Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Protective Effect of Nigella sativa Seed Extract and its Bioactive Compound Thymoquinone on Streptozotocin-induced Diabetic Rats

Author(s): Samar Saeed Khan* and Kamal Uddin Zaidi

Volume 22, Issue 1, 2024

Published on: 15 March, 2023

Page: [51 - 59] Pages: 9

DOI: 10.2174/1871525721666221221161742

Price: $65

Abstract

Background: The lack of a substantial breakthrough in the treatment of diabetes, a global issue, has led to an ongoing quest for herbs that contain bioactive elements with hypoglycemic properties.

Objective: To investigate the potential protective effect of Nigella sativa seeds ethanol extract and its active ingredient, thymoquinone, on streptozotocin-induced diabetic rats.

Methods: To induce diabetes, the male Wistar rats were administered an intraperitoneal injection of STZ at a dosage of 90 mg/kg body weight in 0.9 percent normal saline after being fasted for 16 hours and made diabetic Group 1; 7 rats non-diabetic control (saline-treated), Group 2; 7 untreated diabetic rats, Group 3; 7 diabetic rats treated orally with N. sativa extract at a dose of 100 mg/kg body weight, Group 4; 7 diabetic rats treated orally with thymoquinone at a dose of 10 mg/kg body weight and Group 5; 7 diabetic rats treated orally with Metformin at a dose of 5 mg/kg body weight. After the treatment of 28 days, all groups were examined for body weight and biochemical alterations.

Results: The results showed a significant decrease in blood glucose, urea, creatinine, uric acid, total protein, total cholesterol, low-density lipoprotein, and very low-density lipoprotein, while high-density lipoprotein was increased. Hepatic enzymes, alanine transaminase, aspartate aminotransferase, and alkaline phosphate were also normalized and significantly increased body weight.

Conclusion: These preliminary findings demonstrate that the ethanol extract of N. sativa seeds and its active ingredient, thymoquinone have a protective effect against streptozotocin-induced diabetic rats. The present study opens new vistas for the use of N. sativa and its bioactive compound, thymoquinone, regarding its clinical application as a new nontoxic antidiabetic agent for managing diabetes mellitus.

Graphical Abstract

[1]
Yazdi, H.B.; Hojati, V.; Shiravi, A.; Hosseinian, S.; Vaezi, G.; Hadjzadeh, M.A.R. Liver dysfunction and oxidative stress in streptozotocin-induced diabetic rats: protective role of Artemisia turanica. J. Pharmacopuncture, 2019, 22(2), 109-114.
[http://dx.doi.org/10.3831/KPI.2019.22.014] [PMID: 31338251]
[2]
Zaidi, K.; Khan, F.; Thawani, V.; Parmar, R. Evaluation of biochemical and protein biomarkers analysis in type 2 diabetes mellitus. J. Mahatma Gandhi Instit. Med. Sci., 2019, 24(1), 28.http://dx.doi.org/10.4103/j mgims.j mgims_6_18
[3]
Battisti, W. P.; Palmisano, J.; Keane, W. F. Dyslipidemia in patients with type 2 diabetes. Relationship. Lipids, Kidney Dis. Cardiovas. Dis., 2003, 41(9), 1174-1181.
[4]
Hebi, M.; Eddouks, M. Leaf aqueous extract of Arganiaspiniosa exhibits antihyperglycemic effect in diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 64-71.
[5]
Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed., 2013, 3(5), 337-352.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1] [PMID: 23646296]
[6]
Tembhurne, SV.; Feroz, S. A review on therapeutic potential of N. sativa (kalonji) seeds. J. Med. Plants Res., 2014, 8(3), 166-167.
[7]
Hamdan, A.; Haji Idrus, R.; Mokhtar, M.H. Effects of N. sativa on type-2 diabetes mellitus: A systematic review. Int. J. Environ. Res. Public Health, 2019, 16(24), 4911.
[http://dx.doi.org/10.3390/ijerph16244911] [PMID: 31817324]
[8]
Farkhondeh, T.; Samarghandian, S.; Borji, A. An overview on cardioprotective and anti-diabetic effects of thymoquinone. Asian Pac. J. Trop. Med., 2017, 10(9), 849-854.
[http://dx.doi.org/10.1016/j.apjtm.2017.08.020] [PMID: 29080612]
[9]
El-Shamy, K.A.; Mosa, M.M.A.; El-Nabarawy, S.K.; El-Qattan, G.M. Effect of N. sativa tea in type 2-diabetic patients as regards glucose homeostasis, liver and kidney functions. J. Appl. Sci. Res., 2011, 7(12), 2524-2534.
[10]
Bamosa, A.; Kaatabi, H.; Badar, A.; Al-Khadra, A.; Al Elq, A.; Abou-Hozaifa, B.; Lebda, F.; Al-Almaie, S. Nigella sativa: A potential natural protective agent against cardiac dysfunction in patients with type 2 diabetes mellitus. J. Family Community Med., 2015, 22(2), 88-95.
[http://dx.doi.org/10.4103/2230-8229.155380] [PMID: 25983604]
[11]
Shah, F.; Hasan, Z.; Zaidi, K.U. Evaluation of phyto constituent and synergistic antibacterial activity of Ocimum sanctum extract against some gram-positive and gram-negative species. Biosci. Biotechnol. Res. Commun., 2016, 9(4), 856-864.
[http://dx.doi.org/10.21786/bbrc/9.4/41]
[12]
Zaidi, K.U.; Shah, F.; Parmar, R.; Thawani, V. Anticandidal synergistic activity of Ocimum sanctum and fluconazole of azole resistance strains of clinical isolates. J. Mycol. Med., 2018, 28(2), 289-293.
[http://dx.doi.org/10.1016/j.mycmed.2018.04.004] [PMID: 29730129]
[13]
Sharma, V.; Shukla, V.J.; Prajapati, P.K. Quantitative estimation of Aloin from pharmaceutical dosage by HPTLC. Pharma Sci. Monitor, 2012, 3(1), 104-109.
[14]
Xie, J.; Wang, A.; Mehendale, S.; Wu, J.; Aung, H.H.; Dey, L.; Qiu, S.; Yuan, C.S. Anti-diabetic effects of Gymnema yunnanense extract. Pharmacol. Res., 2003, 47(4), 323-329.
[http://dx.doi.org/10.1016/S1043-6618(02)00322-5] [PMID: 12644390]
[15]
De Jesus, R.; Fernández, N.V.; Osorio, A.; Martucci, D.; Pozo, L.; García A, C.; Jimenez, W. Determination of medium lethal dose (LD50) and acute toxicity of formulation Cytoreg®, an ionic mixture of strong and weak acids. Latin Am. J. Develop., 2021, 3(3), 1121-1126.
[http://dx.doi.org/10.46814/lajdv3n3-010]
[16]
El-Ouady, F.; Eddouks, M. Aqueous Asteriscus graveolens extract exhibits antidiabetic and hepatoprotective effects in diabetic rats. Nat. Prod. J., 2020, 10(4), 459-466.
[http://dx.doi.org/10.2174/2210315509666190624100236]
[17]
Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem., 1974, 20(4), 470-475.
[http://dx.doi.org/10.1093/clinchem/20.4.470] [PMID: 4818200]
[18]
Werner, M.; Gabrielson, D.G.; Eastman, J. Ultramicro determination of serum triglycerides by bioluminescent assay. Clin. Chem., 1981, 27(2), 268-271.
[http://dx.doi.org/10.1093/clinchem/27.2.268] [PMID: 7460277]
[19]
Burstein, M.; Scholnick, H.R.; Morfin, R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res., 1970, 11(6), 583-595.
[http://dx.doi.org/10.1016/S0022-2275(20)42943-8] [PMID: 4100998]
[20]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[21]
Pradeepa, R.; Deepa, R.; Mohan, V. Epidemiology of diabetes in India--current perspective and future projections. J. Indian Med. Assoc., 2002, 100(3), 144-148.
[PMID: 12408271]
[22]
Kharroubi, A.T.; Darwish, H.M. Diabetes mellitus: The epidemic of the century. World J. Diabetes, 2015, 6(6), 850-867.
[http://dx.doi.org/10.4239/wjd.v6.i6.850] [PMID: 26131326]
[23]
Charlton, M.; Nair, K.S. Protein metabolism in insulin-dependent diabetes mellitus. J. Nutr., 1998, 128(2)(Suppl.), 323S-327S.
[http://dx.doi.org/10.1093/jn/128.2.323S] [PMID: 9478016]
[24]
Obasi, E.; Iheanacho, K.; Nwachukwu, N.; Agha, N.; Chikezie, P.C. Evaluation of body weight, serum glucose level and oxidative stress parameters of diabetic rats administered phenolic aqueous leaf extract of Vitex doniana. Biomed. Res. Ther., 2019, 6(9), 3359-3367.
[http://dx.doi.org/10.15419/bmrat.v6i9.564]
[25]
Gebremeskel, L.; Beshir Tuem, K.; Teklu, T. Evaluation of antidiabetic effect of ethanolic leaves extract of Beciumg randiflorum Lam. (Lamiaceae) in streptozotocin-induced diabetic mice. Diabetes Metab. Syndr. Obes., 2020, 13, 1481-1489.
[http://dx.doi.org/10.2147/DMSO.S246996] [PMID: 32440177]
[26]
Rabkin, R. Diabetic nephropathy. Clin. Cornerstone, 2003, 5(2), 1-11.
[http://dx.doi.org/10.1016/S1098-3597(03)90014-7] [PMID: 12800476]
[27]
Stenvinkel, P. Chronic kidney disease: A public health priority and harbinger of premature cardiovascular disease. J. Intern. Med., 2010, 268(5), 456-467.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02269.x] [PMID: 20809922]
[28]
Siboto, A.; Sibiya, N.; Khathi, A.; Ngubane, P. The effects of Momordicabalsaminamethanolic extract on kidney function in STZ-induced diabetic rats: effects on selected metabolic markers. J. Diabetes Res., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/7341242] [PMID: 30009183]
[29]
Agbafor, K.N.; Nwaka, A.C.; Dasofunjo, K.; Asuk, A.A.; Ugwu, M.N. Creatinine, urea and uric acid levels in albino rats treated with leaf extract of Canjanuscajan (Pigeon pea). Idosr J ApplSci, 2017, 2(2), 1-9.
[30]
Drotman, R.B.; Lawhorn, G.T. Serum enzymes as indicators of chemically induced liver damage. Drug Chem. Toxicol., 1978, 1(2), 163-171.
[http://dx.doi.org/10.3109/01480547809034433] [PMID: 755666]
[31]
Abolfathi, A.A.; Mohajeri, D.; Rezaie, A.; Nazeri, M. Protective effects of green tea extract against hepatic tissue injury in streptozotocin-induced diabetic rats. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/740671] [PMID: 22956978]
[32]
Kim, M.H.; Seo, J.Y.; Liu, K.H.; Kim, J.S. Protective effect of Artemisia annua L. extract against galactose-induced oxidative stress in mice. PLoS One, 2014, 9(7), e101486.
[http://dx.doi.org/10.1371/journal.pone.0101486] [PMID: 24988450]
[33]
Sefi, M.; Bouaziz, H.; Soudani, N.; Boudawara, T.; Zeghal, N. Fenthion induced-oxidative stress in the liver of adult rats and their progeny: Alleviation by Artemisia campestris. Pestic. Biochem. Physiol., 2011, 101(2), 71-79.
[http://dx.doi.org/10.1016/j.pestbp.2011.08.002]
[34]
Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can. J. Cardiol., 2018, 34(5), 575-584.
[http://dx.doi.org/10.1016/j.cjca.2017.12.005] [PMID: 29459239]
[35]
Steiner, G. Risk factors for macrovascular disease in type 2 diabetes. Classic lipid abnormalities. Diabetes Care, 1999, 22(Suppl. 3), C6-C9.
[PMID: 10189556]
[36]
Massing, M.W.; Sueta, C.A.; Chowdhury, M.; Biggs, D.P.; Simpson, R.J., Jr Lipid management among coronary artery disease patients with diabetes mellitus or advanced age. Am. J. Cardiol., 2001, 87(5), 646-649. A10
[http://dx.doi.org/10.1016/S0002-9149(00)01447-8] [PMID: 11230856]
[37]
Newairy, A.S.A.; Mansour, H.A.; Yousef, M.I.; Sheweita, S.A. Alterations of lipid profile in plasma and liver of diabetic rats: effect of hypoglycemic herbs. J. Environ. Sci. Health B, 2002, 37(5), 475-484.
[http://dx.doi.org/10.1081/PFC-120014877] [PMID: 12369764]
[38]
Wu, L.; Parhofer, K.G. Diabetic dyslipidemia. Metabolism, 2014, 63(12), 1469-1479.
[http://dx.doi.org/10.1016/j.metabol.2014.08.010] [PMID: 25242435]
[39]
Zhang, Y.; Feng, F.; Chen, T.; Li, Z.; Shen, Q.W. Antidiabetic and antihyperlipidemic activities of Forsythia suspensa (Thunb.) Vahl (fruit) in streptozotocin-induced diabetes mice. J. Ethnopharmacol., 2016, 192, 256-263.
[http://dx.doi.org/10.1016/j.jep.2016.07.002] [PMID: 27377336]
[40]
Gomaa, H. F.; Abdelmalek, I. B.; Abdel-Wahhab, K. G. The Anti-Diabetic Effect of some plant extracts against streptozotocin-induced diabetes type 2 in male Albino Rats. Endocrine, Metab. Immune Disorders-Drug Targets, 2021, 21(8), 1431-1440.
[41]
Goldberg, I.J. Clinical review 124: Diabetic dyslipidemia: causes and consequences. J. Clin. Endocrinol. Metab., 2001, 86(3), 965-971.
[http://dx.doi.org/10.1210/jcem.86.3.7304] [PMID: 11238470]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy