Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Sulphur Containing Heterocyclic Compounds as Anticancer Agents

Author(s): Balwinder Kaur, Gurdeep Singh, Vikas Sharma* and Iqubal Singh

Volume 23, Issue 8, 2023

Published on: 11 January, 2023

Page: [869 - 881] Pages: 13

DOI: 10.2174/1871520623666221221143918

Price: $65

Abstract

After cardiovascular disease, cancer is the most common cause of death worldwide. Due to their versatility, heterocyclic compounds play an important role in drug discovery. Medical remedies are constantly being discovered, especially for catastrophic disorders such as cancer. Here, this review is focused on sulphur containing heterocyclic compounds as anticancer agents. Sulphur is found in a variety of vitamin cofactors, sugars, and nucleic acids, and it also plays a function in controlling translation by sulphurating transfer RNA. Sulphur has obtained a lot of interest in the anticancer research medicinal fields. Thiophene derivatives were tested for anti-proliferative activity against breast cancer cells in a recent screening study, and the bulk of chemicals exhibited potent inhibitory effects. In recent years, azoles such as thiazole and thiadiazole structures have gained prominence in cancer research.

Graphical Abstract

[1]
Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab., 2010, 7(1), 7.
[http://dx.doi.org/10.1186/1743-7075-7-7] [PMID: 20181022]
[2]
Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017, 541(7637), 321-330.
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[3]
Jeswani, G.; Paul, S.D. Recent advances in the delivery of chemotherapeutic agents. Nano-Microscale. Drug Deliv. Syst., 2017, 281-298.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00015-7]
[4]
Hornberg, J.J.; Bruggeman, F.J.; Westerhoff, H.V. Lankelma, J. Cancer: A systems biology disease. Biosystems, 2006, 83(2-3), 81-90.
[http://dx.doi.org/10.1016/j.biosystems.2005.05.014] [PMID: 16426740]
[5]
Baindara, P.; Mandal, S.M. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie, 2020, 177, 164-189.
[http://dx.doi.org/10.1016/j.biochi.2020.07.020] [PMID: 32827604]
[6]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[7]
Laurent, V.; Saillard, J.; Thierry, M.; Lepelletier, A.; Fronteau, C.; Huon, J.F. Anticancer agents and phytotherapy: Interactions that are often unrecognized. J. Oncol. Pharm. Pract., 2021, 27(2), 322-328.
[http://dx.doi.org/10.1177/1078155220920363] [PMID: 32356688]
[8]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[9]
Abraham, D.J.; Myers, M. Burger’s Medicinal Chemistry, Drug Discovery and Development; John Wiley & Sons: New Jersey, 2021, Vol. 1, .
[10]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[11]
Avendaño, C.; Menendez, J.C. Medicinal chemistry of anticancer drugs; Elsevier: Netherlands, 2015.
[12]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752.
[PMID: 28393696]
[13]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol., 2008, 8(1), 59-73.
[http://dx.doi.org/10.1038/nri2216] [PMID: 18097448]
[14]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[15]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[16]
Azad, I.; Nasibullah, M.; Khan, T.; Hassan, F.; Akhter, Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Graph. Model., 2018, 81, 211-228.
[http://dx.doi.org/10.1016/j.jmgm.2018.02.013] [PMID: 29609141]
[17]
Mohamed, N.R.; Khaireldin, N.Y.; Fahmyb, A.; El-Sayeda, A. Facile synthesis of fused nitrogen containing heterocycles as anticancer agents. Pharma Chem., 2010, 2, 400-417.
[18]
Aher, S.B.; Muskawar, P.N.; Thenmozhi, K.; Bhagat, P.R. Recent developments of metal N-heterocyclic carbenes as anticancer agents. Eur. J. Med. Chem., 2014, 81, 408-419.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.036] [PMID: 24858545]
[19]
Pearce, S. The importance of heterocyclic compounds in anti-cancer drug design; Drug Discov, 2017, p. 67.
[20]
Bertrand, B.; Stefan, L.; Pirrotta, M.; Monchaud, D.; Bodio, E.; Richard, P.; Le Gendre, P.; Warmerdam, E.; de Jager, M.H.; Groothuis, G.M.M.; Picquet, M.; Casini, A. Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer agents: Synthesis and biological properties. Inorg. Chem., 2014, 53(4), 2296-2303.
[http://dx.doi.org/10.1021/ic403011h] [PMID: 24499428]
[21]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[22]
Sharma, P.K.; Amin, A.; Kumar, M.; Review, A. A review: Medicinally important nitrogen sulphur containing heterocycles. Open Med. Chem. J., 2020, 14(1), 49-64.
[http://dx.doi.org/10.2174/1874104502014010049]
[23]
Kim, D.E.; Kim, Y.; Cho, D.H.; Jeong, S.Y.; Kim, S.B.; Suh, N.; Lee, J.S.; Choi, E.K.; Koh, J.Y.; Hwang, J.J.; Kim, C.S. Raloxifene induces autophagy-dependent cell death in breast cancer cells via the activation of AMP-activated protein kinase. Mol. Cells, 2015, 38(2), 138-144.
[http://dx.doi.org/10.14348/molcells.2015.2193] [PMID: 25537862]
[24]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[25]
Mishra, R.; Jha, K.; Kumar, S.; Tomer, I. Synthesis, properties and biological activity of thiophene: A review. Pharma Chem., 2011, 3(4), 38-54.
[26]
Archna; Pathania, S.; Chawla, P.A. Thiophene-based derivatives as anticancer agents: An overview on decade’s work. Bioorg. Chem., 2020, 101104026
[http://dx.doi.org/10.1016/j.bioorg.2020.104026] [PMID: 32599369]
[27]
Zheng, T.; Tan, J.; Fan, R.; Su, S.; Liu, B.; Tan, C.; Xu, K. Diverse ring opening of thietanes and other cyclic sulfides: An electrophilic aryne activation approach. Chem. Commun., 2018, 54(11), 1303-1306.
[http://dx.doi.org/10.1039/C7CC08553B] [PMID: 29250639]
[28]
Degennaro, L.; Carroccia, L.; Parisi, G.; Zenzola, M.; Romanazzi, G.; Fanelli, F.; Pisano, L.; Luisi, R. Regio-and stereoselective synthesis of sulphur-bearing four-membered heterocycles: Direct access to 2, 4-disubstituted thietane 1-oxides. J. Org. Chem., 2015, 80(24), 12201-12211.
[http://dx.doi.org/10.1021/acs.joc.5b02126] [PMID: 26566011]
[29]
Xu, J. Recent synthesis of thietanes. Beilstein J. Org. Chem., 2020, 16(1), 1357-1410.
[http://dx.doi.org/10.3762/bjoc.16.116] [PMID: 32647542]
[30]
Testero, S.A.; Lee, M.; Staran, R.T.; Espahbodi, M.; Llarrull, L.I.; Toth, M.; Mobashery, S.; Chang, M. Sulfonate-containing thiiranes as selective gelatinase inhibitors. ACS Med. Chem. Lett., 2011, 2(2), 177-181.
[http://dx.doi.org/10.1021/ml100254e] [PMID: 24900296]
[31]
Baumann, A.N.; Reiners, F.; Juli, T.; Didier, D. Chemodivergent and stereoselective access to fused isoxazoline azetidines and thietanes through [3+2]-cycloadditions. Org. Lett., 2018, 20(21), 6736-6740.
[http://dx.doi.org/10.1021/acs.orglett.8b02848] [PMID: 30351958]
[32]
Zhao, M.; Cui, Y.; Zhao, L.; Zhu, T.; Lee, R.J.; Liao, W.; Sun, F.; Li, Y.; Teng, L. Thiophene derivatives as new anticancer agents and their therapeutic delivery using folate receptor-targeting nanocarriers. ACS Omega, 2019, 4(5), 8874-8880.
[http://dx.doi.org/10.1021/acsomega.9b00554] [PMID: 31459975]
[33]
Véras of Aguiar. A.C.; of Moura, R.O.; Bezerra Mendonça, J.F.; de Oliveira Rocha, H.A.; Gomes Câmara, R.B.; dos Santos Carvalho Schiavon, M. Evaluation of the antiproliferative activity of 2-amino thiophene derivatives against human cancer cells lines. Biomed. Pharmacother., 2016, 84, 403-414.
[http://dx.doi.org/10.1016/j.biopha.2016.09.026]
[34]
Abdel-Rahman, S.A.; El-Damasy, A.K.; Hassan, G.S.; Wafa, E.I.; Geary, S.M.; Maarouf, A.R.; Salem, A.K. Cyclohepta[b]thiophenes as potential antiproliferative agents: Design, synthesis, in vitro, and in vivo anticancer evaluation. ACS Pharmacol. Transl. Sci., 2020, 3(5), 965-977.
[http://dx.doi.org/10.1021/acsptsci.0c00096] [PMID: 33073194]
[35]
Gad, E.M.; Nafie, M.S.; Eltamany, E.H.; Hammad, M.S.A.G.; Barakat, A.; Boraei, A.T.A. Discovery of new apoptosis-inducing agents for breast cancer based on ethyl 2-Amino-4, 5, 6, 7-tetra hydrobenzo [b] thiophene-3-carboxylate: Synthesis, in vitro, and in vivo activity evaluation. Molecules, 2020, 25(11), 2523.
[http://dx.doi.org/10.3390/molecules25112523] [PMID: 32481682]
[36]
Chen, W.; Dong, G.; He, S.; Xu, T.; Wang, X.; Liu, N.; Zhang, W.; Miao, C.; Sheng, C. Identification of benzothiophene amides as potent inhibitors of human nicotinamide phosphoribosyltransferase. Bioorg. Med. Chem. Lett., 2016, 26(3), 765-768.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.101] [PMID: 26755394]
[37]
Chang, Y.H.; Hsu, M.H.; Wang, S.H.; Huang, L.J.; Qian, K.; Morris-Natschke, S.L.; Hamel, E.; Kuo, S.C.; Lee, K.H. Design and synthesis of 2-(3-benzo[b]thienyl)-6,7-methylenedioxyquinolin-4-one analogues as potent antitumor agents that inhibit tubulin assembly. J. Med. Chem., 2009, 52(15), 4883-4891.
[http://dx.doi.org/10.1021/jm900456w] [PMID: 19719238]
[38]
Szychowski, K.A.; Kaminskyy, D.V.; Leja, M.L.; Kryshchyshyn, A.P.; Lesyk, R.B.; Tobiasz, J.; Wnuk, M.; Pomianek, T.; Gmiński, J. Anticancer properties of 5Z-(4-fluorobenzylidene)-2-(4-hydroxy-phenylamino)-thiazol-4-one. Sci. Rep., 2019, 9(1), 10609.
[http://dx.doi.org/10.1038/s41598-019-47177-6] [PMID: 31337851]
[39]
Altıntop, M.; Sever, B.; Akalın Çiftçi, G.; Özdemir, A. Design, synthesis, and evaluation of a new series of thiazole-based anticancer agents as potent Akt inhibitors. Molecules, 2018, 23(6), 1318.
[http://dx.doi.org/10.3390/molecules23061318] [PMID: 29857484]
[40]
Alrohily, W.D.; Habib, M.E.; El-Messery, S.M.; Alqurshi, A.; El-Subbagh, H.; Habib, E.S.E. Antibacterial, antibiofilm and molecular modeling study of some antitumor thiazole based chalcones as a new class of DHFR inhibitors. Microb. Pathog., 2019, 136103674
[http://dx.doi.org/10.1016/j.micpath.2019.103674] [PMID: 31446042]
[41]
Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem., 2019, 11(15), 1929-1952.
[http://dx.doi.org/10.4155/fmc-2018-0416] [PMID: 31313595]
[42]
Ansari, M.; Shokrzadeh, M.; Karima, S.; Rajaei, S.; Fallah, M.; Ghassemi-Barghi, N.; Ghasemian, M.; Emami, S. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur. J. Med. Chem., 2020, 185111784
[http://dx.doi.org/10.1016/j.ejmech.2019.111784] [PMID: 31669850]
[43]
Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279.
[http://dx.doi.org/10.1080/14756366.2019.1698036] [PMID: 31790602]
[44]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: An insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[45]
Wang, K.; Guengerich, F.P. Bioactivation of fluorinated 2-aryl-benzothiazole antitumor molecules by human cytochrome P450s 1A1 and 2W1 and deactivation by cytochrome P450 2S1. Chem. Res. Toxicol., 2012, 25(8), 1740-1751.
[http://dx.doi.org/10.1021/tx3001994] [PMID: 22734839]
[46]
Al-Soud, Y.A.; Al-Sa’doni, H.H.; Saber, S.O.W.; Al-Shaneek, R.H.M.; Al-Masoudi, N.A.; La Colla, P. Synthesis, in vitro antiproliferative and anti-HIV activity of new derivatives of 2-piperazino-1,3-benzo[d]thiazoles. Z. Naturforsch. B. J. Chem. Sci., 2010, 65(11), 1372-1380.
[http://dx.doi.org/10.1515/znb-2010-1113]
[47]
Saeed, A.; Mustafa, M.N.; Zain-ul-Abideen, M.; Shabir, G.; Erben, M.F.; Flörke, U. Current developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3- (substituted)thioureas: Advances continue. J. Sulfur Chem., 2019, 40(3), 312-350.
[http://dx.doi.org/10.1080/17415993.2018.1551488]
[48]
Tiglani, D. Salahuddin; Mazumder, A.; Yar, M.S.; Kumar, R.; Ahsan, M.J. Benzimidazole-quinoline hybrid scaffold as promising pharmacological agents: A review. Polycycl. Aromat. Compd., 2021, 42(8), 5044-5066.
[49]
Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2015, 5(5), 390-401.
[http://dx.doi.org/10.1016/j.apsb.2015.07.001] [PMID: 26579470]
[50]
Abou-Seri, S.M. Synthesis and biological evaluation of novel 2,4′-bis substituted diphenylamines as anticancer agents and potential epidermal growth factor receptor tyrosine kinase inhibitors. Eur. J. Med. Chem., 2010, 45(9), 4113-4121.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.072] [PMID: 20580136]
[51]
Li, X.; Zhang, T.; Kamara, M.O.; Lu, G.; Xu, H.; Wang, D.; Meng, F. Discovery of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido) phenylurea-based thymidylate synthase (TS) inhibitor as a novel multi-effects antitumor drugs with minimal toxicity. Cell Death Dis., 2019, 10(7), 532.
[http://dx.doi.org/10.1038/s41419-019-1773-0] [PMID: 31296849]
[52]
Aghcheli, A.; Toolabi, M.; Ayati, A.; Moghimi, S.; Firoozpour, L.; Bakhshaiesh, T.O.; Nazeri, E.; Norouzbahari, M.; Esmaeili, R.; Foroumadi, A. Design, synthesis, and biological evaluation of 1-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-3-phenylurea derivatives as anticancer agents. Med. Chem. Res., 2020, 29(11), 2000-2010.
[http://dx.doi.org/10.1007/s00044-020-02616-2]
[53]
Mohamed, M.F.A.; Abuo-Rahma, G.E.D.A. Molecular targets and anticancer activity of quinoline–chalcone hybrids: Literature review. RSC Advances, 2020, 10(52), 31139-31155.
[http://dx.doi.org/10.1039/D0RA05594H] [PMID: 35520674]
[54]
Al Zahrani, N.A.; El-Shishtawy, R.M.; Elaasser, M.M.; Asiri, A.M. Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents. Molecules, 2020, 25(19), 4566.
[http://dx.doi.org/10.3390/molecules25194566] [PMID: 33036301]
[55]
Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.028] [PMID: 28427017]
[56]
Ghasemi, J.B.; Aghaee, E.; Jabbari, A. Docking, CoMFA and CoMSIA studies of a series of N-benzoylated phenoxazines and phenothiazines derivatives as antiproliferative agents. Bull. Korean Chem. Soc., 2013, 34(3), 899-906.
[http://dx.doi.org/10.5012/bkcs.2013.34.3.899]
[57]
Prinz, H.; Chamasmani, B.; Vogel, K.; Böhm, K.J.; Aicher, B.; Gerlach, M.; Günther, E.G.; Amon, P.; Ivanov, I.; Müller, K. N-benzoylated phenoxazines and phenothiazines: Synthesis, antiproliferative activity, and inhibition of tubulin polymerization. J. Med. Chem., 2011, 54(12), 4247-4263.
[http://dx.doi.org/10.1021/jm200436t] [PMID: 21563750]
[58]
Zhan, M.; Deng, Y.; Zhao, L.; Yan, G.; Wang, F.; Tian, Y.; Zhang, L.; Jiang, H.; Chen, Y. Design, synthesis, and biological evaluation of dimorpholine substituted thienopyrimidines as potential class I PI3K/mTOR dual inhibitors. J. Med. Chem., 2017, 60(9), 4023-4035.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00357] [PMID: 28409639]
[59]
Zeng, X.X.; Zheng, R.L.; Zhou, T.; He, H.Y.; Liu, J.Y.; Zheng, Y.; Tong, A.P.; Xiang, M.L.; Song, X.R.; Yang, S.Y.; Yu, L.T.; Wei, Y.Q.; Zhao, Y.L.; Yang, L. Novel thienopyridine derivatives as specific anti-hepatocellular carcinoma (HCC) agents: Synthesis, preliminary structure-activity relationships, and in vitro biological evaluation. Bioorg. Med. Chem. Lett., 2010, 20(21), 6282-6285.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.088] [PMID: 20846862]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy