Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Microwave-assisted Synthesis of Fluorinated Heterocycles

Author(s): Chandra Prakash and Ram Singh*

Volume 9, Issue 3, 2022

Published on: 30 December, 2022

Page: [145 - 161] Pages: 17

DOI: 10.2174/2213346110666221223140653

Price: $65

Abstract

The diverse biological applications of fluorinated heterocycles make them crucial chemical compounds. Several synthetic processes have been developed for their synthesis. Microwave-assisted synthesis has emerged as an important technique for generating fluorinated heterocycles in an ecofriendly and energy-efficient manner. It provides several benefits like less reaction time, high reaction yield, homogeneous heat distribution leading to lower side reaction, and better control of reaction temperature. Recently there has been significant progress in microwave use for heterocycle synthesis. This article discusses the applications of microwave irradiation in the synthesis of oxygen, nitrogen, sulphur, selenium, and phosphorous containing fluorinated heterocycles.

Graphical Abstract

[1]
Jeelani, I.; Itaya, K.; Abe, H. Total synthesis of hyalodendriol C. Heterocycles, 2021, 102(8), 1570.
[http://dx.doi.org/10.3987/COM-21-14480]
[2]
Sharma, B.K.; Sharma, P.K.; Kumar, M. One-Pot, Multicomponent sequential synthesis of benzothiazoloquinazolinones. Synth. Commun., 2010, 40(16), 2347-2352.
[http://dx.doi.org/10.1080/00397910903243807]
[3]
Fogla, A.K.; Ankodia, V.; Sharma, P.K.; Kumar, M. N-bridged heterocycles: regiospecific synthesis of 2-methyl-4H-pyrimido[2,1-b]benzothiazol-4-ones. Res. Chem. Intermed., 2009, 35(1), 35-41.
[http://dx.doi.org/10.1007/s11164-008-0006-4]
[4]
Al-Mulla, A.A. Review: Biological importance of heterocyclic compounds. Der Pharma Chem., 2017, 9(13), 141-147.
[5]
Sapra, R.; Patel, D.; Meshram, D. A mini review: recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis. J. Med. Chem. Sci., 2020, 3(1), 71-78.
[http://dx.doi.org/10.26655/jmchemsci.2020.1.9]
[6]
Sarkar, D.; Amin, A.; Qadir, T.; Sharma, P.K. Synthesis of medicinally important indole derivatives: A review. Open Med. Chem. J., 2021, 15(1), 1-16.
[http://dx.doi.org/10.2174/1874104502015010001]
[7]
Higasio, Y.S.; Shoji, T. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins. Appl. Catal. A Gen., 2001, 221(1-2), 197-207.
[http://dx.doi.org/10.1016/S0926-860X(01)00815-8]
[8]
Panchal, N.B.; Patel, P.H.; Chhipa, N.M.; Parmar, R.S. Acridine a versatile heterocyclic moiety as anticancer agent. Int. J. Pharm. Sci. Res., 2020, 11(10), 4739-4748.
[http://dx.doi.org/10.13040/ijpsr.0975-8232.11(10)]
[9]
Marín-Ocampo, L.; Veloza, L.A.; Abonia, R.; Sepúlveda-Arias, J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem., 2019, 162, 435-447.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.027] [PMID: 30469039]
[10]
Campanati, M.; Vaccari, A.; Piccolo, O. Environment-friendly synthesis of nitrogen-containing heterocyclic compounds. Catal. Today, 2000, 60(3-4), 289-295.
[http://dx.doi.org/10.1016/S0920-5861(00)00345-X]
[11]
Vekariya, R.H.; Patel, K.D.; Prajapati, N.P.; Patel, H.D. Phenacyl bromide: A versatile organic intermediate for the synthesis of heterocyclic compounds. Synth. Commun., 2018, 48(13), 1505-1533.
[http://dx.doi.org/10.1080/00397911.2017.1329440]
[12]
Ye, Z.; Zhang, F. Recent advances in constructing nitrogen containing heterocycles via electrochemical dehydrogenation. Chin. J. Chem., 2019, 37(5), 513-528.
[http://dx.doi.org/10.1002/cjoc.201900049]
[13]
Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00258] [PMID: 26200936]
[14]
Apeloig, Y. Negative fluorine hyperconjugation. A theoretical re-examination. J. Chem. Soc. Chem. Commun., 1981, (9), 396-398.
[http://dx.doi.org/10.1039/c39810000396]
[15]
Thacker, J.C.R.; Popelier, P.L.A. Fluorine gauche effect explained by electrostatic polarization instead of hyperconjugation: An interacting quantum atoms (IQA) and relative energy gradient (REG) study. J. Phys. Chem. A, 2018, 122(5), 1439-1450.
[http://dx.doi.org/10.1021/acs.jpca.7b11881] [PMID: 29381361]
[16]
Liu, J.; Lin, W.; Sorochinsky, A.E.; Butler, G.; Landa, A.; Han, J.; Soloshonok, V.A. Successful trifluoromethoxy-containing pharmaceuticals and agrochemicals. J. Fluor. Chem., 2022, 257-258, 109978.
[http://dx.doi.org/10.1016/j.jfluchem.2022.109978]
[17]
Han, J.; Remete, A.M.; Dobson, L.S.; Kiss, L.; Izawa, K.; Moriwaki, H.; Soloshonok, V.A.; O’Hagan, D. Next generation organofluorine containing blockbuster drugs. J. Fluor. Chem., 2020, 239, 109639.
[http://dx.doi.org/10.1016/j.jfluchem.2020.109639]
[18]
Mei, H.; Han, J.; White, S.; Graham, D.J.; Izawa, K.; Sato, T.; Fustero, S.; Meanwell, N.A.; Soloshonok, V.A. Tailor‐made amino acids and fluorinated motifs as prominent traits in modern pharmaceuticals. Chemistry, 2020, 26(50), 11349-11390.
[http://dx.doi.org/10.1002/chem.202000617] [PMID: 32359086]
[19]
Mei, H.; Han, J.; Klika, K.D.; Izawa, K.; Sato, T.; Meanwell, N.A.; Soloshonok, V.A. Applications of fluorine-containing amino acids for drug design. Eur. J. Med. Chem., 2020, 186, 111826.
[http://dx.doi.org/10.1016/j.ejmech.2019.111826] [PMID: 31740056]
[20]
Han, J.; Kiss, L.; Mei, H.; Remete, A.M.; Ponikvar-Svet, M.; Sedgwick, D.M.; Roman, R.; Fustero, S.; Moriwaki, H.; Soloshonok, V.A. Chemical aspects of human and environmental overload with fluorine. Chem. Rev., 2021, 121(8), 4678-4742.
[http://dx.doi.org/10.1021/acs.chemrev.0c01263] [PMID: 33723999]
[21]
Mei, H.; Remete, A.M.; Zou, Y.; Moriwaki, H.; Fustero, S.; Kiss, L.; Soloshonok, V.A.; Han, J. Fluorine-containing drugs approved by the FDA in 2019. Chin. Chem. Lett., 2020, 31(9), 2401-2413.
[http://dx.doi.org/10.1016/j.cclet.2020.03.050]
[22]
Yu, Y.; Liu, A.; Dhawan, G.; Mei, H.; Zhang, W.; Izawa, K.; Soloshonok, V.A.; Han, J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chin. Chem. Lett., 2021, 32(11), 3342-3354.
[http://dx.doi.org/10.1016/j.cclet.2021.05.042]
[23]
Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
[24]
Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next Generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chem. Rev., 2016, 116(2), 422-518.
[http://dx.doi.org/10.1021/acs.chemrev.5b00392] [PMID: 26756377]
[25]
de la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[26]
Gedye, R.N.; Smith, F.E.; Westaway, K.C. The rapid synthesis of organic compounds in microwave ovens. Can. J. Chem., 1988, 66(1), 17-26.
[http://dx.doi.org/10.1139/v88-003]
[27]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[28]
Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680]
[29]
Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov., 2006, 5(1), 51-63.
[http://dx.doi.org/10.1038/nrd1926] [PMID: 16374514]
[30]
Trotzki, R.; Nüchter, M.; Ondruschka, B. Microwave assisted phosgenation – alcoholysis using triphosgene. Green Chem., 2003, 5(3), 285-290.
[http://dx.doi.org/10.1039/B210895J]
[31]
Hoffmann, J.; Nüchter, M.; Ondruschka, B.; Wasserscheid, P. Ionic liquids and their heating behaviour during microwave irradiation – a state of the art report and challenge to assessment. Green Chem., 2003, 5(3), 296-299.
[http://dx.doi.org/10.1039/B212533A]
[32]
Jangale, A.D.; Dalal, D.S. Green synthetic approaches for biologically relevant organic compounds. Synth. Commun., 2017, 47(23), 2139-2173.
[http://dx.doi.org/10.1080/00397911.2017.1369544]
[33]
Yuan, J.; Zeng, F.; Mai, W.; Yang, L.; Xiao, Y.; Mao, P.; Wei, D. Fluorination-triggered tandem cyclization of styrene-type carboxylic acids to access 3-aryl isocoumarin derivatives under microwave irradiation. Org. Biomol. Chem., 2019, 17(20), 5038-5046.
[http://dx.doi.org/10.1039/C9OB00509A] [PMID: 31045201]
[34]
Xie, L.Y.; Qu, J.; Peng, S.; Liu, K.J.; Wang, Z.; Ding, M.H.; Wang, Y.; Cao, Z.; He, W.M. Selectfluor-mediated regioselective nucleophilic functionalization of N-heterocycles under metal- and base-free conditions. Green Chem., 2018, 20(3), 760-764.
[http://dx.doi.org/10.1039/C7GC03106H]
[35]
Kandula, V.; Thota, P.K.; Mallesham, P.; Raghavulu, K.; Chatterjee, A.; Yennam, S.; Behera, M. Selectfluor-mediated tandem cyclization of enaminones for the synthesis of 3-fluorochromones. Synlett, 2019, 30(20), 2295-2299.
[http://dx.doi.org/10.1055/s-0039-1691489]
[36]
Nyffeler, P.T.; Durón, S.G.; Burkart, M.D.; Vincent, S.P.; Wong, C.H. Selectfluor: mechanistic insight and applications. Angew. Chem. Int. Ed., 2005, 44(2), 192-212.
[http://dx.doi.org/10.1002/anie.200400648] [PMID: 15578736]
[37]
Behera, M.; Balakrishna, C.; Kandula, V.; Gudipati, R.; Yennam, S.; Devi, P. An efficient microwave-assisted propylphosphonic anhydride (T3P®)-mediated one-pot chromone synthesis via enaminones. Synlett, 2018, 29(8), 1087-1091.
[http://dx.doi.org/10.1055/s-0036-1591898]
[38]
Li, Y.; Wheeler, K.A.; Dembinski, R. Room temperature syntheses of entirely diverse substituted β-fluorofurans. Org. Biomol. Chem., 2012, 10(12), 2395-2408.
[http://dx.doi.org/10.1039/c1ob06693e] [PMID: 22261647]
[39]
Feofanov, M.; Akhmetov, V.; Takayama, R.; Amsharov, K. Catalyst‐free synthesis of O‐heteroacenes by ladderization of fluorinated oligophenylenes. Angew. Chem. Int. Ed., 2021, 60(10), 5199-5203.
[http://dx.doi.org/10.1002/anie.202007427] [PMID: 32924244]
[40]
Domingo, L.R.; Ríos-Gutiérrez, M.; Chamorro, E.; Pérez, P. Are one-step aromatic nucleophilic substitutions of non-activated benzenes concerted processes? Org. Biomol. Chem., 2019, 17(35), 8185-8193.
[http://dx.doi.org/10.1039/C9OB01589B] [PMID: 31451810]
[41]
Shaw, J.E.; Kunerth, D.C.; Swanson, S.B. Nucleophilic aromatic substitution reactions of unactivated aryl chlorides with methoxide ion in hexamethylphosphoramide. J. Org. Chem., 1976, 41(4), 732-733.
[http://dx.doi.org/10.1021/jo00866a043]
[42]
Chen, K.; Li, Z.; Conti, P.S. Microwave-assisted one-pot radiosynthesis of 2′-deoxy-2′-[18F]fluoro-5-methyl-1-β-d-arabinofuranosyluracil ([18F]-FMAU). Nucl. Med. Biol., 2012, 39(7), 1019-1025.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.03.003] [PMID: 22503457]
[43]
Kobayashi, S.; Yoneda, A.; Fukuhara, T.; Hara, S. Selective synthesis of fluorinated carbohydrates using N, N -diethyl-αα-difluoro-(m -methylbenzyl)amine. Tetrahedron Lett., 2004, 45(6), 1287-1289.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.121]
[44]
Le, H.P.; Müller, C.E. Rapid microwave-assisted fluorination yielding novel 5′-deoxy-5′-fluorouridine derivatives. Bioorg. Med. Chem. Lett., 2006, 16(23), 6139-6142.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.093] [PMID: 16962326]
[45]
Safari, J.; Khalili, S.D.; Banitaba, S.H. Three-component, one-pot synthesis of 2,4,5-trisubstituted imidazoles catalyzed by TiCl4-SiO2 under conventional heating conditions or microwave irradiation. Synth. Commun., 2011, 41(16), 2359-2373.
[http://dx.doi.org/10.1080/00397911.2010.502994]
[46]
Prakash, G.K.S.; Krishnamoorthy, S.; Ganesh, S.K.; Kulkarni, A.; Haiges, R.; Olah, G.A. N-Difluoromethylation of imidazoles and benzimidazoles using the Ruppert-Prakash reagent under neutral conditions. Org. Lett., 2014, 16(1), 54-57.
[http://dx.doi.org/10.1021/ol403007j] [PMID: 24295125]
[47]
Ruppert, I.; Schlich, K.; Volbach, W. Die ersten CF3-substituierten organyl(chlor)silane. Tetrahedron Lett., 1984, 25(21), 2195-2198.
[http://dx.doi.org/10.1016/S0040-4039(01)80208-2]
[48]
Prakash, G.K.S.; Yudin, A.K. Perfluoroalkylation with organosilicon reagents. Chem. Rev., 1997, 97(3), 757-786.
[http://dx.doi.org/10.1021/cr9408991] [PMID: 11848888]
[49]
Menteşe, E.; Yilmaz, F.; Ülker, S.; Kahveci, B. Microwave assisted synthesis and anti-lipase activity of some new fluorine-containing benzimidazoles. Drug Res. (Stuttg.), 2014, 65(1), 40-45.
[http://dx.doi.org/10.1055/s-0034-1371890] [PMID: 24696424]
[50]
Shintre, S.A.; Ramjugernath, D.; Singh, P.; Mocktar, C.; Koorbanally, N.A. Microwave synthesis, biological evaluation and docking studies of 2-substituted methyl 1-(4-fluorophenyl)-1H-benzimidazole-5-carboxylates. Med. Chem. Res., 2017, 26(2), 484-498.
[http://dx.doi.org/10.1007/s00044-016-1763-z]
[51]
Motornov, V.; Beier, P. Access to fluoroalkylated azoles and 2-acylaminoketones via fluorinated anhydride-mediated cleavage of NH-1,2,3-triazoles. Org. Lett., 2022, 24(10), 1958-1963.
[http://dx.doi.org/10.1021/acs.orglett.2c00359] [PMID: 35254084]
[52]
Mlostoń, G.; Kowalczyk, M.; Celeda, M.; Jasiński, M.; Denel-Bobrowska, M.; Olejniczak, A.B. Fluorinated analogues of lepidilines A and C: Synthesis and screening of their anticancer and antiviral activity. Molecules, 2022, 27(11), 3524.
[http://dx.doi.org/10.3390/molecules27113524] [PMID: 35684460]
[53]
Motornov, V.; Markos, A.; Beier, P. A rhodium-catalyzed transannulation of N -(per)fluoroalkyl-1,2,3-triazoles under microwave conditions – a general route to N -(per)fluoroalkyl-substituted five-membered heterocycles. Chem. Commun. (Camb.), 2018, 54(26), 3258-3261.
[http://dx.doi.org/10.1039/C8CC01446A] [PMID: 29537032]
[54]
Bai, Z.; Huang, H.; Chen, J.; Zhang, X.; Ding, Y. Identification of novel imidazoles as IDO1 inhibitors through microwave‐assisted one‐pot multicomponent reactions. Arch. Pharm. (Weinheim), 2019, 352(11), 1900165.
[http://dx.doi.org/10.1002/ardp.201900165] [PMID: 31482583]
[55]
Knoop, J.E.; Alston, J.R. Microwave-assisted Synthesis of 1-(perfluorohexyl)-3-methylimidazolium iodide. MRS Adv., 2020, 5(27-28), 1449-1456.
[http://dx.doi.org/10.1557/adv.2019.484]
[56]
Baldwin, I. R.; Down, K. D.; Faulder, P.; Gaines, S.; Hamblin, J. N.; Le, J.; Lunniss, C. J.; Parr, N. J.; Ritchie, T. J.; Robinson, J.E.; Simpson, J.K.; Smethurst, C.A.P. Benzpyrazol derivatives as inhibitors of PI3 kinases. WO 2009/147188/A1, 2009.
[57]
Baldwin, I.R.; Down, K.D.; Faulder, P.; Gaines, S.; Hamblin, J.N.; Jones, K.L.; Jones, P.S.; Le, J.; Lunniss, C.J.; Parr, N.J.; Ritchie, T.J.; Robinson, J.E.; Simpson, J.K.; Smethurst, C.A.P. Benzpyrazole derivatives as inhibitors of p13 kinases. WO 2011/067365 A1, 2011.
[58]
Desai, N.C.; Kotadiya, G.M.; Trivedi, A.R.; Khedkar, V.M.; Jha, P.C. Design, synthesis, and biological evaluation of novel fluorinated pyrazole encompassing pyridyl 1,3,4-oxadiazole motifs. Med. Chem. Res., 2016, 25(11), 2698-2717.
[http://dx.doi.org/10.1007/s00044-016-1683-y]
[59]
Yadlapalli, R.K.; Chourasia, O.P.; Vemuri, K.; Sritharan, M.; Perali, R.S. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group. Bioorg. Med. Chem. Lett., 2012, 22(8), 2708-2711.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.101] [PMID: 22437116]
[60]
Fajkis, N.; Marcinkowska, M.; Gryzło, B.; Krupa, A.; Kolaczkowski, M. Study on a three-step rapid assembly of zolpidem and its fluorinated analogues employing microwave-assisted chemistry. Molecules, 2020, 25(14), 3161.
[http://dx.doi.org/10.3390/molecules25143161] [PMID: 32664332]
[61]
Humphries, P.S.; Finefield, J.M. Microwave-assisted synthesis utilizing supported reagents: a rapid and versatile synthesis of 1,5-diarylpyrazoles. Tetrahedron Lett., 2006, 47(14), 2443-2446.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.100]
[62]
Sloop, J.C.; Jackson, J.L.; Schmidt, R.D. Microwave-mediated pyrazole fluorinations using selectfluor®. Heteroatom Chem., 2009, 20(6), 341-345.
[http://dx.doi.org/10.1002/hc.20556]
[63]
Guillou, S.; Bonhomme, F.J.; Chahine, D.B.; Nesme, O.; Janin, Y.L. N-arylation of 3-alkoxypyrazoles, the case of the pyridines. Tetrahedron, 2010, 66(14), 2654-2663.
[http://dx.doi.org/10.1016/j.tet.2010.02.032]
[64]
Martins, M.A.P.; Beck, P.H.; Moreira, D.N.; Buriol, L.; Frizzo, C.P.; Zanatta, N.; Bonacorso, H.G. Straightforward microwave-assisted synthesis of 1-carboxymethyl-5-trifluoromethyl-5-hydroxy-4,5-dihydro-1H -pyrazoles under solvent-free conditions. J. Heterocycl. Chem., 2010, 47(2) NA.
[http://dx.doi.org/10.1002/jhet.309]
[65]
Sudeep, S.; Tathagata, D.; Somila, K.; Jyothi, Y. Microwave assisted synthesis of fluoro-pyrazole derivatives for antiinflammatory activity. Res. J. Pharm. Technol., 2011, 4(3), 413-419.
[66]
Karad, S.C.; Purohit, V.B.; Raval, D.K. Design, synthesis and characterization of fluoro substituted novel pyrazolylpyrazolines scaffold and their pharmacological screening. Eur. J. Med. Chem., 2014, 84, 51-58.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.008] [PMID: 25016227]
[67]
Zolfigol, M.A.; Ardeshir, K.; Ahmad Reza, M.Z.; Zare, A.; Ali Reza, H. An efficient protocol for the synthesis of carboacyclic nucleosides via aza-conjugate addition reaction. Iran. J. Chem. Chem. Eng., 2010, 29(4), 67-73.
[http://dx.doi.org/10.30492/ijcce.2010.6406]
[68]
Mansouri, A-E.E.; Zahouily, M.; Lazrek, H.B. HMDS/KI a simple, a cheap and efficient catalyst for the one-pot synthesis of N -functionalized pyrimidines. Synth. Commun., 2019, 49(14), 1802-1812.
[http://dx.doi.org/10.1080/00397911.2019.1602655]
[69]
Lahsasni, S.A. Microwave- and ultrasound-assisted synthesis of some acyclonucleobases based on a uracil moiety using dmap as base. Nucleosides Nucleotides Nucleic Acids, 2013, 32(8), 439-452.
[http://dx.doi.org/10.1080/15257770.2013.809457] [PMID: 23895354]
[70]
Zare, A.; Hasaninejad, A.; Khalafi-Nezhad, A.; Moosavi-Zare, A.R.; Beyzavi, M.H.; Khedri, F.; Asadi, F.; Hayati, N.; Asifi, A. A highly efficient protocol for the synthesis of N-aryl nucleobases using zinc oxide in ionic liquids. J. Indian Chem. Soc., 2010, 7(2), 461-469.
[http://dx.doi.org/10.1007/BF03246033]
[71]
Gong, Y.; Chen, L.; Zhang, W.; Salter, R. Transglycosylation in the modification and isotope labeling of pyrimidine nucleosides. Org. Lett., 2020, 22(14), 5577-5581.
[http://dx.doi.org/10.1021/acs.orglett.0c01941] [PMID: 32628494]
[72]
Crouch, D.J.; Sparrowe, D.; Heeney, M.; McCulloch, I.; Skabara, P.J. Polyterthiophenes incorporating 3,4-difluorothiophene units: Application in organic field-effect transistors. Macromol. Chem. Phys., 2010, 211(24), 2642-2648.
[http://dx.doi.org/10.1002/macp.201000363]
[73]
Pérez-Perarnau, A.; Preciado, S.; Palmeri, C.M.; Moncunill-Massaguer, C.; Iglesias-Serret, D.; González-Gironès, D.M.; Miguel, M.; Karasawa, S.; Sakamoto, S.; Cosialls, A.M.; Rubio-Patiño, C.; Saura-Esteller, J.; Ramón, R.; Caja, L.; Fabregat, I.; Pons, G.; Handa, H.; Albericio, F.; Gil, J.; Lavilla, R. A trifluorinated thiazoline scaffold leading to pro-apoptotic agents targeting prohibitins. Angew. Chem. Int. Ed., 2014, 53(38), 10150-10154.
[http://dx.doi.org/10.1002/anie.201405758] [PMID: 25196378]
[74]
Huang, J.; Huang, Y.; Wang, T.; Huang, Q.; Wang, Z.; Chen, Z. Microwave-assisted Cp*Co III -catalyzed C–H activation/double C–N bond formation reactions to thiadiazine 1-oxides. Org. Lett., 2017, 19(5), 1128-1131.
[http://dx.doi.org/10.1021/acs.orglett.7b00120] [PMID: 28212044]
[75]
Dhotre, B.K.; Dobhalb, B.S.; Raut, S.; Kalea, A.; Arif, P.M.; Singh Dobhal, B.; Raut, S.; Kale, A.; Arif, P.M. An efficient and one spot synthesis of silica supported synthesis of fluorinated 1,3,4-thiadiazole derivative under microwave irradiation. Chem. J., 2020, (2)
[76]
Redon, S.; Kabri, Y.; Crozet, M.D.; Vanelle, P. One-pot preparation of 2-(alkyl)arylbenzoselenazoles from the corresponding N-(acetyl)benzoyl-2-iodoanilines via a microwave-assisted methodology. Tetrahedron Lett., 2014, 55(36), 5052-5054.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.055]
[77]
Hua, G.; Woollins, J.D. Formation and reactivity of phosphorus-selenium rings. Angew. Chem. Int. Ed., 2009, 48(8), 1368-1377.
[http://dx.doi.org/10.1002/anie.200800572] [PMID: 19053094]
[78]
Radatz, C.S.; Alves, D.; Schneider, P.H. Direct synthesis of 2-aryl-1,3-benzoselenazoles by reaction of bis(2-aminophenyl) diselenides with aryl aldehydes using sodium metabisulfite. Tetrahedron, 2013, 69(4), 1316-1321.
[http://dx.doi.org/10.1016/j.tet.2012.11.091]
[79]
Kumar, S.; Johansson, H.; Engman, L.; Valgimigli, L.; Amorati, R.; Fumo, M.G.; Pedulli, G.F. Regenerable chain-breaking 2,3-dihydrobenzo[ b]selenophene-5-ol antioxidants. J. Org. Chem., 2007, 72(7), 2583-2595.
[http://dx.doi.org/10.1021/jo0700023] [PMID: 17335240]
[80]
Keglevich, G. Microwave-assisted synthesis of P-heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189(7-8), 1266-1278.
[http://dx.doi.org/10.1080/10426507.2014.885974]
[81]
Svyaschenko, Y.V.; Kostyuk, A.N.; Barnych, B.B.; Volochnyuk, D.M. A convenient approach to λ5-phosphinines via interaction of phosphorylated 3-pyrrolidinocrotonitrile with 2-bromoacetophenones. Tetrahedron, 2007, 63(25), 5656-5664.
[http://dx.doi.org/10.1016/j.tet.2007.03.172]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy