Abstract

Background: Cancer is one of the most important barriers to increasing life expectancy in all countries in the 21st century. Investigations of new anti-cancer drugs with low side effects are an urgent demand for medicinal chemists. Considering the known antitumor and immunomodulatory activity of thiazoles, this work presents the synthesis and antineoplastic activity of new thiazoles.

Methods: The 22 new compounds (2a-v) were synthesized from different thiosemicarbazones and 2-bromoacetophenone. The compounds were evaluated on: MOLT-4, HL-60, HL-60/MX1, MM1S, SKMEL-28, DU145, MCF-7, and T47d.

Results: Compound 2b induced cellular viability on MOLT-4 (37.1%), DU145 (41.5%), and HL- 60/MX1 (58.8%) cells. On MOLT-4 cells, compound 2b exhibited an IC50 of 8.03 μM, and against DU145 cells, an IC50 of 6.04μM. Besides, at IC50 and fold of IC50, 20% to 30% of dead cells were found, most due to necrosis/late apoptosis. Most compounds no showed cytotoxicity against fibroblast cells L929 at the concentrations tested. The compound did not alter the cell cycle of DU145 cells when compared to the negative control. Therefore, compound 2b stands out against DU145 and MOLT-4 cells.

Conclusion: Our study reinforced the importance of 1,3-thiazoles nuclei in antitumor activity. In addition, derivative 2b stands out against DU145 and MOLT-4 cells and could be a starting point for developing new antineoplastic agents.

Graphical Abstract

[1]
Bennett, J.E.; Stevens, G.A.; Mathers, C.D.; Bonita, R.; Rehm, J.; Kruk, M.E.; Riley, L.M.; Dain, K.; Kengne, A.P.; Chalkidou, K.; Beagley, J.; Kishore, S.P.; Chen, W.; Saxena, S.; Bettcher, D.W.; Grove, J.T.; Beaglehole, R.; Ezzati, M. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet, 2018, 392(10152), 1072-1088.
[http://dx.doi.org/10.1016/S0140-6736(18)31992-5] [PMID: 30264707]
[2]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[3]
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov., 2022, 12(1), 31-46.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[4]
Gupta, A.; Eisenhauer, E.A.; Booth, C.M. The time toxicity of cancer treatment. J. Clin. Oncol., 2022, 40(15), 1611-1615.
[http://dx.doi.org/10.1200/JCO.21.02810] [PMID: 35235366]
[5]
Ezzat, A.; Mohamed, M.B.I.; Mahmoud, A.M.; Farag, R.S.; El-Tabl, A.S.; Ragab, A. Synthesis, spectral characterization, antimicrobial evaluation and molecular docking studies of new Cu (II), Zn (II) thiosemicarbazone based on sulfonyl isatin. J. Mol. Struct., 2022, 1251, 132004.
[http://dx.doi.org/10.1016/j.molstruc.2021.132004]
[6]
Bakır, T.; Sayiner, H.S.; Kandemirli, F. Experimental and theoretical investigation of antioxidant activity and capacity of thiosemicarbazones based on isatin derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(8), 493-499.
[http://dx.doi.org/10.1080/10426507.2018.1452232]
[7]
Govender, H.; Mocktar, C.; Kumalo, H.M.; Koorbanally, N.A. Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(11), 1074-1081.
[http://dx.doi.org/10.1080/10426507.2019.1618298]
[8]
Bisceglie, F.; Bacci, C.; Vismarra, A.; Barilli, E.; Pioli, M.; Orsoni, N.; Pelosi, G. Antibacterial activity of metal complexes based on cinnamaldehyde thiosemicarbazone analogues. J. Inorg. Biochem., 2020, 203, 110888.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110888] [PMID: 31783215]
[9]
Larrazabal, C.; López-Osorio, S.; Velásquez, Z.D.; Hermosilla, C.; Taubert, A.; Silva, L.M.R. Thiosemicarbazone copper chelator BLT-1 blocks apicomplexan parasite replication by selective inhibition of scavenger receptor B type 1 (SR-BI). Microorganisms, 2021, 9(11), 2372.
[http://dx.doi.org/10.3390/microorganisms9112372] [PMID: 34835496]
[10]
Salsi, F.; Bulhões Portapilla, G.; Schutjajew, K.; Roca Jungfer, M.; Goulart, A.; Hagenbach, A.; de Albuquerque, S.; Abram, U. Organometallic gold(III) complexes with tridentate halogen substituted thiosemicarbazones: effects of halogenation on cytotoxicity and anti‐parasitic activity. Eur. J. Inorg. Chem., 2019, (41), 4455-4462.
[http://dx.doi.org/10.1002/ejic.201900904]
[11]
Lopes, C.D.; Gaspari, A.P.S.; Oliveira, R.J.; Abram, U.; Almeida, J.P.A.; Maia, P.S.; da Silva, J.S.; de Albuquerque, S.; Carneiro, Z.A. Organometallic gold(III) [Au(Hdamp)(L14)]Cl (L1 = SNS-donating thiosemicarbazone) complex protects mice against acute T. Cruzi infection. bioRxiv, 2018, 312702.
[12]
de Siqueira, L.R.P.; de Moraes Gomes, P.A.T.; de Lima Ferreira, L.P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem., 2019, 170, 237-260.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.024] [PMID: 30904782]
[13]
Tok, F.; Küçükal, B.; Baltaş, N.; Tatar Yılmaz, G.; Koçyiğit-Kaymakçıoğlu, B. Synthesis of novel thiosemicarbazone derivatives as antidiabetic agent with enzyme kinetic studies and antioxidant activity. Phosphorus, Sulfur Silicon Relat. Elem., 2022, 197(12), 1284-1294.
[http://dx.doi.org/10.1080/10426507.2022.2099857]
[14]
Zilka, O.; Poon, J.F.; Pratt, D.A. Radical-trapping antioxidant activity of copper and nickel bis(thiosemicarbazone) complexes underlies their potency as inhibitors of ferroptotic cell death. J. Am. Chem. Soc., 2021, 143(45), 19043-19057.
[http://dx.doi.org/10.1021/jacs.1c08254] [PMID: 34730342]
[15]
Ngoudjou, L.E.T.; Paboudam, A.G.; Yepseu, A.P.; Kuate, M.; Doungmo, G.; Ndifon, P.T.; Ndifon, P.T. Synthesis, characterization, and biological activity of Cu(II), Ni(II), and Zn(II) complexes of a tridentate heterocyclic Schiff base ligand derived from thiosemicarbazide and 2-benzoylpyridine. Eur. J. Chem., 2022, 13(3), 299-306.
[http://dx.doi.org/10.5155/eurjchem.13.3.299-306.2280]
[16]
Carcelli, M.; Tegoni, M.; Bartoli, J.; Marzano, C.; Pelosi, G.; Salvalaio, M.; Rogolino, D.; Gandin, V. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur. J. Med. Chem., 2020, 194, 112266.
[http://dx.doi.org/10.1016/j.ejmech.2020.112266] [PMID: 32248006]
[17]
Guler, S.; Kayali, H.A.; Sadan, E.O.; Sen, B.; Subasi, E. Half-sandwich arene ruthenium(II) thiosemicarbazone complexes: evaluation of anticancer effect on primary and metastatic ovarian cancer cell lines. Front. Pharmacol., 2022, 13, 882756.
[http://dx.doi.org/10.3389/fphar.2022.882756] [PMID: 35620291]
[18]
Sibuh, B.Z.; Gupta, P.K.; Taneja, P.; Khanna, S.; Sarkar, P.; Pachisia, S.; Khan, A.A.; Jha, N.K.; Dua, K.; Singh, S.K.; Pandey, S.; Slama, P.; Kesari, K.K.; Roychoudhury, S. Synthesis, in silico study, and anti-cancer activity of thiosemicarbazone derivatives. Biomedicines, 2021, 9, 1375.
[19]
Mrozek-Wilczkiewicz, A.; Malarz, K.; Rejmund, M.; Polanski, J.; Musiol, R. Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur. J. Med. Chem., 2019, 171, 180-194.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.027] [PMID: 30921758]
[20]
Sun, D.L.; Poddar, S.; Pan, R.D.; Rosser, E.W.; Abt, E.R.; Van Valkenburgh, J.; Le, T.M.; Lok, V.; Hernandez, S.P.; Song, J.; Li, J.; Turlik, A.; Chen, X.; Cheng, C.A.; Chen, W.; Mona, C.E.; Stuparu, A.D.; Vergnes, L.; Reue, K.; Damoiseaux, R.; Zink, J.I.; Czernin, J.; Donahue, T.R.; Houk, K.N.; Jung, M.E.; Radu, C.G. Isoquinoline thiosemicarbazone displays potent anticancer activity with in vivo efficacy against aggressive leukemias. RSC Med. Chem., 2020, 11(3), 392-410.
[http://dx.doi.org/10.1039/C9MD00594C] [PMID: 33479645]
[21]
Mirza, S.; Asma Naqvi, S.; Mohammed Khan, K.; Salar, U.; Choudhary, M.I. Facile synthesis of novel substituted aryl-thiazole (SAT) analogs via one-pot multi-component reaction as potent cytotoxic agents against cancer cell lines. Bioorg. Chem., 2017, 70, 133-143.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.003] [PMID: 28038777]
[22]
Evren, A.E.; Yurttas, L.; Ekselli, B.; Akalin-Ciftci, G. Synthesis and biological evaluation of 5-methyl-4-phenyl thiazole derivatives as anticancer agents. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(8), 820-828.
[http://dx.doi.org/10.1080/10426507.2018.1550642]
[23]
Meleddu, R.; Distinto, S.; Corona, A.; Maccioni, E.; Arridu, A.; Melis, C.; Bianco, G.; Matyus, P.; Cottiglia, F.; Sanna, A.; De Logu, A. Exploring the thiazole scaffold for the identification of new agents for the treatment of fluconazole resistant Candida. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1672-1677.
[http://dx.doi.org/10.3109/14756366.2015.1113171] [PMID: 26745285]
[24]
Rouf, A.; Tanyeli, C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 97, 911-927.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.058] [PMID: 25455640]
[25]
Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin–azole hybrids and their anticancer activities. Arch. Pharm. (Weinheim), 2020, 353(1), 1900272.
[http://dx.doi.org/10.1002/ardp.201900272] [PMID: 31691360]
[26]
de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[27]
dos Santos, T.A.R.; da Silva, A.C.; Silva, E.B.; Gomes, P.A.T.M.; Espíndola, J.W.P.; Cardoso, M.V.O.; Moreira, D.R.M.; Leite, A.C.L.; Pereira, V.R.A. Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-thiazoles in Jurkat and HT-29 cells. Biomed. Pharmacother., 2016, 82, 555-560.
[http://dx.doi.org/10.1016/j.biopha.2016.05.038] [PMID: 27470396]
[28]
dos Santos Silva, T.D.; Bomfim, L.M.; da Cruz Rodrigues, A.C.B.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; Bezerra, D.P.; de Oliveira Cardoso, M.V.; Leite, A.C.L.; Militão, G.C.G. Anti-liver cancer activity in vitro and in vivo induced by 2-pyridyl 2,3-thiazole derivatives. Toxicol. Appl. Pharmacol., 2017, 329, 212-223.
[http://dx.doi.org/10.1016/j.taap.2017.06.003] [PMID: 28610992]
[29]
Valster, A.; Tran, N.L.; Nakada, M.; Berens, M.E.; Chan, A.Y.; Symons, M. Cell migration and invasion assays. Methods, 2005, 37(2), 208-215.
[http://dx.doi.org/10.1016/j.ymeth.2005.08.001] [PMID: 16288884]
[30]
Moreira, D.R.M.; de Oliveira, A.D.T.; Gomes, P.A.T.D.M. dee Simone, C.A.; Villela, F.S.; Ferreira, R.S.; da Silva, A.C.; dos Santos, T.A.R.; de Castro, M.C.A.B.; Pereira, V.R.A.; Leite, A.C.L. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death. Eur. J. Med. Chem., 2014, 75, 467-478.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.001]
[31]
NCI-60 Human Tumor Cell Lines Screen | Discovery & Development Services | Developmental Therapeutics Program (DTP). Available from: https://dtp.cancer.gov/discovery_development/nci-60/
[32]
Hernandes, M.; Cavalcanti, S.M.; Moreira, D.R.; de Azevedo, Junior, W.; Leite, A.C. Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr. Drug Targets, 2010, 11(3), 303-314.
[http://dx.doi.org/10.2174/138945010790711996] [PMID: 20210755]
[33]
Siegal, G.A.B. E.; Schultz, J. Integration of Fragment Screening and Library Design. Drug Discov. Today, 2007, 12, 1032-1039.
[http://dx.doi.org/10.1016/j.drudis.2007.08.005] [PMID: 18061882]
[34]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[35]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy