Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Ball Milling in Organic Transformations

Author(s): Keya Roy, Suprakash Sahoo, Anay Saha and Laksmikanta Adak*

Volume 27, Issue 3, 2023

Published on: 23 January, 2023

Page: [153 - 165] Pages: 13

DOI: 10.2174/1385272827666221223143844

Price: $65

conference banner
Abstract

In organic synthesis, mechanochemical approaches have received increased attention because of their broad applications in green methodologies. By utilization of mechanical forces on the various reactants, there is a certain increase of their surface area and also areas of contact, which usually make reaction pathways more available through a greater number of effective collisions. Mechanical energy can be produced and transferred through ball mills, one of the highest necessary devices for green organic solid-state reactions. In the last few decades, various challenging organic transformations have been published using ball milling in different fields of organic synthesis. Ball milling has received tremendous attention in numerous organic synthesis since it allows for reactions to occur at ambient temperature in the absence of any solvent under mild conditions which are compatible for a green process. The carbon-carbon and carbon–heteroatom bond formation reactions and also synthesis of heterocyclic compounds are of ample importance in both academia and pharmaceutical industry. This review will highlight the recent developments of amidation reactions, asymmetric synthesis, various heterocyclic compounds synthesis, crosscoupling reactions, C–H bond activation for C–C and carbon–heteroatom bond formation reactions under the ballmilling conditions.

Next »
Graphical Abstract

[1]
(a) Stolle, A.; Szuppa, T.; Leonhardt, S.E.S; Ondruschka, B. Ball milling in organic synthesis: solutions and challenges. Chem. Soc. Rev., 2011, 40(5), 2317-2329.
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034];
b) James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W.; Waddell, D.C. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41(1), 413-447.
[http://dx.doi.org/10.1039/C1CS15171A] [PMID: 21892512];
c) Ould M’hamed, M. Ball milling for heterocyclic compounds synthesis in green chemistry: A Review. Synth. Commun., 2015, 45(22), 2511-2528.
[http://dx.doi.org/10.1080/00397911.2015.1058396];
d) Achar, T.K.; Bose, A.; Mal, P. Mechanochemical synthesis of small organic molecules. Beilstein J. Org. Chem., 2017, 13, 1907-1931.
[http://dx.doi.org/10.3762/bjoc.13.186] [PMID: 29062410];
e) Do, J.L. Friščić T. Mechanochemistry: A force of synthesis. ACS Cent. Sci., 2017, 3(1), 13-19.
[http://dx.doi.org/10.1021/acscentsci.6b00277] [PMID: 28149948];
f) El-Sayed, T.; Aboelnaga, A.; El-Atawy, M.; Hagar, M. Ball milling promoted N-heterocycles synthesis. Molecules, 2018, 23(6), 1348.
[http://dx.doi.org/10.3390/molecules23061348] [PMID: 29867039];
g) Leonardi, M.; Villacampa, M.; Menéndez, J.C. Multicomponent mechanochemical synthesis. Chem. Sci. (Camb.), 2018, 9(8), 2042-2064.
[http://dx.doi.org/10.1039/C7SC05370C] [PMID: 29732114];
h) Tan, D.; García, F. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev., 2019, 48(8), 2274-2292.
[http://dx.doi.org/10.1039/C7CS00813A] [PMID: 30806391];
i) Friščić T.; Mottillo, C.; Titi, H.M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed., 2020, 59(3), 1018-1029.
[http://dx.doi.org/10.1002/anie.201906755] [PMID: 31294885];
j) Porcheddu, A.; Colacino, E.; De Luca, L.; Delogu, F. Metal-mediated and metal-catalyzed reactions under mechanochemical conditions. ACS Catal., 2020, 10, 8344-8394.;
l) Egorov, I.N.; Santra, S.; Kopchuk, D.S.; Kovalev, I.S.; Zyryanov, G.V.; Majee, A.; Ranu, B.C.; Rusinov, V.L.; Chupakhin, O.N. Ball milling: an efficient and green approach for asymmetric organic synthesis. Green Chem., 2020, 22, 302-315.;
n) Colacino, E.; Isoni, N.; Crawford, D.; García, F. Upscaling mechanochemistry: challenges and opportunities for sustainable industry. Trends Chem., 2021, 3, 335-33.;
p) Avila-Ortiz, C.G.; Juaristi, E. Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions. Molecules, 2020, 25, 3579.;
q) Ying, P.; Yu, J.; Sub, W. Liquid-assisted grinding mechanochemistry in the synthesis of pharmaceuticals. Adv. Synth. Catal., 2021, 363, 1246-1271.;
r) Mlostoń, G.; Celeda, M.; Heimgartner, H.; Duda, D.; Obijalska, E.; Jasiński, M. Synthesis and selected transformations of 2-unsubstituted imidazole N-oxides using a ball-milling mechanochemical approach. Catalysts, 2022, 12, 589.;
s) Laskar, R.; Pal, T.; Bhattacharya, T.; Maiti, S.; Akita, M.; Maiti, D. Sustainable C–H functionalization under ball-milling, microwave-irradiation and aqueous media. Green Chem., 2022, 24, 2296-2320.;
t) Ranu, B.C; Stolle, A. Ball milling towards green synthesis: Applications, projects, challenges. RSC Green Chemistry No. 31 The Royal Society of Chemistry: Cambridge, UK, 2015.
[2]
Chen, C.; Cao, Y.; Wu, X.; Cai, Y.; Liu, J.; Xu, L.; Ding, K.; Yu, L. Energy saving and environment-friendly element-transfer reactions with industrial application potential. Chin. Chem. Lett., 2020, 31(5), 1078-1082.
[http://dx.doi.org/10.1016/j.cclet.2019.12.019]
[3]
a) Xiao, X.; Shao, Z.; Yu, L. A perspective of the engineering applications of carbon-based selenium-containing materials. Chin. Chem. Lett., 2021, 32(10), 2933-2938.
[http://dx.doi.org/10.1016/j.cclet.2021.03.047];
b) Zeng, Z.; Chen, Y.; Zhu, X.; Yu, L. Polyaniline-supported nano metal-catalyzed coupling reactions: Opportunities and challenges. Chin. Chem. Lett., 2022, 34, 107728.
[http://dx.doi.org/10.1016/j.cclet.2022.08.008];
c) Xiao, X.; Guan, C.; Xu, J.; Fu, W.; Yu, L. Selenium-catalyzed selective reactions of carbonyl derivatives: state-of-the-art and future challenges. Green Chem., 2021, 23(13), 4647-4655.
[http://dx.doi.org/10.1039/D1GC00961C]
[4]
Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. (Camb.), 2018, 9(12), 3080-3094.
[http://dx.doi.org/10.1039/C7SC05371A] [PMID: 29780455]
[5]
Hermann, G.N.; Becker, P.; Bolm, C. Mechanochemical iridium(III)-catalyzed C−H bond amidation of benzamides with sulfonyl azides under solvent-free conditions in a ball mill. Angew. Chem. Int. Ed., 2016, 55(11), 3781-3784.
[http://dx.doi.org/10.1002/anie.201511689] [PMID: 26879729]
[6]
Kouznetsov, V.V.; Merchán-Arenas, D.R.; Martínez-Bonilla, C.A.; Macías, M.A.; Roussel, P.; Gauthier, G.H. Grinding and milling: two efficient Methodologies in the Solvent-Free Phosphomolybdic Acid-Catalyzed and Mechanochemical synthesis of cis-4-Amido-N-yl-2-methyl-tetrahydroquinolines. J. Braz. Chem. Soc., 2016, 27, 2246-2255.
[http://dx.doi.org/10.5935/0103-5053.20160117]
[7]
Hermann, G.N.; Bolm, C. Mechanochemical rhodium(III)-catalyzed C−H bond amidation of arenes with dioxazolones under solventless conditions in a ball mill. ACS Catal., 2017, 7(7), 4592-4596.
[http://dx.doi.org/10.1021/acscatal.7b00582]
[8]
Li, L.; Wang, G.W. Solvent-free rhodium(III)-catalyzed synthesis of 2-aminoanilides via C−H amidation of N-nitrosoanilines under ball-milling conditions. Tetrahedron, 2018, 74(31), 4188-4196.
[http://dx.doi.org/10.1016/j.tet.2018.06.003]
[9]
Broumidis, E.; Jones, M.C.; Vilela, F.; Lloyd, G.O. Mechanochemical synthesis of N-aryl amides from O-protected hydroxamic acids. ChemPlusChem, 2020, 85(8), 1754-1761.
[http://dx.doi.org/10.1002/cplu.202000451] [PMID: 32794369]
[10]
Nicholson, W.I.; Barreteau, F.; Leitch, J.A.; Payne, R.; Priestley, I.; Godineau, E.; Battilocchio, C.; Browne, D.L. Direct amidation of esters via ball milling. Angew. Chem. Int. Ed., 2021, 60(40), 21868-21874.
[http://dx.doi.org/10.1002/anie.202106412] [PMID: 34357668]
[11]
Gómez-Carpintero, J.; Sánchez, J.D.; González, J.F.; Menéndez, J.C. Mechanochemical synthesis of primary amides. J. Org. Chem., 2021, 86(20), 14232-14237.
[http://dx.doi.org/10.1021/acs.joc.1c02350] [PMID: 34596412]
[12]
Estévez, V.; Sridharan, V.; Sabaté, S.; Villacampa, M.; Menéndez, J.C. Three-component synthesis of pyrrole-related nitrogen heterocycles by a Hantzsch-type process: Comparison between conventional and high-speed vibration milling conditions. Asian J. Org. Chem., 2016, 5(5), 652-662.
[http://dx.doi.org/10.1002/ajoc.201600061]
[13]
Akelis, L.; Rousseau, J.; Juskenas, R.; Dodonova, J.; Rousseau, C.; Menuel, S.; Prevost, D. Tumkevičius, S.; Monflier, E.; Hapiot, F. Greener Paal–Knorr pyrrole synthesis by mechanical activation. Eur. J. Org. Chem., 2016, 2016(1), 31-35.
[http://dx.doi.org/10.1002/ejoc.201501223]
[14]
Zeng, J.C.; Xu, H.; Yu, F.; Zhang, Z. Manganese (III) acetate mediated synthesis of polysubstituted pyrroles under solvent-free ball milling. Tetrahedron Lett., 2017, 58(7), 674-678.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.016]
[15]
Sharma, H.; Kaur, N.; Singh, N.; Jang, D.O. Synergetic catalytic effect of ionic liquids and ZnO nanoparticles on the selective synthesis of 1,2-disubstituted benzimidazoles using a ball-milling technique. Green Chem., 2015, 17(8), 4263-4270.
[http://dx.doi.org/10.1039/C5GC00536A]
[16]
Sahoo, P.K.; Bose, A.; Mal, P. Solvent-free ball-milling Biginelli reaction by subcomponent synthesis. Eur. J. Org. Chem., 2015, 2015(32), 6994-6998.
[http://dx.doi.org/10.1002/ejoc.201501039]
[17]
Zhang, Z.; Wang, F.J.; Wu, H.H.; Tan, Y.J. Straightforward synthesis of 2-anilinobenzoxazoles and -benzothiazoles via mechanochemical ball-milling-promoted one-pot reactions. Chem. Lett., 2015, 44(4), 440-441.
[http://dx.doi.org/10.1246/cl.141127]
[18]
Sharifi, A.; Ansari, M.; Darabi, H.R.; Abaee, M.S. Synergistic promoting effect of ball milling and KF–alumina support for the green synthesis of benzothiazinones. Tetrahedron Lett., 2016, 57(5), 529-532.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.078]
[19]
Polindara-García, L.A.; Juaristi, E. Synthesis of Ugi 4-CR and Passerini 3-CR adducts under mechanochemical activation. Eur. J. Org. Chem., 2016, 2016(6), 1095-1102.
[http://dx.doi.org/10.1002/ejoc.201501371]
[20]
Nagarajaiah, H.; Mishra, A.K.; Moorthy, J.N. Mechanochemical solid-state synthesis of 2-aminothiazoles, quinoxalines and benzoylbenzofurans from ketones by one-pot sequential acid- and base-mediated reactions. Org. Biomol. Chem., 2016, 14(17), 4129-4135.
[http://dx.doi.org/10.1039/C6OB00351F] [PMID: 27072599]
[21]
Howard, J.L.; Nicholson, W.; Sagatov, Y.; Browne, D.L. One-pot multistep mechanochemical synthesis of fluorinated pyrazolones. Beilstein J. Org. Chem., 2017, 13, 1950-1956.
[http://dx.doi.org/10.3762/bjoc.13.189] [PMID: 29062413]
[22]
Zhang, X.; Wang, B.; Zhang, B.; Wang, Y. A solvent-free synthesis of 1-(4-chlorophenyl)pyrazolidin-3-one in a ball mill. Green Chem. Lett. Rev., 2018, 11(4), 414-418.
[http://dx.doi.org/10.1080/17518253.2018.1526332]
[23]
Beillard, A.; Bantreil, X.; Métro, T.X.; Martinez, J.; Lamaty, F. A more sustainable and efficient access to IMes•HCl and IPr•HCl by ball-milling. Green Chem., 2018, 20(5), 964-968.
[http://dx.doi.org/10.1039/C7GC03539J]
[24]
Xu, S.; Chen, W.; Yang, X.; Shi, J.; Mai, Z.; Zhu, Z.; Chen, L.; Chen, X. Facile synthesis of 2-methylenebenzothiazoles from benzothiazole salts and 4-hydroxycoumarins by ball milling. Chem. Asian J., 2022, 17(22), e202200843.
[http://dx.doi.org/10.1002/asia.202200843] [PMID: 36063072]
[25]
Jiang, Z.J.; Li, Z.H.; Yu, J.B.; Su, W.K. Liquid-assisted grinding accelerating: Suzuki-Miyaura reaction of aryl chlorides under high-speed ball-milling conditions. J. Org. Chem., 2016, 81(20), 10049-10055.
[http://dx.doi.org/10.1021/acs.joc.6b01938] [PMID: 27690440]
[26]
Yu, J.B.; Zhang, Y.; Jiang, Z.J.; Su, W.K. Mechanically induced Fe(III) catalysis at room temperature: solventfree cross-dehydrogenative coupling of 3-benzylic indoles with methylenes/indoles. J. Org. Chem., 2016, 81(22), 11514-11520.
[http://dx.doi.org/10.1021/acs.joc.6b02197] [PMID: 27779398]
[27]
Sharifi, A.; Babaalian, Z.; Abaee, M.S.; Moazami, M.; Mirzaei, M. Synergistic promoting effect of ball milling and Fe(ii) catalysis for cross-dehydrogenative-coupling of 1,4-benzoxazinones with indoles. Heterocycl. Commun., 2021, 27(1), 57-62.
[http://dx.doi.org/10.1515/hc-2020-0123]
[28]
Seo, T.; Toyoshima, N.; Kubota, K.; Ito, H. Tackling solubility issues in organic synthesis: Solid-state cross-coupling of insoluble aryl halides. J. Am. Chem. Soc., 2021, 143(16), 6165-6175.
[http://dx.doi.org/10.1021/jacs.1c00906] [PMID: 33784464]
[29]
Jones, A.C.; Nicholson, W.I.; Leitch, J.A.; Browne, D.L. A ball-milling-enabled cross-electrophile coupling. Org. Lett., 2021, 23(16), 6337-6341.
[http://dx.doi.org/10.1021/acs.orglett.1c02096] [PMID: 34342468]
[30]
Hernández, J.G.; Bolm, C. [Cp*RhCl2]2: mechanosynthesis and applications in C–H bond functionalisations under ball-milling conditions. Chem. Commun. (Camb.), 2015, 51(63), 12582-12584.
[http://dx.doi.org/10.1039/C5CC04423E] [PMID: 26154719]
[31]
Cheng, H.; Hernández, J.G.; Bolm, C. Mechanochemical ruthenium-catalyzed hydroarylations of alkynes under ball-milling conditions. Org. Lett., 2017, 19(23), 6284-6287.
[http://dx.doi.org/10.1021/acs.orglett.7b02973] [PMID: 29130689]
[32]
Weng, Y.; Lan, T.; Sun, C.; Yang, T.; Su, W.; Xie, Y. Mechanochemical palladium-catalyzed C(sp2)–H homocoupling of N -arylcarbamates: synthesis of 2,2′-biaryldiamines. Org. Chem. Front., 2018, 5(13), 2103-2107.
[http://dx.doi.org/10.1039/C8QO00420J]
[33]
Liu, Z.; Xu, H.; Wang, G.W. Palladium-catalyzed ortho -halogenations of acetanilides with N -halosuccinimides via direct sp 2 C–H bond activation in ball mills. Beilstein J. Org. Chem., 2018, 14, 430-435.
[http://dx.doi.org/10.3762/bjoc.14.31] [PMID: 29520307]
[34]
Cheng, H.; Hernández, J.G.; Bolm, C. Mechanochemical cobalt-catalyzed C–H bond functionalizations by ball milling. Adv. Synth. Catal., 2018, 360(9), 1800-1804.
[http://dx.doi.org/10.1002/adsc.201800161]
[35]
Hermann, G.N.; Unruh, M.T.; Jung, S.H.; Krings, M.; Bolm, C. Mechanochemical rhodium(III)- and gold(I)-catalyzed C–H bond alkynylations of indoles under solventless conditions in mixer mills. Angew. Chem. Int. Ed., 2018, 57(33), 10723-10727.
[http://dx.doi.org/10.1002/anie.201805778] [PMID: 29889348]
[36]
Machuca, E.; Rojas, Y.; Juaristi, E. Synthesis and evaluation of (S)-proline-containing α,β-dipeptides as organocatalysts in solvent-free asymmetric Aldol reactions under ball-milling conditions. Asian J. Org. Chem., 2015, 4(1), 46-53.
[http://dx.doi.org/10.1002/ajoc.201402170]
[37]
Machuca, E.; Juaristi, E. Organocatalytic activity of αα-dipeptide derivatives of (S)-proline in the asymmetric aldol reaction in absence of solvent. Evidence for non-covalent π–π interactions in the transition state. Tetrahedron Lett., 2015, 56(9), 1144-1148.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.079]
[38]
Li, Z.; Jiang, Z.; Su, W. Fast, solvent-free, highly enantioselective three-component coupling of aldehydes, alkynes, and amines catalysed by the copper(II)pybox complex under high-vibration ball-milling. Green Chem., 2015, 17(4), 2330-2334.
[http://dx.doi.org/10.1039/C5GC00079C]
[39]
Veverková, E.; Modrocká, V.; Šebesta, R. Organocatalyst efficiency in α-aminoxylation and α-hydrazination of carbonyl derivatives in aqueous media and ball-mill. Eur. J. Org. Chem., 2017, 2017(8), 1191-1195.
[http://dx.doi.org/10.1002/ejoc.201601357]
[40]
Wang, Y.; Wang, H.; Jiang, Y.; Zhang, C.; Shao, J.; Xu, D. Fast, solvent-free and highly enantioselective fluorination of β-keto esters catalyzed by chiral copper complexes in a ball mill. Green Chem., 2017, 19(7), 1674-1677.
[http://dx.doi.org/10.1039/C6GC03306G]
[41]
Staleva, P.; Hernández, J.G.; Bolm, C. Mechanochemical copper-catalyzed asymmetric Michael-type Friedel-Crafts alkylations of indoles with arylidene malonates. Chemistry, 2019, 25(39), 9202-9205.
[http://dx.doi.org/10.1002/chem.201901826] [PMID: 31106927]
[42]
Sharifi, A.; Ansari, M.; Darabi, H.R.; Abaee, M.S. Synergistic promoting effect of ball milling and KF–alumina support as a green tool for solvent-free synthesis of 2-arylidene-benzothiazinones. J. Sulfur Chem., 2016, 37(6), 593-600.
[http://dx.doi.org/10.1080/17415993.2016.1163699]
[43]
Hernández, J.G.; Frings, M.; Bolm, C. Mechanochemical enzymatic kinetic resolution of secondary alcohols under ball-milling conditions. ChemCatChem, 2016, 8(10), 1769-1772.
[http://dx.doi.org/10.1002/cctc.201600455]
[44]
Bolm, C.; Mocci, R.; Schumacher, C.; Turberg, M.; Puccetti, F.; Hernández, J.G. Mechanochemical activation of iron cyano complexes: A prebiotic impact scenario for the synthesis of α-amino acid derivatives. Angew. Chem. Int. Ed., 2018, 57(9), 2423-2426.
[http://dx.doi.org/10.1002/anie.201713109] [PMID: 29334423]
[45]
Đud, M.; Briš, A.; Jušinski, I.; Gracin, D.; Margetić, D. Mechanochemical Friedel–Crafts acylations. Beilstein J. Org. Chem., 2019, 15, 1313-1320.
[http://dx.doi.org/10.3762/bjoc.15.130] [PMID: 31293680]
[46]
Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science, 2019, 366(6472), 1500-1504.
[http://dx.doi.org/10.1126/science.aay8224] [PMID: 31857482]
[47]
Leitch, J.A.; Smallman, H.R.; Browne, D.L. Solvent-minimized synthesis of 4CzIPN and related organic fluorophores via ball milling. J. Org. Chem., 2021, 86(20), 14095-14101.
[http://dx.doi.org/10.1021/acs.joc.1c01233] [PMID: 34256566]
[48]
Takahashi, R.; Hu, A.; Gao, P.; Gao, Y.; Pang, Y.; Seo, T.; Jiang, J.; Maeda, S.; Takaya, H.; Kubota, K.; Ito, H. Mechanochemical synthesis of magnesium-based carbon nucleophiles in air and their use in organic synthesis. Nat. Commun., 2021, 12(1), 6691.
[http://dx.doi.org/10.1038/s41467-021-26962-w] [PMID: 34795265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy