Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Metabolomics-based Approach to Analyze the Therapeutic Targets and Metabolites of a Synovitis Ointment for Knee Osteoarthritis

Author(s): Lei Zhang, Huan Yang, Jing Liu, Ke Wang, Xiang Cai, Wei Xiao, Le Wang, Mang Wang, Chi Zhang* and Jin Zhang*

Volume 19, Issue 3, 2023

Published on: 25 January, 2023

Page: [222 - 234] Pages: 13

DOI: 10.2174/1573412919666221223152915

Price: $65

Abstract

Background: Knee osteoarthritis (KOA) is a clinically common degenerative joint disease that is not fatal but has a high prevalence. Synovitis ointment (HMYG) is a traditional Chinese medicine formula that has been clinically proven to treat KOA; however, its therapeutic targets remain unknown.

Objective: This study aimed to identify metabolites and potential targets of synovitis ointment alleviation in rats with KOA using ultra-high-performance liquid-chromatography–mass spectrometry (UHPLC-MS) metabolomics.

Methods: The meniscus on each side of the knee was removed to model KOA in rats. The synovitis ointment treatment was provided for 4 weeks. The lateral diameter of the knee was measured once a week, and after 4 weeks, serum was collected to observe changes in the knee through a metabolomic analysis.

Results: Synovitis ointment reduced the lateral diameter of the knee joint, relieved knee swelling, and improved knee volume. In total, 28 differential metabolites, which were mainly involved in arginine and proline metabolism and apoptosis, were identified in the Con and HMYG groups. 15-Deoxy-d-12, 14-PGJ2 and fomepizole were found to be the key metabolites after the HMYG treatment of KOA. Compared with known drugs (diclofenac diethylamine emulsion and Jin Huang San), 2-(SGlutathionyl) acetyl glutathione, daidzein, pelargonic acid, and sulfamethoxazole increased in the HMYG, and the metabolic pathways included the oxytocin signaling pathway, platelet activation, olfactory transduction, phototransduction, and cGMP-PKG signaling pathway. The expression levels of cleaved-caspase-3, Bcl-2, PIK3a, TP53, TGFB1, and NFKB1 were reversed after HMYG treatment.

Conclusion: It has been observed that synovitis ointment relieves KOA. UHPLC-MS can analyze the potential mechanism of action of the herbal compound of the synovitis ointment.

Graphical Abstract

[1]
Kan, H.S.; Chan, P.K.; Chiu, K.Y.; Yan, C.H.; Yeung, S.S.; Ng, Y.L.; Shiu, K.W.; Ho, T. Non-surgical treatment of knee osteoarthritis. Hong Kong Med. J., 2019, 25(2), 127-133.
[PMID: 30919810]
[2]
Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet, 2019, 393(10182), 1745-1759.
[http://dx.doi.org/10.1016/S0140-6736(19)30417-9] [PMID: 31034380]
[3]
Spitaels, D.; Mamouris, P.; Vaes, B.; Smeets, M.; Luyten, F.; Hermens, R.; Vankrunkelsven, P. Epidemiology of knee osteoarthritis in general practice: a registry-based study. BMJ Open, 2020, 10(1), e031734.
[http://dx.doi.org/10.1136/bmjopen-2019-031734] [PMID: 31964664]
[4]
Filardo, G.; Kon, E.; Longo, U.G.; Madry, H.; Marchettini, P.; Marmotti, A.; Van Assche, D.; Zanon, G.; Peretti, G.M. Non-surgical treatments for the management of early osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc., 2016, 24(6), 1775-1785.
[http://dx.doi.org/10.1007/s00167-016-4089-y] [PMID: 27043347]
[5]
Yázigi, F.; Espanha, M.; Vieira, F.; Messier, S.P.; Monteiro, C.; Veloso, A.P. The PICO project: aquatic exercise for knee osteoarthritis in overweight and obese individuals. BMC Musculoskelet. Disord., 2013, 14(1), 320.
[http://dx.doi.org/10.1186/1471-2474-14-320] [PMID: 24219758]
[6]
Deyle, G.D.; Allen, C.S.; Allison, S.C.; Gill, N.W.; Hando, B.R.; Petersen, E.J.; Dusenberry, D.I.; Rhon, D.I. Physical therapy versus glucocorticoid injection for osteoarthritis of the knee. N. Engl. J. Med., 2020, 382(15), 1420-1429.
[http://dx.doi.org/10.1056/NEJMoa1905877] [PMID: 32268027]
[7]
Richardson, C.; Plaas, A.; Block, J.A. Intra-articular hyaluronan therapy for symptomatic knee osteoarthritis. Rheum. Dis. Clin. North Am., 2019, 45(3), 439-451.
[http://dx.doi.org/10.1016/j.rdc.2019.04.011] [PMID: 31277754]
[8]
Georgiev, T.; Angelov, A.K. Modifiable risk factors in knee osteoarthritis: treatment implications. Rheumatol. Int., 2019, 39(7), 1145-1157.
[http://dx.doi.org/10.1007/s00296-019-04290-z] [PMID: 30911813]
[9]
Zafar, A.Q.; Zamani, R.; Akrami, M. The effectiveness of foot orthoses in the treatment of medial knee osteoarthritis: A systematic review. Gait Posture, 2020, 76, 238-251.
[http://dx.doi.org/10.1016/j.gaitpost.2019.12.016] [PMID: 31874456]
[10]
Jeong, H.S.; Lee, S.C.; Jee, H.; Song, J.B.; Chang, H.S.; Lee, S.Y. Proprioceptive training and outcomes of patients with knee osteoarthritis: A Meta-Analysis of Randomized Controlled Trials. J. Athl. Train., 2019, 54(4), 418-428.
[http://dx.doi.org/10.4085/1062-6050-329-17] [PMID: 30995119]
[11]
Skou, S. T.; Roos, E. M. Physical therapy for patients with knee and hip osteoarthritis: supervised, active treatment is current best practice.Clinical and experimental rheumatology 2019, 37 (Suppl) 120(5), 112-117.
[12]
Li, J.; Li, Y.X.; Luo, L.J.; Ye, J.; Zhong, D.L.; Xiao, Q.W.; Zheng, H.; Geng, C.M.; Jin, R.J.; Liang, F.R. The effectiveness and safety of acupuncture for knee osteoarthritis. Medicine (Baltimore), 2019, 98(28), e16301.
[http://dx.doi.org/10.1097/MD.0000000000016301] [PMID: 31305415]
[13]
Eymard, F.; Chevalier, X. Pharmacological treatments of knee osteoarthritis. Rev. Prat., 2019, 69(5), 515-519.
[PMID: 31626455]
[14]
Zhou, X.; Xiang, K.; Yuan, X.; Wang, Z.; Li, K. A comparison of the effects of acupoint injection combined with hyaluronic acid versus isolated hyaluronic acid for knee osteoarthritis. Medicine (Baltimore), 2020, 99(47), e23262.
[http://dx.doi.org/10.1097/MD.0000000000023262] [PMID: 33217849]
[15]
Delanois, R.E.; Etcheson, J.I.; Sodhi, N.; Henn, R.F., III; Gwam, C.U.; George, N.E.; Mont, M.A. Biologic therapies for the treatment of knee osteoarthritis. J. Arthroplasty, 2019, 34(4), 801-813.
[http://dx.doi.org/10.1016/j.arth.2018.12.001] [PMID: 30612835]
[16]
Palmer, J.S.; Monk, A.P.; Hopewell, S.; Bayliss, L.E.; Jackson, W.; Beard, D.J.; Price, A.J. Surgical interventions for symptomatic mild to moderate knee osteoarthritis. Cochrane Libr., 2019, 2019(7), CD012128.
[http://dx.doi.org/10.1002/14651858.CD012128.pub2] [PMID: 31322289]
[17]
Skou, S.T.; Roos, E.M.; Laursen, M.B.; Rathleff, M.S.; Arendt-Nielsen, L.; Rasmussen, S.; Simonsen, O. Total knee replacement and non-surgical treatment of knee osteoarthritis: 2-year outcome from two parallel randomized controlled trials. Osteoarthritis Cartilage, 2018, 26(9), 1170-1180.
[http://dx.doi.org/10.1016/j.joca.2018.04.014] [PMID: 29723634]
[18]
Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Future perspectives of personalized medicine in traditional Chinese medicine: A systems biology approach. Complement. Ther. Med., 2012, 20(1-2), 93-99.
[http://dx.doi.org/10.1016/j.ctim.2011.10.007] [PMID: 22305254]
[19]
Zhang, A.; Sun, H.; Wang, X. Recent highlights of metabolomics for traditional Chinese medicine. Pharmazie, 2012, 67(8), 667-675.
[PMID: 22957430]
[20]
Husain, A.; Iram, F.; Siddiqui, A.A.; Almutairi, S.M.; Mohammed, O.B.; Khan, S.A.; Azmi, S.N.H.; Rahman, N. Identification of metabolic pathways involved in the biotransformation of eslicarbazepine acetate using UPLC-MS/MS, human microsomal enzymes and in silico studies. J. King Saud Univ. Sci., 2021, 33(2), 101281.
[http://dx.doi.org/10.1016/j.jksus.2020.101281]
[21]
Cai, S.; Huo, T.; Xu, J.; Lu, X.; Zheng, S.; Li, F. Effect of mitiglinide on Streptozotocin-induced experimental type 2 diabetic rats: A urinary metabonomics study based on ultra-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(29), 3619-3624.
[http://dx.doi.org/10.1016/j.jchromb.2009.08.044] [PMID: 19748326]
[22]
Guo, Q.; Niu, W.; Li, X.; Guo, H.; Zhang, N.; Wang, X.; Wu, L. Study on Hypoglycemic Effect of the Drug Pair of Astragalus Radix and Dioscoreae Rhizoma in T2DM Rats by Network Pharmacology and Metabonomics. Molecules, 2019, 24(22), 4050.
[http://dx.doi.org/10.3390/molecules24224050] [PMID: 31717456]
[23]
Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; Nicholls, A.W.; Wilson, I.D.; Kell, D.B.; Goodacre, R. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc., 2011, 6(7), 1060-1083.
[http://dx.doi.org/10.1038/nprot.2011.335] [PMID: 21720319]
[24]
Zelena, E.; Dunn, W.B.; Broadhurst, D.; Francis-McIntyre, S.; Carroll, K.M.; Begley, P.; O’Hagan, S.; Knowles, J.D.; Halsall, A.; Wilson, I.D.; Kell, D.B. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal. Chem., 2009, 81(4), 1357-1364.
[http://dx.doi.org/10.1021/ac8019366] [PMID: 19170513]
[25]
Sangster, T.; Major, H.; Plumb, R.; Wilson, A.J.; Wilson, I.D. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst (Lond.), 2006, 131(10), 1075-1078.
[http://dx.doi.org/10.1039/b604498k] [PMID: 17003852]
[26]
Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem., 2006, 78(3), 779-787.
[http://dx.doi.org/10.1021/ac051437y] [PMID: 16448051]
[27]
Ni, Q.; Ye, Z.; Wang, Y.; Chen, J.; Zhang, W.; Ma, C.; Li, K.; Liu, Y.; Liu, L.; Han, Z.; Gao, T.; Jian, Z.; Li, S.; Li, C. Gut Microbial Dysbiosis and Plasma Metabolic Profile in Individuals With Vitiligo. Front. Microbiol., 2020, 11, 592248.
[http://dx.doi.org/10.3389/fmicb.2020.592248] [PMID: 33381090]
[28]
Wang, J.; Pu, S.; Sun, Y.; Li, Z.; Niu, M.; Yan, X.; Zhao, Y.; Wang, L.; Qin, X.; Ma, Z.; Zhang, Y.; Li, B.; Luo, S.; Gong, M.; Sun, Y.; Zou, Z.; Xiao, X. Metabolomic profiling of autoimmune hepatitis: The diagnostic utility of nuclear magnetic resonance spectroscopy. J. Proteome Res., 2014, 13(8), 3792-3801.
[http://dx.doi.org/10.1021/pr500462f] [PMID: 24940827]
[29]
Burke, C.J.; Alizai, H.; Beltran, L.S.; Regatte, R.R. MRI of synovitis and joint fluid. J. Magn. Reson. Imaging, 2019, 49(6), 1512-1527.
[http://dx.doi.org/10.1002/jmri.26618] [PMID: 30618151]
[30]
Stahnke, K.; Morawietz, L.; Moroder, P.; Scheibel, M. Synovitis as a concomitant disease in shoulder pathologies. Arch. Orthop. Trauma Surg., 2019, 139(8), 1111-1116.
[http://dx.doi.org/10.1007/s00402-019-03152-4] [PMID: 30820695]
[31]
Christensen, M. B.; Tresco, P. A. Differences exist in the left and right sciatic nerves of naïve rats and cats. Anatomical record(Hoboken, N.J. : 2007),, 2015, 298(8), 1492-501.
[32]
Want, E.J.; Wilson, I.D.; Gika, H.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Holmes, E.; Nicholson, J.K. Global metabolic profiling procedures for urine using UPLC–MS. Nat. Protoc., 2010, 5(6), 1005-1018.
[http://dx.doi.org/10.1038/nprot.2010.50] [PMID: 20448546]
[33]
Yuan, M.; Breitkopf, S.B.; Yang, X.; Asara, J.M. A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc., 2012, 7(5), 872-881.
[http://dx.doi.org/10.1038/nprot.2012.024] [PMID: 22498707]
[34]
Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and opls statistical analyses. J. Proteome Res., 2015, 14(8), 3322-3335.
[http://dx.doi.org/10.1021/acs.jproteome.5b00354] [PMID: 26088811]
[35]
Pontes, T.A.; Barbosa, A.D.; Silva, R.D.; Melo-Junior, M.R.; Silva, R.O. Osteopenia-osteoporosis discrimination in postmenopausal women by 1H NMR-based metabonomics. PLoS One, 2019, 14(5), e0217348.
[http://dx.doi.org/10.1371/journal.pone.0217348] [PMID: 31141566]
[36]
Dubey, D.; Kumar, S.; Rawat, A.; Guleria, A.; Kumari, R.; Ahmed, S.; Singh, R.; Misra, R.; Kumar, D. NMR-based metabolomics revealed the underlying inflammatory pathology in reactive arthritis synovial joints. J. Proteome Res., 2021, 20(11), 5088-5102.
[http://dx.doi.org/10.1021/acs.jproteome.1c00620] [PMID: 34661415]
[37]
Kim, S.; Hwang, J.; Kim, J.; Ahn, J.K.; Cha, H.S.; Kim, K.H. Metabolite profiles of synovial fluid change with the radiographic severity of knee osteoarthritis. Joint Bone Spine, 2017, 84(5), 605-610.
[http://dx.doi.org/10.1016/j.jbspin.2016.05.018] [PMID: 27461192]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy