10.1016/S0968-0896(02)00169-4] [PMID: 12150867]
[61]
Sousa, E.P.; Silva, A.M.S.; Pinto, M.M.M.; Pedro, M.M.; Cerqueira, F.A.M.; Nascimento, M.S.J. Isomeric kielcorins and dihydroxyxanthones: Synthesis, structure elucidation, and inhibitory activities of growth of human cancer cell lines and on the proliferation of human lymphocytes in-vitro. Helv. Chim. Acta, 2002, 85(9), 2862-2876.
[http://dx.doi.org/10.1002/1522-2675(200209)85:9<2862:AID-HLCA2862>3.0.CO;2-R]
[62]
Pinto, M.; Sousa, E. Natural and synthetic xanthonolignoids: Chemistry and biological activities. Curr. Med. Chem., 2003, 10(1), 1-12.
[http://dx.doi.org/10.2174/0929867033368574] [PMID: 12570717]
[63]
Saraiva, L.; Fresco, P.; Pinto, E.; Sousa, E.; Pinto, M.; Gonçalves, J. Inhibition of α, βI, δ, η and ζ Protein Kinase C Isoforms by Xanthonolignoids. J. Enzyme Inhib. Med. Chem., 2003, 18(4), 357-370.
[http://dx.doi.org/10.1080/147563601000118400] [PMID: 14567551]
[64]
Fernandas, E.R.; Carvalho, F.D.; Remião, F.G.; Bastos, M.L.; Pinto, M.M.; Gottlieb, O.R. Hepatoprotective activity of xanthones and xanthonolignoids against tert-butylhydroperoxide-induced toxicity in isolated rat hepatocytes--comparison with silybin. Pharm. Res., 1995, 12(11), 1756-1760.
[http://dx.doi.org/10.1023/A:1016230125496] [PMID: 8592682]
[65]
Li, C.J.; Yang, J.Z.; Yu, S.S.; Zhao, C.Y.; Peng, Y.; Wang, X.L.; Zhang, D.M.; Glomexanthones, A-C. Glomexanthones A–C, three xanthonolignoid C-glycosides from Polygala glomerata Lour. Fitoterapia, 2014, 93, 175-181.
[http://dx.doi.org/10.1016/j.fitote.2013.12.009] [PMID: 24369310]
[66]
Schwaebe, M.K.; Moran, T.J.; Whitten, J.P. Total synthesis of psorospermin. Tetrahedron Lett., 2005, 46(5), 827-829.
[http://dx.doi.org/10.1016/j.tetlet.2004.12.006]
[67]
Heald, R.A.; Dexheimer, T.S.; Vankayalapati, H.; Siddiqui-Jain, A.; Szabo, L.Z.; Gleason-Guzman, M.C.; Hurley, L.H. Conformationally restricted analogues of psorospermin: design, synthesis, and bioactivity of natural-product-related bisfuranoxanthones. J. Med. Chem., 2005, 48(8), 2993-3004.
[http://dx.doi.org/10.1021/jm049299c] [PMID: 15828838]
[68]
Fellows, I.M.; Schwaebe, M.; Dexheimer, T.S.; Vankayalapati, H.; Gleason-Guzman, M.; Whitten, J.P.; Hurley, L.H. Determination of the importance of the stereochemistry of psorospermin in topoisomerase II–induced alkylation of DNA and in vitro and in vivo biological activity. Mol. Cancer Ther., 2005, 4(11), 1729-1739.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0183] [PMID: 16275994]
[69]
Ayensu, E.S. Medicinal plants of west Africa; Reference Publications Inc: Algonac, MI, 1978.
[70]
Dexheimer, T.S.; Pommier, Y. DNA cleavage assay for the identification of topoisomerase I inhibitors. Nat. Protoc., 2008, 3(11), 1736-1750.
[http://dx.doi.org/10.1038/nprot.2008.174] [PMID: 18927559]
[71]
Wang, T.C.; Zhao, Y.L.; Liou, S.S. Synthesis and cytotoxic Evaluation of Potential Bis‐intercalators: Tetramethylenebis(oxy)‐and Hexamethylenebis(oxy)‐Linked Assemblies Consisting of flavone, xanthone, anthraquinone, and dibenzofuran. Helv. Chim. Acta, 2002, 85(5), 1382-1389.
[http://dx.doi.org/10.1002/1522-2675(200205)85:5<1382:AID-HLCA1382>3.0.CO;2-Y]
[72]
Woo, S.; Jung, J.; Lee, C.; Kwon, Y.; Na, Y. Synthesis of new xanthone analogues and their biological activity test—Cytotoxicity, topoisomerase II inhibition, and DNA cross-linking study. Bioorg. Med. Chem. Lett., 2007, 17(5), 1163-1166.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.030] [PMID: 17194586]
[73]
Wezeman, T.; Bräse, S.; Masters, K.S. Xanthone dimers: a compound family which is both common and privileged. Nat. Prod. Rep., 2015, 32(1), 6-28.
[http://dx.doi.org/10.1039/C4NP00050A] [PMID: 25226564]
[74]
Rezanka, T.; Sigler, K. Hirtusneanoside, an unsymmetrical dimeric tetrahydroxanthone from the lichen Usnea hirta. J. Nat. Prod., 2007, 70(9), 1487-1491.
[http://dx.doi.org/10.1021/np070079m] [PMID: 17822296]
[75]
Kozlowski, M.C.; Morgan, B.J.; Linton, E.C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem. Soc. Rev., 2009, 38(11), 3193-3207.
[http://dx.doi.org/10.1039/b821092f] [PMID: 19847351]
[76]
Hongxi, X.U.; Zhang, H.; Yuanzhi, L.A.; Wang, X.; Chen, K.; Yang, D.; Chen, S.; Chengyuan, L.I.; Zhaoxiang, B.I.; Aiping, L.U.; Chan, A.S. inventors. Anti-cervical cancer compound and method of use thereof. United States of America Patent US., 2016, 9(339), 488.
[77]
Winter, D.K.; Sloman, D.L.; Porco, J.A. Jr Polycyclic xanthone natural products: structure, biological activity and chemical synthesis. Nat. Prod. Rep., 2013, 30(3), 382-391.
[http://dx.doi.org/10.1039/c3np20122h] [PMID: 23334431]
[78]
Kumagai, K.; Hosotani, N.; Kikuchi, K.; Kimura, T.; Saji, I. Xanthofulvin, a novel semaphorin inhibitor produced by a strain of Penicillium. J. Antibiot. (Tokyo), 2003, 56(7), 610-616.
[http://dx.doi.org/10.7164/antibiotics.56.610] [PMID: 14513903]
[79]
Řezanka, T.; Řezanka, P.; Sigler, K. A biaryl xanthone derivative having axial chirality from Penicillium vinaceum. J. Nat. Prod., 2008, 71(5), 820-823.
[http://dx.doi.org/10.1021/np800020p] [PMID: 18355033]
[80]
Zheng, C.J.; Sohn, M.J.; Kim, W.G. Vinaxanthone, a new FabI inhibitor from Penicillium sp. J. Antimicrob. Chemother., 2009, 63(5), 949-953.
[http://dx.doi.org/10.1093/jac/dkp058] [PMID: 19282328]
[81]
Kikuchi, K.; Kishino, A.; Konishi, O.; Kumagai, K.; Hosotani, N.; Saji, I.; Nakayama, C.; Kimura, T. In vitro and in vivo characterization of a novel semaphorin 3A inhibitor, SM-216289 or xanthofulvin. J. Biol. Chem., 2003, 278(44), 42985-42991.
[http://dx.doi.org/10.1074/jbc.M302395200] [PMID: 12933805]
[82]
Chin, M.R.; Zlotkowski, K.; Han, M.; Patel, S.; Eliasen, A.M.; Axelrod, A.; Siegel, D. Expedited access to vinaxanthone and chemically edited derivatives possessing neuronal regenerative effects through ynone coupling reactions. ACS Chem. Neurosci., 2015, 6(4), 542-550.
[http://dx.doi.org/10.1021/cn500237z] [PMID: 25615693]
[83]
Takamatsu, H.; Okuno, T.; Kumanogoh, A. Regulation of immune cell responses by semaphorins and their receptors. Cell. Mol. Immunol., 2010, 7(2), 83-88.
[http://dx.doi.org/10.1038/cmi.2009.111] [PMID: 20118971]
[84]
Kaneko, S.; Iwanami, A.; Nakamura, M.; Kishino, A.; Kikuchi, K.; Shibata, S.; Okano, H.J.; Ikegami, T.; Moriya, A.; Konishi, O.; Nakayama, C.; Kumagai, K.; Kimura, T.; Sato, Y.; Goshima, Y.; Taniguchi, M.; Ito, M.; He, Z.; Toyama, Y.; Okano, H. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat. Med., 2006, 12(12), 1380-1389.
[http://dx.doi.org/10.1038/nm1505] [PMID: 17099709]
[85]
Mori, M.; Jeelani, G.; Masuda, Y.; Sakai, K.; Tsukui, K.; Waluyo, D.; Tarwadi, W.; Watanabe, Y.; Nonaka, K.; Matsumoto, A.; Ōmura, S.; Nozaki, T.; Shiomi, K. Identification of natural inhibitors of Entamoeba histolytica cysteine synthase from microbial secondary metabolites. Front. Microbiol., 2015, 6, 962.
[http://dx.doi.org/10.3389/fmicb.2015.00962] [PMID: 26441896]
[86]
Negi, J.S.; Bisht, V.K.; Singh, P.; Rawat, M.S.M.; Joshi, G.P. Naturally occurring xanthones: chemistry and biology. J. Appl. Chem. (Cairo), 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/621459]
[87]
Lin, L.L.; Huang, F.; Chen, S.B.; Yang, D.J.; Chen, S.L.; Yang, J.S.; Xiao, P.G. Xanthones from the roots of Polygala caudata and their antioxidation and vasodilatation activities in vitro. Planta Med., 2005, 71(4), 372-375.
[http://dx.doi.org/10.1055/s-2005-864108] [PMID: 15856419]
[88]
Yin, Z.Q.; Wang, Y.; Ye, W.C.; Zhao, S.X. Chemical constituents of Hypericum perforatum (St. John’s wort) growing in China. Biochem. Syst. Ecol., 2004, 32(5), 521-523.
[http://dx.doi.org/10.1016/j.bse.2003.10.010]
[89]
Naidu, M.; Kuan, C.Y.K.; Lo, W.L.; Raza, M.; Tolkovsky, A.; Mak, N.K.; Wong, R.N.S.; Keynes, R. Analysis of the action of euxanthone, a plant-derived compound that stimulates neurite outgrowth. Neuroscience, 2007, 148(4), 915-924.
[http://dx.doi.org/10.1016/j.neuroscience.2007.07.037] [PMID: 17825492]
[90]
Chen, Y.F.; Qi, H.Y.; Wu, F.L. Euxanthone exhibits anti-proliferative and anti-invasive activities in hepatocellular carcinoma by inducing pyroptosis: preliminary results. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(23), 8186-8196.
[http://dx.doi.org/10.26355/eurrev_201812_16511] [PMID: 30556857]
[91]
Kraus, G.; Mengwasser, J. Quinones as key intermediates in natural products Synthesis. Syntheses of bioactive xanthones from Hypericum perforatum. Molecules, 2009, 14(8), 2857-2861.
[http://dx.doi.org/10.3390/molecules14082857] [PMID: 19701129]
[92]
Otłowska, O.; Ślebioda, M.; Wachowiak, M.; Śliwka-Kaszyńska, M. Identification and characterization of the Indian Yellow dyestuff and its degradation products in historical oil paint tube by liquid chromatography mass spectrometry. RSC Advances, 2015, 5(60), 48786-48792.
[http://dx.doi.org/10.1039/C5RA06781B]
[93]
Fatel, G.F.; Trivedi, K.N. A convenient synthesis of naturally occurring Xanthones. Synth. Commun., 1989, 19(9-10), 1641-1647.
[http://dx.doi.org/10.1080/00397918908051061]
[94]
Pedro, M.; Cerqueira, F.; Sousa, M.E.; Nascimento, M.S.J.; Pinto, M. Xanthones as inhibitors of growth of human cancer cell lines and Their effects on the proliferation of human lymphocytes In Vitro. Bioorg. Med. Chem., 2002, 10(12), 3725-3730.
[http://dx.doi.org/10.1016/S0968-0896(02)00379-6] [PMID: 12413829]
[95]
Pinto, M.M.; Polónia, J. Synthesis of New Xanthones, I. Helv. Chim. Acta, 1974, 57(8), 2613-2617.
[http://dx.doi.org/10.1002/hlca.19740570838]
[96]
Yuan, H.; Jiang, C.; Zhao, J.; Zhao, Y.; Zhang, Y.; Xu, Y.; Gao, X.; Guo, L.; Liu, Y.; Liu, K.; Xu, B.; Sun, G. Euxanthone attenuates Aβ1–42-induced oxidative stress and apoptosis by triggering autophagy. J. Mol. Neurosci., 2018, 66(4), 512-523.
[http://dx.doi.org/10.1007/s12031-018-1175-2] [PMID: 30345461]
[97]
Teixeira, M.; Pedro, M.; Nascimento, M.S.J.; Pinto, M.M.M.; Barbosa, C.M. Development and characterization of PLGA nanoparticles containing 1,3-dihydroxy-2-methylxanthone with improved antitumor activity on a human breast cancer cell line. Pharm. Dev. Technol., 2019, 24(9), 1104-1114.
[http://dx.doi.org/10.1080/10837450.2019.1638398] [PMID: 31269841]
[98]
Fernandes, C.; Carraro, M.; Ribeiro, J.; Araújo, J.; Tiritan, M.; Pinto, M. Synthetic chiral derivatives of Xanthones: biological activities and enantioselectivity studies. Molecules, 2019, 24(4), 791.
[http://dx.doi.org/10.3390/molecules24040791] [PMID: 30813236]
[99]
Kwok, Y.; Hurley, L.H. Topoisomerase II site-directed alkylation of DNA by psorospermin and its effect on topoisomerase II-mediated DNA cleavage. J. Biol. Chem., 1998, 273(49), 33020-33026.
[http://dx.doi.org/10.1074/jbc.273.49.33020] [PMID: 9830055]
[100]
Mark Hansen, M.; Lee, S.J.; Cassady, J.M.; Hurley, L.H. Molecular details of the structure of a Psorospermin− DNA covalent/intercalation complex and associated DNA sequence selectivity. J. Am. Chem. Soc., 1996, 118(24), 5553-5561.
[http://dx.doi.org/10.1021/ja960319c]
[101]
Kim, M.Y.; Na, Y.; Vankayalapati, H.; Gleason-Guzman, M.; Hurley, L.H. Design, synthesis, and evaluation of psorospermin/quinobenzoxazine hybrids as structurally novel antitumor agents. J. Med. Chem., 2003, 46(14), 2958-2972.
[http://dx.doi.org/10.1021/jm030096i] [PMID: 12825936]
[102]
Isaka, M.; Jaturapat, A.; Rukseree, K.; Danwisetkanjana, K.; Tanticharoen, M.; Thebtaranonth, Y. Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J. Nat. Prod., 2001, 64(8), 1015-1018.
[http://dx.doi.org/10.1021/np010006h] [PMID: 11520217]
[103]
Boutefnouchet, S.; Gaboriaud-Kolar, N.; Minh, N.T.; Depauw, S.; David-Cordonnier, M.H.; Pfeiffer, B.; Léonce, S.; Pierré, A.; Tillequin, F.; Lallemand, M.C.; Michel, S. Synthesis, cytotoxic activity, and mechanism of action of Furo[2,3- c]acridin-6-one and Benzo[ b]furo[3,2- h]acridin-6-one analogues of psorospermin and acronycine. J. Med. Chem., 2008, 51(22), 7287-7297.
[http://dx.doi.org/10.1021/jm8009487] [PMID: 18947222]
[104]
Castanheiro, R.; Silva, A.; Campos, N.; Nascimento, M.; Pinto, M. Antitumor activity of some prenylated Xanthones. Pharmaceuticals, 2009, 2(2), 33-43.
[http://dx.doi.org/10.3390/ph2020033] [PMID: 27713221]
[105]
Palmeira, A.; Paiva, A.; Sousa, E.; Seca, H.; Almeida, G.M.; Lima, R.T.; Fernandes, M.X.; Pinto, M.; Vasconcelos, M.H. Insights into the in vitro antitumor mechanism of action of a new pyranoxanthone. Chem. Biol. Drug Des., 2010, 76(1), 43-58.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00978.x] [PMID: 20456373]
[106]
Zhang, X.; Li, X.; Ye, S.; Zhang, Y.; Tao, L.; Gao, Y.; Gong, D.; Xi, M.; Meng, H.; Zhang, M.; Gao, W.; Xu, X.; Guo, Q.; You, Q. Synthesis, SAR and biological evaluation of natural and non-natural hydroxylated and prenylated xanthones as antitumor agents. Med. Chem., 2012, 8(6), 1012-1025.
[http://dx.doi.org/10.2174/1573406411208061012] [PMID: 22779801]
[107]
Kolokythas, G.; Kostakis, I.K.; Pouli, N.; Marakos, P.; Kletsas, D.; Pratsinis, H. Synthesis and cytotoxic activity of some new azapyranoxanthenone aminoderivatives. Bioorg. Med. Chem., 2003, 11(21), 4591-4598.
[http://dx.doi.org/10.1016/S0968-0896(03)00503-0] [PMID: 14527556]
[108]
Kostakis, I.K.; Magiatis, P.; Pouli, N.; Marakos, P.; Skaltsounis, A.L.; Pratsinis, H.; Léonce, S.; Pierré, A. Design, synthesis, and antiproliferative activity of some new pyrazole-fused amino derivatives of the pyranoxanthenone, pyranothioxanthenone, and pyranoacridone ring systems: a new class of cytotoxic agents. J. Med. Chem., 2002, 45(12), 2599-2609.
[http://dx.doi.org/10.1021/jm011117g] [PMID: 12036369]
[109]
Fei, X.; Jo, M.; Lee, B.; Han, S.B.; Lee, K.; Jung, J.K.; Seo, S.Y.; Kwak, Y.S. Synthesis of xanthone derivatives based on α-mangostin and their biological evaluation for anti-cancer agents. Bioorg. Med. Chem. Lett., 2014, 24(9), 2062-2065.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.047] [PMID: 24717154]
[110]
Chi, X.Q.; Zi, C.T.; Li, H.M.; Yang, L.; Lv, Y.F.; Li, J.Y.; Hou, B.; Ren, F.C.; Hu, J.M.; Zhou, J. Design, synthesis and structure–activity relationships of mangostin analogs as cytotoxic agents. RSC Advances, 2018, 8(72), 41377-41388.
[http://dx.doi.org/10.1039/C8RA08409B] [PMID: 35559306]
[111]
Tran, V.A.; Thi Vo, T.T.; Nguyen, M.N.T.; Duy Dat, N.; Doan, V.D.; Nguyen, T.Q.; Vu, Q.H.; Le, V.T.; Tong, T.D. Novel α-mangostin derivatives from mangosteen (Garcinia mangostana L.) peel extract with antioxidant and anticancer potential. J. Chem., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/9985604]
[112]
Wang, X.; Lu, N.; Yang, Q.; Gong, D.; Lin, C.; Zhang, S.; Xi, M.; Gao, Y.; Wei, L.; Guo, Q.; You, Q. Studies on chemical modification and biology of a natural product, gambogic acid (III): Determination of the essential pharmacophore for biological activity. Eur. J. Med. Chem., 2011, 46(4), 1280-1290.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.051] [PMID: 21334116]
[113]
Zhang, H.Z.; Kasibhatla, S.; Wang, Y.; Herich, J.; Guastella, J.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg. Med. Chem., 2004, 12(2), 309-317.
[http://dx.doi.org/10.1016/j.bmc.2003.11.013] [PMID: 14723951]
[114]
Yen, C.T.; Nakagawa-Goto, K.; Hwang, T.L.; Morris-Natschke, S.L.; Bastow, K.F.; Wu, Y.C.; Lee, K.H. Design and synthesis of gambogic acid analogs as potent cytotoxic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2012, 22(12), 4018-4022.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.084] [PMID: 22595179]
[115]
Rönsberg, D.; Debbab, A.; Mándi, A.; Vasylyeva, V.; Böhler, P.; Stork, B.; Engelke, L.; Hamacher, A.; Sawadogo, R.; Diederich, M.; Wray, V.; Lin, W.; Kassack, M.U.; Janiak, C.; Scheu, S.; Wesselborg, S.; Kurtán, T.; Aly, A.H.; Proksch, P. Pro-apoptotic and immunostimulatory tetrahydroxanthone dimers from the endophytic fungus Phomopsis longicolla. J. Org. Chem., 2013, 78(24), 12409-12425.
[http://dx.doi.org/10.1021/jo402066b] [PMID: 24295452]
[116]
Ali, R.; Guan, Y.; Leveille, A.N.; Vaughn, E.; Parelkar, S.; Thompson, P.R.; Mattson, A.E. Synthesis and anticancer activity of structure simplified naturally inspired dimeric Chromenone derivatives. Eur. J. Org. Chem., 2019, 2019(41), 6917-6929.
[http://dx.doi.org/10.1002/ejoc.201901026] [PMID: 33828411]
[117]
Shagufta, A.I.; Ahmad, I. Recent insight into the biological activities of synthetic xanthone derivatives. Eur. J. Med. Chem., 2016, 116, 267-280.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.058] [PMID: 27111599]
[118]
Recanatini, M.; Bisi, A.; Cavalli, A.; Belluti, F.; Gobbi, S.; Rampa, A.; Valenti, P.; Palzer, M.; Palusczak, A.; Hartmann, R.W. A new class of nonsteroidal aromatase inhibitors: design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17 alpha-hydroxylase/C17,20-lyase. J. Med. Chem., 2001, 44(5), 672-680.
[http://dx.doi.org/10.1021/jm000955s] [PMID: 11262078]
[119]
Soares, J.X.; Loureiro, D.R.P.; Dias, A.L.; Reis, S.; Pinto, M.M.M.; Afonso, C.M.M. Bioactive marine Xanthones: a review. Mar. Drugs, 2022, 20(1), 58.
[http://dx.doi.org/10.3390/md20010058] [PMID: 35049913]
[120]
Fatmasari, N.; Kurniawan, Y.S.; Jumina, J.; Anwar, C.; Priastomo, Y.; Pranowo, H.D.; Zulkarnain, A.K.; Sholikhah, E.N. Synthesis and in vitro assay of hydroxyxanthones as antioxidant and anticancer agents. Sci. Rep., 2022, 12(1), 1535.
[http://dx.doi.org/10.1038/s41598-022-05573-5] [PMID: 35087149]
[121]
Lin, C.N.; Liou, S.J.; Lee, T.H.; Chuang, Y.C.; Won, S.J. Xanthone derivatives as potential anti-cancer drugs. J. Pharm. Pharmacol., 2011, 48(5), 539-544.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb05970.x] [PMID: 8799883]
[122]
Pinto, M.; Castanheiro, R. Synthesis of prenylated Xanthones: an overview. Curr. Org. Chem., 2009, 13(12), 1215-1240.
[http://dx.doi.org/10.2174/138527209788921747]
[123]
Epifano, F.; Genovese, S.; Menghini, L.; Curini, M. Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry, 2007, 68(7), 939-953.
[http://dx.doi.org/10.1016/j.phytochem.2007.01.019] [PMID: 17343885]
[124]
del Carmen Villegas-Aguilar, M.; Fernández-Ochoa, Á.; Leyva-Jiménez, FJ; Miranda-Segura, Á.; de la Luz Cádiz-Gurrea, M.; Segura-Carretero A Phenolic compounds. In: bioactive Food Components Activity in Mechanistic Approach 2022 January 1; Academic Press: Cambridge, Massachusetts, 2022; pp. 27-53.
[125]
Natural prenylated Xanthones: chemistry and biological activities. In: Natural products: chemistry, biochemistry and pharmacology; Narosa, G.B., Ed.; publishing house PVT: New Delhi, India, 2009.
[126]
Gonzalez, M.; Nascimento, M.; Cidade, H.; Pinto, M.; Kijjoa, A.; Anantachoke, C.; Silva, A.; Herz, W. Immunomodulatory activity of xanthones from Calophyllum teysmannii var. inuphylloide. Planta Med., 1999, 65(4), 368-371.
[http://dx.doi.org/10.1055/s-2006-960790] [PMID: 17260263]
[127]
Paiva, A.M.; Sousa, M.E.; Camões, A.; Nascimento, M.S.J.; Pinto, M.M.M. Prenylated xanthones: antiproliferative effects and enhancement of the growth inhibitory action of 4-hydroxytamoxifen in estrogen receptor-positive breast cancer cell line. Med. Chem. Res., 2012, 21(5), 552-558.
[http://dx.doi.org/10.1007/s00044-011-9562-z]
[128]
Carraro, M.L.; Marques, S.; Silva, A.S.; Freitas, B.; Silva, P.M.A.; Pedrosa, J.; De Marco, P.; Bousbaa, H.; Fernandes, C.; Tiritan, M.E.; Silva, A.M.S.; Pinto, M.M.M. Synthesis of new chiral derivatives of Xanthones with enantioselective effect on tumor cell growth and DNA crosslinking. ChemistrySelect, 2020, 5(33), 10285-10291.
[http://dx.doi.org/10.1002/slct.202002588]
[129]
Fernandes, C.; Masawang, K.; Tiritan, M.E.; Sousa, E.; de Lima, V.; Afonso, C.; Bousbaa, H.; Sudprasert, W.; Pedro, M.; Pinto, M.M. New chiral derivatives of xanthones: Synthesis and investigation of enantioselectivity as inhibitors of growth of human tumor cell lines. Bioorg. Med. Chem., 2014, 22(3), 1049-1062.
[http://dx.doi.org/10.1016/j.bmc.2013.12.042] [PMID: 24411197]
[130]
Fernandes, C.; Pinto, M.; Tiritan, M. Enantioresolution of chiral derivatives of Xanthones on different types of liquid chromatography stationary phases: A comparative study. Curr. Chromatogr., 2014, 1(2), 139-150.
[http://dx.doi.org/10.2174/2213240601666140415223045]
[131]
Phyo, Y.Z.; Teixeira, J.; Gonçalves, R.; Palmeira, A.; Tiritan, M.E.; Bousbaa, H.; Pinto, M.M.M.; Fernandes, C.; Kijjoa, A. Chiral derivatives of xanthones and benzophenones: Synthesis, enantioseparation, molecular docking, and tumor cell growth inhibition studies. Chirality, 2021, 33(4), 153-166.
[http://dx.doi.org/10.1002/chir.23297] [PMID: 33448056]
[132]
Palmeira, A.; Vasconcelos, M.H.; Paiva, A.; Fernandes, M.X.; Pinto, M.; Sousa, E. Dual inhibitors of P-glycoprotein and tumor cell growth: (Re)discovering thioxanthones. Biochem. Pharmacol., 2012, 83(1), 57-68.
[http://dx.doi.org/10.1016/j.bcp.2011.10.004] [PMID: 22044878]
[133]
Silva, R.; Palmeira, A.; Carmo, H.; Barbosa, D.J.; Gameiro, M.; Gomes, A.; Paiva, A.M.; Sousa, E.; Pinto, M.; Bastos, M.L.; Remião, F. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity. Arch. Toxicol., 2015, 89(10), 1783-1800.
[http://dx.doi.org/10.1007/s00204-014-1333-4] [PMID: 25234084]
[134]
Lopes, A.; Martins, E.; Silva, R.; Pinto, M.; Remião, F.; Sousa, E.; Fernandes, C. Chiral Thioxanthones as modulators of p-glycoprotein: Synthesis and enantioselectivity studies. Molecules, 2018, 23(3), 626.
[http://dx.doi.org/10.3390/molecules23030626] [PMID: 29534440]
[135]
Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Nat. Prod. Rep., 2022, 39(3), 560-595.
[http://dx.doi.org/10.1039/D1NP00041A] [PMID: 34623363]
[136]
Singh, S.; Gray, A.I.; Waterman, P.G. Mesuabixanthone-A and mesuabixanthone-B: Novel bis-xanthones from the stem bark of Mesua ferrea (Guttiferae). Nat. Prod. Lett., 1993, 3(1), 53-58.
[http://dx.doi.org/10.1080/10575639308043837]
[137]
Franceschin, M.; Nocioni, D.; Biroccio, A.; Micheli, E.; Cacchione, S.; Cingolani, C.; Venditti, A.; Zizza, P.; Bianco, A.; Altieri, A. Design and synthesis of a new dimeric xanthone derivative: Enhancement of G-quadruplex selectivity and telomere damage. Org. Biomol. Chem., 2014, 12(47), 9572-9582.
[http://dx.doi.org/10.1039/C4OB01658K] [PMID: 25363232]
[138]
Rewcastle, G.W.; Atwell, G.J.; Baguley, B.C.; Calveley, S.B.; Denny, W.A. Potential antitumor agents. 58. Synthesis and structure-activity relationships of substituted xanthenone-4-acetic acids active against the colon 38 tumor in vivo. J. Med. Chem., 1989, 32(4), 793-799.
[http://dx.doi.org/10.1021/jm00124a012] [PMID: 2704025]
[139]
Liu, J.; Zhang, J.; Wang, H.; Liu, Z.; Zhang, C.; Jiang, Z.; Chen, H. Synthesis of xanthone derivatives and studies on the inhibition against cancer cells growth and synergistic combinations of them. Eur. J. Med. Chem., 2017, 133, 50-61.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.068] [PMID: 28376372]
[140]
Roberts, Z.J.; Goutagny, N.; Perera, P.Y.; Kato, H.; Kumar, H.; Kawai, T.; Akira, S.; Savan, R.; van Echo, D.; Fitzgerald, K.A.; Young, H.A.; Ching, L.M.; Vogel, S.N. The chemotherapeutic agent DMXAA potently and specifically activates the TBK1–IRF-3 signaling axis. J. Exp. Med., 2007, 204(7), 1559-1569.
[http://dx.doi.org/10.1084/jem.20061845] [PMID: 17562815]
[141]
Ribeiro, J.; Veloso, C.; Fernandes, C.; Tiritan, M.E.; Pinto, M.M.M. Carboxyxanthones: bioactive agents and molecular scaffold for synthesis of analogues and derivatives. Molecules, 2019, 24(1), 180.
[http://dx.doi.org/10.3390/molecules24010180] [PMID: 30621303]
[142]
Kurniawan, Y.S.; Priyangga, K.T.A.; Jumina, P.; Pranowo, H.D.; Sholikhah, E.N.; Zulkarnain, A.K.; Fatimi, H.A.; Julianus, J. An update on the anticancer activity of xanthone derivatives: a review. Pharmaceuticals, 2021, 14(11), 1144.
[http://dx.doi.org/10.3390/ph14111144] [PMID: 34832926]
[143]
Rewcastle, G.W.; Atwell, G.J.; Zhuang, L.; Baguley, B.C.; Denny, W.A. Potential antitumor agents. 61. Structure-activity relationships for in vivo colon 38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. J. Med. Chem., 1991, 34(1), 217-222.
[http://dx.doi.org/10.1021/jm00105a034] [PMID: 1992120]
[144]
Liou, S.S.; Shieh, W.L.; Cheng, T.H.; Won, S.J.; Lin, C.N. Γ-pyrone compounds as potential anti-cancer drugs. J. Pharm. Pharmacol., 2011, 45(9), 791-794.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb05686.x] [PMID: 7903365]
[145]
Richomme, P. Coumarins, xanthones and related compounds. Molecules, 2016, 21(3), 341.
[http://dx.doi.org/10.3390/molecules21030341] [PMID: 26978337]
[146]
Jun, K.Y.; Lee, E.Y.; Jung, M.J.; Lee, O.H.; Lee, E.S.; Park Choo, H.Y.; Na, Y.; Kwon, Y. Synthesis, biological evaluation, and molecular docking study of 3-(3′-heteroatom substituted-2′-hydroxy-1′-propyloxy) xanthone analogues as novel topoisomerase IIα catalytic inhibitor. Eur. J. Med. Chem., 2011, 46(6), 1964-1971.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.011] [PMID: 21419530]
[147]
Chittepu, P.; Yang, J.; Benoit, A.; Salomon, C.E.; Ji, Y.; Ferguson, D.M. Synthesis and evaluation of acridone and xanthone epoxides with anti-MRSA and anti-MSSA activity. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.12.10.472175]
[148]
Liu, C.; Zhang, M.; Zhang, Z.; Zhang, S.B.; Yang, S.; Zhang, A.; Yin, L.; Swarts, S.; Vidyasagar, S.; Zhang, L.; Okunieff, P. Synthesis and anticancer potential of novel xanthone derivatives with 3,6-substituted chains. Bioorg. Med. Chem., 2016, 24(18), 4263-4271.
[http://dx.doi.org/10.1016/j.bmc.2016.07.020] [PMID: 27448774]
[149]
Yang, Z.M.; Huang, J.; Qin, J.K.; Dai, Z.K.; Lan, W.L.; Su, G.F.; Tang, H.; Yang, F. Design, synthesis and biological evaluation of novel 1-hydroxyl-3-aminoalkoxy xanthone derivatives as potent anticancer agents. Eur. J. Med. Chem., 2014, 85, 487-497.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.076] [PMID: 25113877]
[150]
Luo, L.; Qin, J.K.; Dai, Z.K.; Gao, S.H. Synthesis and biological evaluation of novel benzo[b]xanthone derivatives as potential antitumor agents. J. Serb. Chem. Soc., 2013, 78(9), 1301-1308.
[http://dx.doi.org/10.2298/JSC120925060L]
[151]
Cho, H.J.; Jung, M.J.; Woo, S.; Kim, J.; Lee, E.S.; Kwon, Y.; Na, Y. New benzoxanthone derivatives as topoisomerase inhibitors and DNA cross-linkers. Bioorg. Med. Chem., 2010, 18(3), 1010-1017.
[http://dx.doi.org/10.1016/j.bmc.2009.12.069] [PMID: 20093033]
[152]
Sousa, E.; Paiva, A.; Nazareth, N.; Gales, L.; Damas, A.M.; Nascimento, M.S.J.; Pinto, M. Bromoalkoxyxanthones as promising antitumor agents: Synthesis, crystal structure and effect on human tumor cell lines. Eur. J. Med. Chem., 2009, 44(9), 3830-3835.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.011] [PMID: 19428155]
[153]
Minniti, E.; Byl, J.A.W.; Riccardi, L.; Sissi, C.; Rosini, M.; De Vivo, M.; Minarini, A.; Osheroff, N. Novel xanthone-polyamine conjugates as catalytic inhibitors of human topoisomerase IIα. Bioorg. Med. Chem. Lett., 2017, 27(20), 4687-4693.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.011] [PMID: 28919339]
[154]
Banik, K.; Harsha, C.; Bordoloi, D.; Lalduhsaki Sailo, B.; Sethi, G.; Leong, H.C.; Arfuso, F.; Mishra, S.; Wang, L.; Kumar, A.P.; Kunnumakkara, A.B. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett., 2018, 416, 75-86.
[http://dx.doi.org/10.1016/j.canlet.2017.12.014] [PMID: 29246645]
[155]
Li, R.; Chen, Y.; Zeng, L.; Shu, W.; Zhao, F.; Wen, L.; Liu, Y. Gambogic acid induces G0/G1 arrest and apoptosis involving inhibition of SRC-3 and inactivation of Akt pathway in K562 leukemia cells. Toxicology, 2009, 262(2), 98-105.
[http://dx.doi.org/10.1016/j.tox.2009.04.059] [PMID: 19433130]
[156]
Chen, J.; Gu, H.Y.; Lu, N.; Yang, Y.; Liu, W.; Qi, Q.; Rong, J.J.; Wang, X.T.; You, Q.D.; Guo, Q.L. Microtubule depolymerization and phosphorylation of c-Jun N-terminal kinase-1 and p38 were involved in gambogic acid induced cell cycle arrest and apoptosis in human breast carcinoma MCF-7 cells. Life Sci., 2008, 83(3-4), 103-109.
[http://dx.doi.org/10.1016/j.lfs.2008.05.003] [PMID: 18586278]
[157]
Li, R.; Chen, Y.; Zhao, F.; Liu, Y.; Wen, L.; Zeng, L.L. Effects of gambogic acid on the regulation of steroid receptor coactivator-3 in A549 cells. Zhonghua Zhong Liu Za Zhi, 2009, 31(11), 810-814.
[http://dx.doi.org/10.1007/s11670-009-0068-x] [PMID: 20137343]
[158]
Schwartz, G.K.; Shah, M.A. Targeting the cell cycle: A new approach to cancer therapy. J. Clin. Oncol., 2005, 23(36), 9408-9421.
[http://dx.doi.org/10.1200/JCO.2005.01.5594] [PMID: 16361640]
[159]
Chen, C.T.; Chen, Y.T.; Hsieh, Y.H.; Weng, C.J.; Yeh, J.C.; Yang, S.F.; Lin, C.W.; Yang, J.S. Glabridin induces apoptosis and cell cycle arrest in oral cancer cells through the JNK1/2 signaling pathway. Environ. Toxicol., 2018, 33(6), 679-685.
[http://dx.doi.org/10.1002/tox.22555] [PMID: 29663662]
[160]
Basu, A. DNA Damage, mutagenesis and cancer. Int. J. Mol. Sci., 2018, 19(4), 970.
[http://dx.doi.org/10.3390/ijms19040970] [PMID: 29570697]
[161]
Saha, P.; Barua, A.; Choudhury, P.; Mandal, S.; Panda, C.K. Therapeutic potential of xanthones from Swertia chirata in breast cancer cells. Indian J. Med. Res., 2020, 152(3), 285-295.
[http://dx.doi.org/10.4103/ijmr.IJMR_1153_18] [PMID: 33107489]
[162]
Mittermair, E.; Schueffl, H.; Heffeter, P.; Krenn, L.; Marian, B. Destabilization of FoxM1 and inhibition of topoisomerase I contribute to cytotoxicity of prenylated Xanthones isolated from Metaxya rostrata. Planta Med., 2020, 86(15), 1073-1079.
[http://dx.doi.org/10.1055/a-1097-8722] [PMID: 32023632]
[163]
Lima, R.; Sousa, D.; Paiva, A.; Palmeira, A.; Barbosa, J.; Pedro, M.; Pinto, M.; Sousa, E.; Vasconcelos, M. Modulation of autophagy by a thioxanthone decreases the viability of melanoma cells. Molecules, 2016, 21(10), 1343.
[http://dx.doi.org/10.3390/molecules21101343] [PMID: 27735867]
[164]
Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[165]
Pérez-Hernández, M.; Arias, A.; Martínez-García, D.; Pérez-Tomás, R.; Quesada, R.; Soto-Cerrato, V. Targeting autophagy for cancer treatment and tumor chemosensitization. Cancers, 2019, 11(10), 1599.
[http://dx.doi.org/10.3390/cancers11101599] [PMID: 31635099]
[166]
Liu, Z.; Antalek, M.; Nguyen, L.; Li, X.; Tian, X.; Le, A.; Zi, X. The effect of gartanin, a naturally occurring xanthone in mangosteen juice, on the mTOR pathway, autophagy, apoptosis, and the growth of human urinary bladder cancer cell lines. Nutr. Cancer, 2013, 65(Suppl. 1), 68-77.
[http://dx.doi.org/10.1080/01635581.2013.785011] [PMID: 23682785]
[167]
Kim, M.; Chin, Y.W.; Lee, E.J. α, γ-Mangostins induce autophagy and show synergistic effect with gemcitabine in pancreatic cancer cell lines. Biomol. Ther. (Seoul), 2017, 25(6), 609-617.
[http://dx.doi.org/10.4062/biomolther.2017.074] [PMID: 28822990]
[168]
Yu, S.B.; Kang, H.M.; Park, D.B.; Park, B.S.; Kim, I.R. Cudraxanthone D regulates epithelial-mesenchymal transition by autophagy inhibition in oral squamous cell carcinoma cell lines. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/5213028] [PMID: 31781271]
[169]
Stefanska, B.; Karlic, H.; Varga, F.; Fabianowska-Majewska, K.; Haslberger, A.G. Epigenetic mechanisms in anti-cancer actions of bioactive food components-the implications in cancer prevention. Br. J. Pharmacol., 2012, 167(2), 279-297.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02002.x] [PMID: 22536923]
[170]
Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[171]
Ramassone, A.; Pagotto, S.; Veronese, A.; Visone, R. Epigenetics and microRNAs in cancer. Int. J. Mol. Sci., 2018, 19(2), 459.
[http://dx.doi.org/10.3390/ijms19020459] [PMID: 29401683]
[172]
Fang, Y.; Yang, C.; Yu, Z.; Li, X.; Mu, Q.; Liao, G.; Yu, B. Natural products as LSD1 inhibitors for cancer therapy. Acta Pharm. Sin. B, 2020.
[http://dx.doi.org/10.1016/j.apsb.2020.06.007] [PMID: 32837872]
[173]
Shakya, B.; Yadav, P.N. Thiosemicarbazones as potent anticancer agents and their modes of action. Mini Rev. Med. Chem., 2020, 20(8), 638-661.
[http://dx.doi.org/10.2174/1389557519666191029130310] [PMID: 31660812]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy