Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

A Glimpse at the Quinoline-Hybridization Approach for the Development of New Antimalarials

Author(s): Sukhbir Kaur, Amanjot Kaur, Amandeep Arora and Vipan Kumar*

Volume 23, Issue 8, 2023

Published on: 13 January, 2023

Page: [898 - 916] Pages: 19

DOI: 10.2174/1389557523666221221140716

Price: $65

Abstract

One of the most fatal infectious diseases, malaria, still poses a threat to about half of the world's population and is the leading cause of death worldwide. The use of artemisinin-based combination therapy has helped to significantly reduce the number of deaths caused by malaria, but the emergence of drug resistance threatens to undo this gain. In a bid to boost adherence, several new combination therapies with effectiveness against drug-resistant parasites are currently being tested in clinical settings. Nevertheless, notwithstanding these gains, malaria must be completely eradicated by a concerted international effort on several fronts. Quinoline-based compounds were the cornerstone of malaria chemotherapy until recently when resistance to these drugs severely hampered efforts to achieve a "Zero Malaria" world. The inappropriate use of available antimalarials is one of the factors responsible for resistance development and treatment failure, warranting the search for new chemical entities and alternative approaches to combat this threat. A vast number of solutions have emerged and one of them, quinoline-hybridization, is an effective method for introducing structural diversity, resulting in molecules with improved biological activities, reduced drug resistance, fewer drug-drug interactions, and improved safety and pharmacokinetic profiles. Choosing the ideal target combination and achieving a balanced activity toward them while preserving drug-like properties are the key challenges in the development of molecular hybrids. This review examines the highlights of quinoline hybridization, with some of the hybrids exhibiting remarkable in vitro and in vivo activities, emphasizing that it is a useful method for developing new anti-malarial lead compounds.

Graphical Abstract

[1]
Sinha, M.; Dola, V.R.; Soni, A.; Agarwal, P.; Srivastava, K.; Haq, W.; Puri, S.K.; Katti, S.B. Synthesis of chiral chloroquine and its analogues as antimalarial agents. Bioorg. Med. Chem., 2014, 22(21), 5950-5960.
[http://dx.doi.org/10.1016/j.bmc.2014.09.009] [PMID: 25284252]
[2]
World malaria report 2021, Geneva: world health organisation. 2020. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
[3]
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis of 4-aminoquinoline-1,2,3-triazole and 4-aminoquinoline-1,2,3-triazole-1,3,5-triazine Hybrids as Potential Antimalarial Agents. Chem. Biol. Drug Des., 2011, 78(1), 124-136.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01115.x] [PMID: 21457474]
[4]
Pérez, B.C.; Teixeira, C.; Albuquerque, I.S.; Gut, J.; Rosenthal, P.J.; Gomes, J.R.B.; Prudêncio, M.; Gomes, P. N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads. J. Med. Chem., 2013, 56(2), 556-567.
[http://dx.doi.org/10.1021/jm301654b] [PMID: 23273038]
[5]
Manohar, S.; Satya Pavan, V.; Taylor, D.; Kumar, D.; Ponnan, P.; Wiesner, L.; Rawat, D.S. Highly active 4-aminoquinoline–pyrimidine based molecular hybrids as potential next generation antimalarial agents. RSC Advances, 2015, 5(36), 28171-28186.
[http://dx.doi.org/10.1039/C4RA16032K]
[6]
a) Mott, B.T.; Cheng, K.C.C.; Guha, R.; Kommer, V.P.; Williams, D.L.; Vermeire, J.J.; Cappello, M.; Maloney, D.J.; Rai, G.; Jadhav, A.; Simeonov, A.; Inglese, J.; Posner, G.H.; Thomas, C.J. A furoxan–amodiaquine hybrid as a potential therapeutic for three parasitic diseases. MedChemComm, 2012, 3(12), 1505-1511.
[http://dx.doi.org/10.1039/c2md20238g] [PMID: 23205265];
b) Mahajan, A.; Singh, H.; Singh, A.; Agrawal, D.K.; Arora, A.; Chundawat, T.S. Trifluoromethylated quinolone-hydantoin hybrids: synthesis and antibacterial evaluation. Sci, 2022, 4(3), 30.
[http://dx.doi.org/10.3390/sci4030030]
[7]
Egan, T.J.; Hunter, R.; Kaschula, C.H.; Marques, H.M.; Misplon, A.; Walden, J. Structure-function relationships in aminoquinolines: effect of amino and chloro groups on quinoline-hematin complex formation, inhibition of β-hematin formation, and antiplasmodial activity. J. Med. Chem., 2000, 43(2), 283-291.
[http://dx.doi.org/10.1021/jm990437l] [PMID: 10649984]
[8]
Cornut, D.; Lemoine, H.; Kanishchev, O.; Okada, E.; Albrieux, F.; Beavogui, A.H.; Bienvenu, A.L.; Picot, S.; Bouillon, J.P.; Médebielle, M. Incorporation of a 3-(2,2,2-trifluoroethyl)-γ-hydroxy-γ-lactam motif in the side chain of 4-aminoquinolines. Syntheses and antimalarial activities. J. Med. Chem., 2013, 56(1), 73-83.
[http://dx.doi.org/10.1021/jm301076q] [PMID: 23102258]
[9]
Kondaparla, S.; Soni, A.; Manhas, A.; Srivastava, K.; Puri, S.K.; Katti, S.B. Synthesis and antimalarial activity of new 4-aminoquinolines active against drug resistant strains. RSC Advances, 2016, 6(107), 105676-105689.
[http://dx.doi.org/10.1039/C6RA14016E]
[10]
Pandey, S.; Agarwal, P.; Srivastava, K. RajaKumar, S.; Puri, S.K.; Verma, P.; Saxena, J.K.; Sharma, A.; Lal, J.; Chauhan, P.M.S. Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. Eur. J. Med. Chem., 2013, 66, 69-81.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.023] [PMID: 23792317]
[11]
Singh, K.; Kaur, T. Pyrimidine-based antimalarials: design strategies and antiplasmodial effects. MedChemComm, 2016, 7(5), 749-768.
[http://dx.doi.org/10.1039/C6MD00084C]
[12]
Manohar, S.; Rajesh, U.C.; Khan, S.I.; Tekwani, B.L.; Rawat, D.S. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med. Chem. Lett., 2012, 3(7), 555-559.
[http://dx.doi.org/10.1021/ml3000808] [PMID: 24900509]
[13]
Singh, K.; Kaur, H.; Smith, P.; de Kock, C.; Chibale, K.; Balzarini, J. Quinoline-pyrimidine hybrids: synthesis, antiplasmodial activity, SAR, and mode of action studies. J. Med. Chem., 2014, 57(2), 435-448.
[http://dx.doi.org/10.1021/jm4014778] [PMID: 24354322]
[14]
Maurya, S.S.; Khan, S.I.; Bahuguna, A.; Kumar, D.; Rawat, D.S. Synthesis, antimalarial activity, heme binding and docking studies of N -substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur. J. Med. Chem., 2017, 129, 175-185.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.024] [PMID: 28222317]
[15]
Maurya, S.S.; Bahuguna, A.; Khan, S.I.; Kumar, D.; Kholiya, R.; Rawat, D.S. N-Substituted aminoquinoline-pyrimidine hybrids: Synthesis, in vitro antimalarial activity evaluation and docking studies. Eur. J. Med. Chem., 2019, 162, 277-289.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.021] [PMID: 30448417]
[16]
Thakur, A.; Khan, S.I.; Rawat, D.S. Synthesis of piperazine tethered 4-aminoquinoline-pyrimidine hybrids as potent antimalarial agents. RSC Advances, 2014, 4(40), 20729-20736.
[http://dx.doi.org/10.1039/C4RA02276A]
[17]
Kumar, D.; Khan, S.I.; Tekwani, B.L.; Ponnan, P.; Rawat, D.S. Synthesis, antimalarial activity, heme binding and docking studies of 4-aminoquinoline–pyrimidine based molecular hybrids. RSC Advances, 2014, 4(109), 63655-63669.
[http://dx.doi.org/10.1039/C4RA09768H]
[18]
Tripathi, M.; Khan, S.I.; Thakur, A.; Ponnan, P.; Rawat, D.S. 4-Aminoquinoline-pyrimidine-aminoalkanols: synthesis, in vitro antimalarial activity, docking studies and ADME predictions. New J. Chem., 2015, 39(5), 3474-3483.
[http://dx.doi.org/10.1039/C5NJ00094G]
[19]
Singh, K.; Kaur, H.; Chibale, K.; Balzarini, J.; Little, S.; Bharatam, P.V. 2-Aminopyrimidine based 4-aminoquinoline anti-plasmodial agents. Synthesis, biological activity, structure–activity relationship and mode of action studies. Eur. J. Med. Chem., 2012, 52, 82-97.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.007] [PMID: 22459876]
[20]
Singh, K.; Kaur, H.; Chibale, K.; Balzarini, J. Synthesis of 4-aminoquinoline–pyrimidine hybrids as potent antimalarials and their mode of action studies. Eur. J. Med. Chem., 2013, 66, 314-323.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.046] [PMID: 23811093]
[21]
Chopra, R.; Chibale, K.; Singh, K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur. J. Med. Chem., 2018, 148, 39-53.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.021] [PMID: 29454189]
[22]
Kholiya, R.; Khan, S.I.; Bahuguna, A.; Tripathi, M.; Rawat, D.S. N -Piperonyl substitution on aminoquinoline-pyrimidine hybrids: Effect on the antiplasmodial potency. Eur. J. Med. Chem., 2017, 131, 126-140.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.007] [PMID: 28315598]
[23]
Lombard, M.C.; N’Da, D.D.; Breytenbach, J.C.; Kolesnikova, N.I.; Tran Van Ba, C.; Wein, S.; Norman, J.; Denti, P.; Vial, H.; Wiesner, L. Antimalarial and anticancer activities of artemisinin–quinoline hybrid-dimers and pharmacokinetic properties in mice. Eur. J. Pharm. Sci., 2012, 47(5), 834-841.
[http://dx.doi.org/10.1016/j.ejps.2012.09.019] [PMID: 23069618]
[24]
Pepe, D.A.; Toumpa, D.; André-Barrès, C.; Menendez, C.; Mouray, E.; Baltas, M.; Grellier, P.; Papaioannou, D.; Athanassopoulos, C.M. Synthesis of novel G factor or chloroquine-artemisinin hybrids and conjugates with potent antiplasmodial activity. ACS Med. Chem. Lett., 2020, 11(5), 921-927.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00669] [PMID: 32435406]
[25]
Lombard, M.C.; N’Da, D.D.; Breytenbach, J.C.; Smith, P.J.; Lategan, C.A. Synthesis, in vitro antimalarial and cytotoxicity of artemisinin-aminoquinoline hybrids. Bioorg. Med. Chem. Lett., 2011, 21(6), 1683-1686.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.103] [PMID: 21316959]
[26]
Chowdhary, S. Shalini; Arora, A.; Kumar, V. A Mini review on isatin, an anticancer scaffold with potential activities against neglected tropical diseases (NTDs). Pharmaceuticals (Basel), 2022, 15(5), 536.
[http://dx.doi.org/10.3390/ph15050536] [PMID: 35631362]
[27]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1 H -1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
[28]
Raj, R.; Gut, J.; Rosenthal, P.J.; Kumar, V. 1H-1,2,3-Triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates: Synthesis and antimalarial evaluation. Bioorg. Med. Chem. Lett., 2014, 24(3), 756-759.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.109] [PMID: 24424135]
[29]
Raj, R.; Biot, C.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Gut, J.; Rosenthal, P.J.; Forge, D.; Kumar, V. 7-chloroquinoline-isatin conjugates: antimalarial, antitubercular, and cytotoxic evaluation. Chem. Biol. Drug Des., 2014, 83(5), 622-629.
[http://dx.doi.org/10.1111/cbdd.12273] [PMID: 24341638]
[30]
Nisha; Gut, J.; Rosenthal, P.J.; Kumar, V. β-amino-alcohol tethered 4-aminoquinoline-isatin conjugates: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2014, 84, 566-573.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.064] [PMID: 25062007]
[31]
Rani, A.; Anand, A.; Kumar, K.; Kumar, V. Recent developments in biological aspects of chalcones: the odyssey continues. Expert Opin. Drug Discov., 2019, 14(3), 249-288.
[http://dx.doi.org/10.1080/17460441.2019.1573812] [PMID: 30773996]
[32]
Raj, R.; Saini, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Synthesis and in vitro antiplasmodial evaluation of 7-chloroquinoline–chalcone and 7-chloroquinoline–ferrocenylchalcone conjugates. Eur. J. Med. Chem., 2015, 95, 230-239.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.045] [PMID: 25817773]
[33]
Smit, F.J.; Bezuidenhout, J.J.; Bezuidenhout, C.C.; N’Da, D.D. Synthesis and in vitro biological activities of ferrocenyl–chalcone amides. Med. Chem. Res., 2016, 25(4), 568-584.
[http://dx.doi.org/10.1007/s00044-016-1509-y]
[34]
Kumar, S.; Saini, A.; Gut, J.; Rosenthal, P.J.; Raj, R.; Kumar, V. 4-Aminoquinoline-chalcone/- N-acetylpyrazoline conjugates: Synthesis and antiplasmodial evaluation. Eur. J. Med. Chem., 2017, 138, 993-1001.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.041] [PMID: 28756265]
[35]
Raj, R.; Mehra, V.; Gut, J.; Rosenthal, P.J.; Wicht, K.J.; Egan, T.J.; Hopper, M.; Wrischnik, L.A.; Land, K.M.; Kumar, V. Discovery of highly selective 7-chloroquinoline-thiohydantoins with potent antimalarial activity. Eur. J. Med. Chem., 2014, 84, 425-432.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.048] [PMID: 25038484]
[36]
Raj, R.; Biot, C.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Gut, J.; Rosenthal, P.J.; Kumar, V. 4-Aminoquinoline-β-lactam conjugates: synthesis, antimalarial, and antitubercular evaluation. Chem. Biol. Drug Des., 2014, 83(2), 191-197.
[http://dx.doi.org/10.1111/cbdd.12225] [PMID: 24034147]
[37]
Singh, P.; Raj, R.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Urea/oxalamide tethered β-lactam-7-chloroquinoline conjugates: Synthesis and in vitro antimalarial evaluation. Eur. J. Med. Chem., 2014, 71, 128-134.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.079] [PMID: 24287561]
[38]
Rani, A.; Singh, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Microwave-promoted facile access to 4-aminoquinoline-phthalimides: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem., 2018, 143, 150-156.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.033] [PMID: 29174811]
[39]
Rani, A.; Sharma, A.; Legac, J.; Rosenthal, P.J.; Singh, P.; Kumar, V. A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerization inhibition studies. Bioorg. Med. Chem., 2021, 39, 116159.
[http://dx.doi.org/10.1016/j.bmc.2021.116159] [PMID: 33895706]
[40]
Shalini, L.; Legac, J.; Adeniyi, A.A.; Kisten, P.; Rosenthal, P.J.; Singh, P.; Kumar, V. Functionalized naphthalimide-4-aminoquinoline conjugates as promising antiplasmodials, with mechanistic insights. ACS Med. Chem. Lett., 2020, 11(2), 154-161.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00521] [PMID: 32071682]
[41]
Shalini, K.; Kumar, S.; Gendrot, M.; Fonta, I.; Mosnier, J.; Cele, N.; Awolade, P.; Singh, P.; Pradines, B.; Kumar, V. Amide tethered 4-aminoquinoline-naphthalimide hybrids: A new class of possible dual function antiplasmodials. ACS Med. Chem. Lett., 2020, 11(12), 2544-2552.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00536] [PMID: 33335678]
[42]
Adams, M.; Stringer, T.; de Kock, C.; Smith, P.J.; Land, K.M.; Liu, N.; Tam, C.; Cheng, L.W.; Njoroge, M.; Chibale, K.; Smith, G.S. Bioisosteric ferrocenyl-containing quinolines with antiplasmodial and antitrichomonal properties. Dalton Trans., 2016, 45(47), 19086-19095.
[http://dx.doi.org/10.1039/C6DT03175G] [PMID: 27858010]
[43]
Singh, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. 4-Aminoquinoline-ferrocenyl-chalcone conjugates: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem., 2017, 125, 269-277.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.044] [PMID: 27688182]
[44]
Herrmann, C.; Salas, P.F.; Cawthray, J.F.; de Kock, C.; Patrick, B.O.; Smith, P.J.; Adam, M.J.; Orvig, C. 1′-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarials. Organometallics, 2012, 31(16), 5736-5747.
[http://dx.doi.org/10.1021/om300354x]
[45]
Minić A.; Van de Walle, T.; Van Hecke, K.; Combrinck, J.; Smith, P.J.; Chibale, K.; D’hooghe, M. Design and synthesis of novel ferrocene-quinoline conjugates and evaluation of their electrochemical and antiplasmodium properties. Eur. J. Med. Chem., 2020, 187, 111963.
[http://dx.doi.org/10.1016/j.ejmech.2019.111963] [PMID: 31865015]
[46]
Salas, P.F.; Herrmann, C.; Cawthray, J.F.; Nimphius, C.; Kenkel, A.; Chen, J.; de Kock, C.; Smith, P.J.; Patrick, B.O.; Adam, M.J.; Orvig, C. Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms. J. Med. Chem., 2013, 56(4), 1596-1613.
[http://dx.doi.org/10.1021/jm301422h] [PMID: 23327489]
[47]
Mwande Maguene, G.; Lekana-Douki, J.B.; Mouray, E.; Bousquet, T.; Grellier, P.; Pellegrini, S.; Toure Ndouo, F.S.; Lebibi, J.; Pélinski, L. Synthesis and in vitro antiplasmodial activity of ferrocenyl aminoquinoline derivatives. Eur. J. Med. Chem., 2015, 90, 519-525.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.065] [PMID: 25486423]
[48]
Glans, L.; Hu, W.; Jöst, C.; de Kock, C.; Smith, P.J.; Haukka, M.; Bruhn, H.; Schatzschneider, U.; Nordlander, E. Synthesis and biological activity of cymantrene and cyrhetrene 4-aminoquinoline conjugates against malaria, leishmaniasis, and trypanosomiasis. Dalton Trans., 2012, 41(21), 6443-6450.
[http://dx.doi.org/10.1039/c2dt30077j] [PMID: 22421887]
[49]
Ekengard, E.; Kumar, K.; Fogeron, T.; de Kock, C.; Smith, P.J.; Haukka, M.; Monari, M.; Nordlander, E. Pentamethylcyclopentadienyl-rhodium and iridium complexes containing (N^N and N^O) bound chloroquine analogue ligands: synthesis, characterization and antimalarial properties. Dalton Trans., 2016, 45(9), 3905-3917.
[http://dx.doi.org/10.1039/C5DT03739E] [PMID: 26829897]
[50]
de Souza, N.B.; Carmo, A.M.L.; Lagatta, D.C.; Alves, M.J.M.; Fontes, A.P.S.; Coimbra, E.S.; da Silva, A.D.; Abramo, C. 4-aminoquinoline analogues and its platinum (II) complexes as antimalarial agents. Biomed. Pharmacother., 2011, 65(4), 313-316.
[http://dx.doi.org/10.1016/j.biopha.2011.03.003] [PMID: 21704476]
[51]
Li, Y.; de Kock, C.; Smith, P.J.; Guzgay, H.; Hendricks, D.T.; Naran, K.; Mizrahi, V.; Warner, D.F.; Chibale, K.; Smith, G.S. Synthesis, characterization, and pharmacological evaluation of silicon-containing aminoquinoline organometallic complexes as antiplasmodial, antitumor, and antimycobacterial agents. Organometallics, 2013, 32(1), 141-150.
[http://dx.doi.org/10.1021/om300945c]
[52]
Adamczyk-Woźniak, A.; Borys, K.M.; Sporzyński, A. Recent developments in the chemistry and biological applications of benzoxaboroles. Chem. Rev., 2015, 115(11), 5224-5247.
[http://dx.doi.org/10.1021/cr500642d] [PMID: 26017806]
[53]
Saini, A.; Kumar, S.; Raj, R.; Chowdhary, S.; Gendrot, M.; Mosnier, J.; Fonta, I.; Pradines, B.; Kumar, V. Synthesis and antiplasmodial evaluation of 1H-1,2,3-triazole grafted 4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues. Bioorg. Chem., 2021, 109, 104733.
[http://dx.doi.org/10.1016/j.bioorg.2021.104733] [PMID: 33618251]
[54]
Sinha, M.; Dola, V.R.; Agarwal, P.; Srivastava, K.; Haq, W.; Puri, S.K.; Katti, S.B. Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain. Bioorg. Med. Chem., 2014, 22(14), 3573-3586.
[http://dx.doi.org/10.1016/j.bmc.2014.05.024] [PMID: 24906512]
[55]
Bhagat, S.; Arfeen, M.; Das, G.; Ramkumar, M.; Khan, S.I.; Tekwani, B.L.; Bharatam, P.V. Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents. Bioorg. Chem., 2019, 91, 103094.
[http://dx.doi.org/10.1016/j.bioorg.2019.103094] [PMID: 31376783]
[56]
Joshi, M.C.; Okombo, J.; Nsumiwa, S.; Ndove, J.; Taylor, D.; Wiesner, L.; Hunter, R.; Chibale, K.; Egan, T.J. 4-Aminoquinoline antimalarials containing a benzylmethylpyridylmethylamine group are active against drug resistant Plasmodium falciparum and exhibit oral activity in mice. J. Med. Chem., 2017, 60(24), 10245-10256.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01537] [PMID: 29185748]
[57]
Huy, N.T.; Kamei, K.; Yamamoto, T.; Kondo, Y.; Kanaori, K.; Takano, R.; Tajima, K.; Hara, S. Clotrimazole binds to heme and enhances heme-dependent hemolysis: proposed antimalarial mechanism of clotrimazole. J. Biol. Chem., 2002, 277(6), 4152-4158.
[http://dx.doi.org/10.1074/jbc.M107285200] [PMID: 11707446]
[58]
Gemma, S.; Camodeca, C.; Sanna Coccone, S.; Joshi, B.P.; Bernetti, M.; Moretti, V.; Brogi, S.; Bonache de Marcos, M.C.; Savini, L.; Taramelli, D.; Basilico, N.; Parapini, S.; Rottmann, M.; Brun, R.; Lamponi, S.; Caccia, S.; Guiso, G.; Summers, R.L.; Martin, R.E.; Saponara, S.; Gorelli, B.; Novellino, E.; Campiani, G.; Butini, S. Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: further structure-activity relationships, in vivo studies, and preliminary toxicity profiling. J. Med. Chem., 2012, 55(15), 6948-6967.
[http://dx.doi.org/10.1021/jm300802s] [PMID: 22783984]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy