Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Recent Emerging Trend in Stem Cell Therapy Risk Factors

Author(s): Bahareh Pourjabbar, Forough Shams, Maryam Moghadam, Milad Ahani-Nahayati, Arezo Azari, Farshid Sefat and Saeed Heidari Keshel*

Volume 18, Issue 8, 2023

Published on: 25 January, 2023

Page: [1076 - 1089] Pages: 14

DOI: 10.2174/1574888X18666221223104859

Price: $65

Abstract

Different types of stem cells have remarkable characteristics such as high proliferation rate, multi/pluripotency, self-renewal, and broad differentiation that can effectively treat diseases, cancers, and damage. Despite abundant therapeutic applications of stem cells in medical science, numerous risks threaten stem cell transplantation. Tumor development, immune response, cellular senescence, dosage effects, and administration timing are critical risks that should be considered in stem cell therapy. Hence, an investigation of possible risks is required before utilizing stem cell-based medicinal products in the clinical phase and human trials. This review aims to survey the literature and perspectives on the advantages and risks associated with pluripotent and multipotent stem cells.

Graphical Abstract

[1]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5]
[2]
Cheng N, Yao H-l, Reid LM. Hepatic stem cells: Lineage biology and pluripotency. In: Principles of Regenerative Medicine. Burlington, USA: Elsevier 2008; p. 344.
[3]
Wobus AM, Boheler KR. Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol Rev 2005; 85(2): 635-78.
[http://dx.doi.org/10.1152/physrev.00054.2003]
[4]
Alonso-Goulart V, Ferreira LB, Duarte CA, et al. Mesenchymal stem cells from human adipose tissue and bone repair: A literature review. Biotechnol Res Innovat 2018; 2(1): 74-80.
[http://dx.doi.org/10.1016/j.biori.2017.10.005]
[5]
Seale P, Asakura A, Rudnicki MA. The potential of muscle stem cells. Dev Cell 2001; 1(3): 333-42.
[http://dx.doi.org/10.1016/S1534-5807(01)00049-1]
[6]
Choi EW. Adult stem cell therapy for autoimmune disease. Int J Stem Cells 2009; 2(2): 122-8.
[http://dx.doi.org/10.15283/ijsc.2009.2.2.122]
[7]
Chu DT, Nguyen TT, Tien NLB, et al. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells 2020; 9(3): 563.
[http://dx.doi.org/10.3390/cells9030563]
[8]
Gupta PK, Das AK, Chullikana A, Majumdar AS. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 2012; 3(4): 25.
[http://dx.doi.org/10.1186/scrt116]
[9]
Nandoe Tewarie RS, Hurtado A, Bartels RH, Grotenhuis A, Oudega M. Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 2009; 32(2): 105-14.
[10]
Kim JH, Lee S-R, Song YS, Lee HJ. Stem cell therapy in bladder dysfunction: Where are we? And where do we have to go? Biomed Res Int 2013; 930713.
[http://dx.doi.org/10.1155/2013/930713]
[11]
Pourjabbar B, Biazar E, Heidari Keshel S, Ahani-Nahayati M, Baradaran-Rafii A, Roozafzoon R, et al. Bio-polymeric hydrogels for regeneration of corneal epithelial tissue. Int J Polym Mater Polym Biomater 2021; 1-18.
[12]
Ahani-Nahayati M, Niazi V, Moradi A, et al. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17(2): 147-65.
[13]
Mezey É, Nemeth K. Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunol Lett 2015; 168(2): 208-14.
[http://dx.doi.org/10.1016/j.imlet.2015.05.020]
[14]
Hassan AU, Hassan G, Rasool Z. Role of stem cells in treatment of neurological disorder. Int J Health Sci 2009; 3(2): 227.
[15]
Chanda D, Isayeva T, Kumar S, et al. Therapeutic potential of adult bone marrow–derived mesenchymal stem cells in prostate cancer bone metastasis. Clin Cancer Res 2009; 15(23): 7175-85.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1938]
[16]
Pontikoglou C, Deschaseaux F, Sensebé L, Papadaki HA. Bone marrow mesenchymal stem cells: Biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation. Stem Cell Rev 2011; 7(3): 569-89.
[http://dx.doi.org/10.1007/s12015-011-9228-8]
[17]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905]
[18]
Ebelt H, Jungblut M, Zhang Y, et al. Cellular cardiomyoplasty: Improvement of left ventricular function correlates with the release of cardioactive cytokines. Stem Cells 2007; 25(1): 236-44.
[http://dx.doi.org/10.1634/stemcells.2006-0374]
[19]
Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99(10): 3838-43.
[http://dx.doi.org/10.1182/blood.V99.10.3838]
[20]
Miao C, Lei M, Hu W, Han S, Wang Q. A brief review: The therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther 2017; 8(1): 242.
[http://dx.doi.org/10.1186/s13287-017-0697-9]
[21]
Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res Ther 2018; 9(1): 168.
[http://dx.doi.org/10.1186/s13287-018-0914-1]
[22]
Beane OS, Darling EM. Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann Biomed Eng 2012; 40(10): 2079-97.
[http://dx.doi.org/10.1007/s10439-012-0639-8]
[23]
Kowal JM, Möller S, Ali D, et al. Identification of a clinical signature predictive of differentiation fate of human bone marrow stromal cells. Stem Cell Res Ther 2021; 12(1): 265.
[http://dx.doi.org/10.1186/s13287-021-02338-1]
[24]
Rodríguez-Lozano FJ, Oñate-Sánchez R, Gonzálvez-García M, et al. Allogeneic bone marrow mesenchymal stem cell transplantation in tooth extractions sites ameliorates the incidence of osteonecrotic jaw-like lesions in zoledronic acid-treated rats. J Clin Med 2020; 9(6): 1649.
[http://dx.doi.org/10.3390/jcm9061649]
[25]
Kaibuchi N, Iwata T, Okamoto T, Kawase-Koga Y, Yamato M. Cell therapy for medication-related osteonecrosis of the jaw: Update on treatment strategies. Eur Cell Mater 2021; 41: 31-9.
[http://dx.doi.org/10.22203/eCM.v041a03]
[26]
Anzalone R, Opatrilova R, Kruzliak P, Gerbino A, La Rocca G. Mesenchymal stromal cells from wharton’s jelly (WJ-MSCs): Coupling their hidden differentiative program to their frank immunomodulatory phenotype Perinatal Stem Cells. Elsevier 2018; pp. 271-9.
[27]
Anzalone R, Iacono ML, Corrao S, et al. New emerging potentials for human wharton’s jelly mesenchymal stem cells: Immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev 2010; 19(4): 423-38.
[http://dx.doi.org/10.1089/scd.2009.0299]
[28]
Charbord P. Bone marrow mesenchymal stem cells: Historical overview and concepts. Hum Gene Ther 2010; 21(9): 1045-56.
[http://dx.doi.org/10.1089/hum.2010.115]
[29]
Pourjabbar B, Latifi P, Soleimani M, Jamaati H, Hashemian SM, Mortazavi SM. Cell therapy based SARS-cov 2-2019 managements: A literature review. Regen Reconstr Restor 2020; 5: e7.
[30]
Nitkin CR, Bonfield TL. Concise review: Mesenchymal stem cell therapy for pediatric disease: perspectives on success and potential improvements. Stem Cells Transl Med 2017; 6(2): 539-65.
[http://dx.doi.org/10.5966/sctm.2015-0427]
[31]
Dai R, Wang Z, Samanipour R, Koo K-I, Kim K. Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells Int 2016; 6737345.
[http://dx.doi.org/10.1155/2016/6737345]
[32]
Wankhade UD, Shen M, Kolhe R, Fulzele S. Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int 2016; 3206807.
[http://dx.doi.org/10.1155/2016/3206807]
[33]
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7(2): 211-28.
[http://dx.doi.org/10.1089/107632701300062859]
[34]
Miana VV, Prieto GEA. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 2018; 12: 12.
[http://dx.doi.org/10.3332/ecancer.2018.822]
[35]
McIntosh K, Zvonic S, Garrett S, et al. The immunogenicity of human adipose‐derived cells: Temporal changes in vitro. Stem Cells 2006; 24(5): 1246-53.
[http://dx.doi.org/10.1634/stemcells.2005-0235]
[36]
Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9(1): 12.
[http://dx.doi.org/10.1186/1478-811X-9-12]
[37]
Law S, Chaudhuri S. Mesenchymal stem cell and regenerative medicine: Regeneration versus immunomodulatory challenges. Am J Stem Cells 2013; 2(1): 22.
[38]
Pigott JH, Ishihara A, Wellman ML, Russell DS, Bertone AL. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol 2013; 156(1-2): 99-106.
[http://dx.doi.org/10.1016/j.vetimm.2013.09.003]
[39]
Majka M, Sułkowski M, Badyra B. Regeneration of ischemic cardiovascular damage using wharton’s jelly as an unlimited source of therapeutic stem cells. In: Perinatal Stem Cells. Academic Press 2018; pp. 281-9.
[40]
Chen G, Yue A, Ruan Z, et al. Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium. PLoS One 2014; 9(6): e98565.
[http://dx.doi.org/10.1371/journal.pone.0098565]
[41]
Sadlik B, Jaroslawski G, Puszkarz M, et al. Cartilage repair in the knee using umbilical cord wharton’s jelly–derived mesenchymal stem cells embedded onto collagen scaffolding and implanted under dry arthroscopy. Arthrosc Tech 2018; 7(1): e57-63.
[http://dx.doi.org/10.1016/j.eats.2017.08.055]
[42]
Najar M, Raicevic G, Jebbawi F, et al. Characterization and functionality of the CD200–CD200R system during mesenchymal stromal cell interactions with T-lymphocytes. Immunol Lett 2012; 146(1-2): 50-6.
[http://dx.doi.org/10.1016/j.imlet.2012.04.017]
[43]
Kögler G, Sensken S, Airey JA, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200(2): 123-35.
[http://dx.doi.org/10.1084/jem.20040440]
[44]
Ahani-Nahayati M, Niazi V, Moradi A, et al. Umbilical cord mesenchymal stem/stromal cells potential to treat organ disorders; an emerging strategy. Curr Stem Cell Res Ther 2021; 17(2): 126-46.
[45]
Degistirici Ö, Jäger M, Knipper A. Applicability of cord blood-derived unrestricted somatic stem cells in tissue engineering concepts. Cell Prolif 2008; 41(3): 421-40.
[http://dx.doi.org/10.1111/j.1365-2184.2008.00536.x]
[46]
Zeinali R, Biazar E, Keshel SH, Tavirani MR, Asadipour K. Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J 2014; 60(1): 106-14.
[http://dx.doi.org/10.1097/MAT.0000000000000025]
[47]
Liao Y, Itoh M, Yang A, et al. Human cord blood-derived unrestricted somatic stem cells promote wound healing and have therapeutic potential for patients with recessive dystrophic epidermolysis bullosa. Cell Transplant 2014; 23(3): 303-17.
[http://dx.doi.org/10.3727/096368913X663569]
[48]
Kögler G, Radke TF, Lefort A, et al. Cytokine production and hematopoiesis supporting activity of cord blood–derived unrestricted somatic stem cells. Exp Hematol 2005; 33(5): 573-83.
[http://dx.doi.org/10.1016/j.exphem.2005.01.012]
[49]
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154-6.
[50]
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci 1981; 78(12): 7634-8.
[http://dx.doi.org/10.1073/pnas.78.12.7634]
[51]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
[52]
Boroviak T, Loos R, Bertone P, Smith A, Nichols J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 2014; 16(6): 513-25.
[http://dx.doi.org/10.1038/ncb2965]
[53]
Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nat Biotechnol 2000; 18(4): 399-404.
[http://dx.doi.org/10.1038/74447]
[54]
Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci 2018; 15(1): 36-45.
[http://dx.doi.org/10.7150/ijms.21666]
[55]
Heidari-Keshel S, Soleimani M, Ebrahimi M, Heidari MH. Evaluation of pluripotency gene expression in mouse embryonic stem cell cultured on the human feeder layer. J Paramed Sci 2010; 1(2): 32-7.
[56]
Amit M, Margulets V, Segev H, et al. Human feeder layers for human embryonic stem cells. Biol Reprod 2003; 68(6): 2150-6.
[http://dx.doi.org/10.1095/biolreprod.102.012583]
[57]
Keshel SH, Soleimani M, Tavirani MR, et al. Evaluation of unrestricted somatic stem cells as a feeder layer to support undifferentiated embryonic stem cells. Mol Reprod Dev 2012; 79(10): 709-18.
[http://dx.doi.org/10.1002/mrd.22079]
[58]
Shroff G, Gupta R. Human embryonic stem cells in the treatment of patients with spinal cord injury. Ann Neurosci 2015; 22(4): 208.
[http://dx.doi.org/10.5214/ans.0972.7531.220404]
[59]
Zhou S, Flamier A, Abdouh M, et al. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling. Development 2015; 142(19): 3294-306.
[http://dx.doi.org/10.1242/dev.125385]
[60]
Shiba Y, Fernandes S, Zhu WZ, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012; 489(7415): 322-5.
[http://dx.doi.org/10.1038/nature11317]
[61]
Fernandes S, Chong JJH, Paige SL, et al. Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Reports 2015; 5(5): 753-62.
[http://dx.doi.org/10.1016/j.stemcr.2015.09.011]
[62]
Vedantham V. New approaches to biological pacemakers: Links to sinoatrial node development. Trends Mol Med 2015; 21(12): 749-61.
[http://dx.doi.org/10.1016/j.molmed.2015.10.002]
[63]
Avior Y, Levy G, Zimerman M, et al. Microbial‐derived lithocholic acid and vitamin K 2 drive the metabolic maturation of pluripotent stem cells–derived and fetal hepatocytes. Hepatology 2015; 62(1): 265-78.
[http://dx.doi.org/10.1002/hep.27803]
[64]
Tolosa L, Caron J, Hannoun Z, et al. Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther 2015; 6(1): 246.
[http://dx.doi.org/10.1186/s13287-015-0227-6]
[65]
Carpentier A, Nimgaonkar I, Chu V, Xia Y, Hu Z, Liang TJ. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen. Stem Cell Res 2016; 16(3): 640-50.
[http://dx.doi.org/10.1016/j.scr.2016.03.009]
[66]
Bruin JE, Saber N, Braun N, et al. Treating diet-induced diabetes and obesity with human embryonic stem cell-derived pancreatic progenitor cells and antidiabetic drugs. Stem Cell Reports 2015; 4(4): 605-20.
[http://dx.doi.org/10.1016/j.stemcr.2015.02.011]
[67]
Salguero-Aranda C, Tapia-Limonchi R, Cahuana GM, et al. Differentiation of mouse embryonic stem cells toward functional pancreatic β-cell surrogates through epigenetic regulation of Pdx1 by nitric oxide. Cell Transplant 2016; 25(10): 1879-92.
[http://dx.doi.org/10.3727/096368916X691178]
[68]
Cheng A, Kapacee Z, Peng J, et al. Cartilage repair using human embryonic stem cell‐derived chondroprogenitors. Stem Cells Transl Med 2014; 3(11): 1287-94.
[http://dx.doi.org/10.5966/sctm.2014-0101]
[69]
Goldthwaite CA Jr. (2016) The promise of induced pluripotent stem cells (iPSCs). National Institutes of Health, U.S. Department of Health and Human Services. https://stemcells.nih.gov/info/Regenerative_ Medicine/2006Chapter10.htm
[70]
Kumar D, Anand T, Kues WA. Clinical potential of human-induced pluripotent stem cells. Cell Biol Toxicol 2017; 33(2): 99-112.
[http://dx.doi.org/10.1007/s10565-016-9370-9]
[71]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[72]
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448(7151): 313-7.
[73]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[74]
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
[75]
Nagoshi N, Tsuji O, Nakamura M, Okano H. Cell therapy for spinal cord injury using induced pluripotent stem cells. Regen Ther 2019; 11: 75-80.
[http://dx.doi.org/10.1016/j.reth.2019.05.006]
[76]
Daley GQ, Lensch MW, Jaenisch R, Meissner A, Plath K, Yamanaka S. Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 2009; 4(3): 200-1.
[http://dx.doi.org/10.1016/j.stem.2009.02.009]
[77]
Herberts CA, Kwa MSG, Hermsen HPH. Risk factors in the development of stem cell therapy. J Transl Med 2011; 9(1): 29.
[http://dx.doi.org/10.1186/1479-5876-9-29]
[78]
Master Z, McLeod M, Mendez I. Benefits, risks and ethical considerations in translation of stem cell research to clinical applications in Parkinson’s disease. J Med Ethics 2007; 33(3): 169-73.
[http://dx.doi.org/10.1136/jme.2005.013169]
[79]
Elgaz S, Kuçi Z, Kuçi S, Bönig H, Bader P. Clinical use of mesenchymal stromal cells in the treatment of acute graft-versus-host disease. Transfus Med Hemother 2019; 46(1): 27-34.
[http://dx.doi.org/10.1159/000496809]
[80]
Trento C, Bernardo ME, Nagler A, et al. Manufacturing mesenchymal stromal cells for the treatment of graft-versus-host disease: A survey among centers affiliated with the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2018; 24(11): 2365-70.
[http://dx.doi.org/10.1016/j.bbmt.2018.07.015]
[81]
Ohm JE, Mali P, Van Neste L, et al. Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res 2010; 70(19): 7662-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1361]
[82]
Mousavinejad M, Andrews PW, Shoraki EK. Current biosafety considerations in stem cell therapy. Cell J (Yakhteh) 2016; 18(2): 281.
[83]
Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19(8): 998-1004.
[http://dx.doi.org/10.1038/nm.3267]
[84]
Tan Y, Ooi S, Wang L. Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: Genetic and epigenetic perspectives. Curr Stem Cell Res Ther 2013; 9(1): 63-72.
[http://dx.doi.org/10.2174/1574888X113086660068]
[85]
Haase A, Olmer R, Schwanke K, et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 2009; 5(4): 434-41.
[http://dx.doi.org/10.1016/j.stem.2009.08.021]
[86]
Martin U. Therapeutic application of pluripotent stem cells: Challenges and risks. Front Med 2017; 4: 229.
[http://dx.doi.org/10.3389/fmed.2017.00229]
[87]
Prokhorova TA, Harkness LM, Frandsen U, et al. Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 2009; 18(1): 47-54.
[http://dx.doi.org/10.1089/scd.2007.0266]
[88]
Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26(4): 443-52.
[http://dx.doi.org/10.1038/nbt1393]
[89]
Liu X, Li W, Fu X, Xu Y. The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Front Immunol 2017; 8: 645.
[http://dx.doi.org/10.3389/fimmu.2017.00645]
[90]
Khandany B, Heidari MM, Khatami M. Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy. Iran J Pediatr Hematol Oncol 2019; 9(2): 117-30.
[http://dx.doi.org/10.18502/ijpho.v9i2.611]
[91]
Saldanha S, Royston K, Udayakumar N, Tollefsbol T. Epigenetic regulation of epidermal stem cell biomarkers and their role in wound healing. Int J Mol Sci 2015; 17(1): 16.
[http://dx.doi.org/10.3390/ijms17010016]
[92]
Luo Y, Liu C, Cerbini T, et al. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator‐like effector nucleases. Stem Cells Transl Med 2014; 3(7): 821-35.
[http://dx.doi.org/10.5966/sctm.2013-0212]
[93]
Zhang CL, Huang T, Wu BL, He WX, Liu D. Stem cells in cancer therapy: Opportunities and challenges. Oncotarget 2017; 8(43): 75756-66.
[http://dx.doi.org/10.18632/oncotarget.20798]
[94]
Schriebl K, Satianegara G, Hwang A, et al. Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody. Tissue Eng Part A 2012; 18(9-10): 899-909.
[http://dx.doi.org/10.1089/ten.tea.2011.0311]
[95]
Xu G, McLeod HL. Strategies for enzyme/prodrug cancer therapy. Clin Cancer Res 2001; 7(11): 3314-24.
[96]
Malecki M, LaVanne C, Alhambra D, Dodivenaka C, Nagel S, Malecki R. Safeguarding stem cell-based regenerative therapy against iatrogenic cancerogenesis: Transgenic expression of DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA1 promoter in proliferating and directed differentiation resisting human autologous pluripotent induced stem cells leads to their death. Stem Cell Res Ther 2013; (5): 21559.
[97]
Patel M, Yang S. Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev 2010; 6(3): 367-80.
[http://dx.doi.org/10.1007/s12015-010-9123-8]
[98]
Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008; 454(7204): 646-50.
[99]
Loh YH, Wu Q, Chew JL, et al. The Oct4 and nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38(4): 431-40.
[http://dx.doi.org/10.1038/ng1760]
[100]
Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448(7151): 318-24.
[101]
Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011; 11(4): 268-77.
[http://dx.doi.org/10.1038/nrc3034]
[102]
Goldring CEP, Duffy PA, Benvenisty N, et al. Assessing the safety of stem cell therapeutics. Cell Stem Cell 2011; 8(6): 618-28.
[http://dx.doi.org/10.1016/j.stem.2011.05.012]
[103]
Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S. Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci 2010; 107(32): 14152-7.
[http://dx.doi.org/10.1073/pnas.1009374107]
[104]
Talluri TR, Kumar D, Glage S, Garrels W, Ivics Z, Debowski K, et al. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell Reprogramming 2015; 34(4): e15028.
[http://dx.doi.org/10.1089/cell.2014.0080]
[105]
Shams F, Rahimpour A, Vahidnezhad H, et al. The utility of dermal fibroblasts in treatment of skin disorders: A paradigm of recessive dystrophic epidermolysis bullosa. Dermatol Ther 2021; 34(4): e15028.
[106]
Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324(5928): 797-801.
[http://dx.doi.org/10.1126/science.1172482]
[107]
Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008; 322(5903): 945-9.
[http://dx.doi.org/10.1126/science.1162494]
[108]
Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 2008; 3(5): 568-74.
[http://dx.doi.org/10.1016/j.stem.2008.10.004]
[109]
Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7(5): 618-30.
[http://dx.doi.org/10.1016/j.stem.2010.08.012]
[110]
Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4(5): 381-4.
[http://dx.doi.org/10.1016/j.stem.2009.04.005]
[111]
Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7(2): 315.
[http://dx.doi.org/10.4252/wjsc.v7.i2.315]
[112]
Kumar D, Talluri TR, Anand T, Kues WA. Transposon-based reprogramming to induced pluripotency. Histol Histopathol 2015; 30(12): 1397.
[113]
Davis RP, Nemes C, Varga E, et al. Generation of induced pluripotent stem cells from human foetal fibroblasts using the sleeping beauty transposon gene delivery system. Differentiation 2013; 86(1-2): 30-7.
[http://dx.doi.org/10.1016/j.diff.2013.06.002]
[114]
Wang Y, Liu J, Jiang Q, et al. Human adipose‐derived mesenchymal stem cell‐secreted CXCL1 and CXCL8 facilitate breast tumor growth by promoting angiogenesis. Stem Cells 2017; 35(9): 2060-70.
[http://dx.doi.org/10.1002/stem.2643]
[115]
Paino F, La Noce M, Di Nucci D, Nicoletti GF, Salzillo R, De Rosa A, et al. Human adipose stem cell differentiation is highly affected by cancer cells both in vitro and in vivo: Implication for autologous fat grafting. Cell Death Dis 2018; 8(1): e2568.
[http://dx.doi.org/10.1038/cddis.2016.308]
[116]
Ingulli E. Mechanism of cellular rejection in transplantation. Pediatr Nephrol 2010; 25(1): 61-74.
[http://dx.doi.org/10.1007/s00467-008-1020-x]
[117]
Marino J, Paster J, Benichou G. Allorecognition by T lymphocytes and allograft rejection. Front Immunol 2016; 7: 582.
[http://dx.doi.org/10.3389/fimmu.2016.00582]
[118]
Otsuka R, Wada H, Murata T, Seino K. Immune reaction and regulation in transplantation based on pluripotent stem cell technology. Inflamm Regen 2020; 40(1): 12.
[http://dx.doi.org/10.1186/s41232-020-00125-8]
[119]
Joswig AJ, Mitchell A, Cummings KJ, et al. Repeated intra-articular injection of allogeneic mesenchymal stem cells causes an adverse response compared to autologous cells in the equine model. Stem Cell Res Ther 2017; 8(1): 42.
[http://dx.doi.org/10.1186/s13287-017-0503-8]
[120]
Lohan P, Treacy O, Griffin MD, Ritter T, Ryan AE. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: Are we still learning? Front Immunol 2017; 8: 1626.
[http://dx.doi.org/10.3389/fimmu.2017.01626]
[121]
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Int J Stem Cells 2019; 9628536.
[http://dx.doi.org/10.1155/2019/9628536]
[122]
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: Immune evasive, not immune privileged. Nat Biotechnol 2014; 32(3): 252-60.
[http://dx.doi.org/10.1038/nbt.2816]
[123]
Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 2014; 15(2): 154-68.
[http://dx.doi.org/10.1016/j.stem.2014.06.008]
[124]
Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466(7308): 829-34.
[125]
Shi Y, Hu G, Su J, et al. Mesenchymal stem cells: A new strategy for immunosuppression and tissue repair. Cell Res 2010; 20(5): 510-8.
[http://dx.doi.org/10.1038/cr.2010.44]
[126]
Thin Luu N, Mcgettrick HM, Buckley CD, et al. Crosstalk between mesenchymal stem cells and endothelial cells leads to downregulation of cytokine‐induced leukocyte recruitment. Stem Cells 2013; 31(12): 2690-702.
[http://dx.doi.org/10.1002/stem.1511]
[127]
Ren G, Zhao X, Wang Y, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 2012; 11(6): 812-24.
[http://dx.doi.org/10.1016/j.stem.2012.08.013]
[128]
Qi K, Li N, Zhang Z, Melino G. Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cell Immunol 2018; 326: 86-93.
[http://dx.doi.org/10.1016/j.cellimm.2017.11.010]
[129]
Cho KA, Lee JK, Kim YH, Park M, Woo SY, Ryu KH. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell Mol Immunol 2017; 14(11): 895-908.
[http://dx.doi.org/10.1038/cmi.2016.59]
[130]
Galleu A, Riffo-Vasquez Y, Trento C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 2017; 9(416): eaam7828.
[http://dx.doi.org/10.1126/scitranslmed.aam7828]
[131]
Zarniko N, Skorska A, Steinhoff G, David R, Gaebel R. Dose-independent therapeutic benefit of bone marrow stem cell transplantation after mi in mice. Biomedicines 2020; 8(6): 157.
[http://dx.doi.org/10.3390/biomedicines8060157]
[132]
Marks PW, Witten CM, Califf RM. Clarifying stem-cell therapy’s benefits and risks. N Engl J Med 2017; 376(11): 1007-9.
[http://dx.doi.org/10.1056/NEJMp1613723]
[133]
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regener Med 2019; 4(1): 1-15.
[134]
Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11(5): 389-98.
[http://dx.doi.org/10.1016/j.bbmt.2005.02.001]
[135]
Huang XP, Sun Z, Miyagi Y, et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 2010; 122(23): 2419-29.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.955971]
[136]
Zhang J, Huang X, Wang H, et al. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Res Ther 2015; 6(1): 234.
[http://dx.doi.org/10.1186/s13287-015-0240-9]
[137]
Gu LH, Zhang TT, Li Y, Yan HJ, Qi H, Li FR. Immunogenicity of allogeneic mesenchymal stem cells transplanted via different routes in diabetic rats. Cell Mol Immunol 2015; 12(4): 444-55.
[http://dx.doi.org/10.1038/cmi.2014.70]
[138]
Schira J, Falkenberg H, Hendricks M, et al. Characterization of regenerative phenotype of unrestricted somatic stem cells (USSC) from human umbilical cord blood (hUCB) by functional secretome analysis. Mol Cell Proteomics 2015; 14(10): 2630-43.
[http://dx.doi.org/10.1074/mcp.M115.049312]
[139]
Winter M, Wang XN, Däubener W, et al. Suppression of cellular immunity by cord blood‐derived unrestricted somatic stem cells is cytokine‐dependent. J Cell Mol Med 2009; 13(8b): 2465-75.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00566.x]
[140]
Fishman JA. Overview: Cytomegalovirus and the herpesviruses in transplantation. Am J Transplant 2013; 13(s3): 1-8.
[http://dx.doi.org/10.1111/ajt.12002]
[141]
Preynat-Seauve O, de Rham C, Tirefort D, Ferrari-Lacraz S, Krause KH, Villard J. Neural progenitors derived from human embryonic stem cells are targeted by allogeneic T and natural killer cells. J Cell Mol Med 2009; 13(9b): 3556-69.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00746.x]
[142]
Weeden CE, Asselin-Labat ML. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation. Biochim Biophys Acta Mol Basis Dis 2018; 1864(1): 89-101.
[http://dx.doi.org/10.1016/j.bbadis.2017.10.015]
[143]
He S, Sharpless NE. Senescence in health and disease. Cell 2017; 169(6): 1000-11.
[http://dx.doi.org/10.1016/j.cell.2017.05.015]
[144]
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med 2018; 24(8): 1246-56.
[http://dx.doi.org/10.1038/s41591-018-0092-9]
[145]
Drela K, Stanaszek L, Nowakowski A, Kuczynska Z, Lukomska B. Experimental strategies of mesenchymal stem cell propagation: Adverse events and potential risk of functional changes. Stem Cells Int 2019; 7012692.
[http://dx.doi.org/10.1155/2019/7012692]
[146]
Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells. Int J Mol Med 2017; 39(4): 775-82.
[http://dx.doi.org/10.3892/ijmm.2017.2912]
[147]
DiGirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: A simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999; 107(2): 275-81.
[http://dx.doi.org/10.1046/j.1365-2141.1999.01715.x]
[148]
Stab BR, Martinez L, Grismaldo A, et al. Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs. Front Aging Neurosci 2016; 8: 299.
[http://dx.doi.org/10.3389/fnagi.2016.00299]
[149]
Coste C, Neirinckx V, Sharma A, et al. Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues. PLoS One 2017; 12(7): e0177962.
[http://dx.doi.org/10.1371/journal.pone.0177962]
[150]
Li P, Guo X. A review: Therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration. Stem Cell Res Ther 2018; 9(1): 302.
[http://dx.doi.org/10.1186/s13287-018-1044-5]
[151]
Yang YHK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 2018; 9(1): 131.
[http://dx.doi.org/10.1186/s13287-018-0876-3]
[152]
Khong SML, Lee M, Kosaric N, et al. Single‐cell transcriptomics of human mesenchymal stem cells reveal age‐related cellular subpopulation depletion and impaired regenerative function. Stem Cells 2019; 37(2): 240-6.
[http://dx.doi.org/10.1002/stem.2934]
[153]
Adegani FJ, Langroudi L, Arefian E, Shafiee A, Dinarvand P, Soleimani M. A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Mol Biol Rep 2013; 40(5): 3693-703.
[http://dx.doi.org/10.1007/s11033-012-2445-7]
[154]
Quyyumi AA, Waller EK, Murrow J, et al. CD34+ cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Am Heart J 2011; 161(1): 98-105.
[http://dx.doi.org/10.1016/j.ahj.2010.09.025]
[155]
van der Spoel TIG, Jansen of Lorkeers SJ, Agostoni P, et al. Human relevance of pre-clinical studies in stem cell therapy: Systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 2011; 91(4): 649-58.
[http://dx.doi.org/10.1093/cvr/cvr113]
[156]
Iwasaki H, Kawamoto A, Ishikawa M, et al. Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 2006; 113(10): 1311-25.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.541268]
[157]
Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vsautologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial. JAMA 2012; 308(22): 2369-79.
[http://dx.doi.org/10.1001/jama.2012.25321]
[158]
Hamamoto H, Gorman JH III, Ryan LP, Hinmon R, Martens TP, Schuster MD, et al. Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: The effect of cell dosage. Ann Thorac Surg 2009; 87(3): 794-801.
[http://dx.doi.org/10.1016/j.athoracsur.2008.11.057]
[159]
Golpanian S, DiFede DL, Khan A, et al. Allogeneic human mesenchymal stem cell infusions for aging frailty. J Gerontol A Biol Sci Med Sci 2017; 72(11): 1505-12.
[http://dx.doi.org/10.1093/gerona/glx056]
[160]
Packham DK, Fraser IR, Kerr PG, Segal KR. Allogeneic mesenchymal precursor cells (MPC) in diabetic nephropathy: A randomized, placebo-controlled, dose escalation study. EBioMedicine 2016; 12: 263-9.
[http://dx.doi.org/10.1016/j.ebiom.2016.09.011]
[161]
Melmed GY, Pandak WM, Casey K, et al. Human placenta-derived cells (PDA-001) for the treatment of moderate-to-severe Crohn’s disease: A phase 1b/2a study. Inflamm Bowel Dis 2015; 21(8): 1809-16.
[http://dx.doi.org/10.1097/MIB.0000000000000441]
[162]
Kabat M, Bobkov I, Kumar S, Grumet M. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range? Stem Cells Transl Med 2020; 9(1): 17-27.
[http://dx.doi.org/10.1002/sctm.19-0202]
[163]
Golpanian S, Schulman IH, Ebert RF, et al. Concise review: Review and perspective of cell dosage and routes of administration from preclinical and clinical studies of stem cell therapy for heart disease. Stem Cells Transl Med 2016; 5(2): 186-91.
[http://dx.doi.org/10.5966/sctm.2015-0101]
[164]
Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106(15): 1913-8.
[http://dx.doi.org/10.1161/01.CIR.0000034046.87607.1C]
[165]
Perin EC, Dohmann HFR, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107(18): 2294-302.
[http://dx.doi.org/10.1161/01.CIR.0000070596.30552.8B]
[166]
Wei X, Yang X, Han Z, Qu F, Shao L, Shi Y. Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacol Sin 2013; 34(6): 747-54.
[http://dx.doi.org/10.1038/aps.2013.50]
[167]
Hu X, Wang J, Chen J, et al. Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. Eur J Cardiothorac Surg 2007; 31(3): 438-43.
[http://dx.doi.org/10.1016/j.ejcts.2006.11.057]
[168]
Rigol M, Solanes N, Roura S, et al. Allogeneic adipose stem cell therapy in acute myocardial infarction. Eur J Clin Invest 2014; 44(1): 83-92.
[http://dx.doi.org/10.1111/eci.12195]
[169]
Cho PS, Messina DJ, Hirsh EL, et al. Immunogenicity of umbilical cord tissue–derived cells. Blood Am J Hematol 2008; 111(1): 430-8.
[170]
Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang SD, Borlongan C. Wharton’s jelly-derived mesenchymal stem cells: Phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 2013; 14(6): 11692-712.
[http://dx.doi.org/10.3390/ijms140611692]
[171]
Biazar E, Heidari Keshel S. Electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/hydroxyapatite scaffold with unrestricted somatic stem cells for bone regeneration. ASAIO J 2015; 61(3): 357-65.
[http://dx.doi.org/10.1097/MAT.0000000000000205]
[172]
Semenov OV, Koestenbauer S, Riegel M, et al. Multipotent mesenchymal stem cells from human placenta: Critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol 2010; 202(2): 193.e1-e13.
[http://dx.doi.org/10.1016/j.ajog.2009.10.869]
[173]
Cubillo EJ, Ngo SM, Juarez A, Gagan J, Lopez GD, Stout DA. Embryonic stem cell therapy applications for autoimmune, cardiovascular, and neurological diseases: A review. AIMS Cell Tissue Eng 2017; 1(3): 191.
[174]
Shroff G, Titus JD, Shroff R. A review of the emerging potential therapy for neurological disorders: Human embryonic stem cell therapy. Am J Stem Cells 2017; 6(1): 1.
[175]
Shroff G. A review on stem cell therapy for multiple sclerosis: Special focus on human embryonic stem cells. Stem Cells Cloning 2018; 11: 1-11.
[http://dx.doi.org/10.2147/SCCAA.S135415]
[176]
King NMP, Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res Ther 2014; 5(4): 85.
[http://dx.doi.org/10.1186/scrt474]
[177]
Swijnenburg RJ, Schrepfer S, Govaert JA, et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci 2008; 105(35): 12991-6.
[http://dx.doi.org/10.1073/pnas.0805802105]
[178]
Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH. Human induced pluripotent stem cells and neurodegenerative disease. Curr Opin Neurol 2012; 25(2): 125-30.
[http://dx.doi.org/10.1097/WCO.0b013e3283518226]
[179]
Blelloch R, Venere M, Yen J, Ramalho-Santos M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 2007; 1(3): 245-7.
[http://dx.doi.org/10.1016/j.stem.2007.08.008]
[180]
Yang M, Liu Y, Hou W, et al. Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer. Nanoscale 2017; 9(1): 334-40.
[http://dx.doi.org/10.1039/C6NR06851K]
[181]
Anguera MC, Sadreyev R, Zhang Z, et al. Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell 2012; 11(1): 75-90.
[http://dx.doi.org/10.1016/j.stem.2012.03.008]
[182]
Eminli S, Foudi A, Stadtfeld M, et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 2009; 41(9): 968-76.
[http://dx.doi.org/10.1038/ng.428]
[183]
Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010; 467(7313): 285-90.
[http://dx.doi.org/10.1038/nature09342]
[184]
Polo JM, Liu S, Figueroa ME, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 2010; 28(8): 848-55.
[http://dx.doi.org/10.1038/nbt.1667]
[185]
Doi A, Park IH, Wen B, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41(12): 1350-3.
[http://dx.doi.org/10.1038/ng.471]
[186]
Chin MH, Mason MJ, Xie W, et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009; 5(1): 111-23.
[http://dx.doi.org/10.1016/j.stem.2009.06.008]
[187]
Nelson TJ, Martinez-Fernandez A, Yamada S, Mael AA, Terzic A, Ikeda Y. Induced pluripotent reprogramming from promiscuous human stemness‐related factors. Clin Transl Sci 2009; 2(2): 118-26.
[http://dx.doi.org/10.1111/j.1752-8062.2009.00091.x]
[188]
Chung L, Cogburn LA, Sui L, Dashnau JL. Development of an induced pluripotent stem cell–specific microRNA assay for detection of residual undifferentiated cells in natural killer cell therapy products. Cytotherapy 2022; 24(7): 733-41.
[http://dx.doi.org/10.1016/j.jcyt.2022.02.005]
[189]
Sato Y, Bando H, Di Piazza M, et al. Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider. Cytotherapy 2019; 21(11): 1095-111.
[http://dx.doi.org/10.1016/j.jcyt.2019.10.001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy