Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Solid-solid Phase Transitions between Crystalline Polymorphs of Organic Materials

Author(s): Ivo B. Rietveld*

Volume 29, Issue 6, 2023

Published on: 17 January, 2023

Page: [445 - 461] Pages: 17

DOI: 10.2174/1381612829666221221114459

Price: $65

Abstract

In this review, the analysis of solid-solid phase transitions between crystalline polymorphs of organic molecules is discussed. Although active pharmaceutical ingredients (APIs) are the scope of the review, whether an organic molecule has a biological activity or not does not particularly define its interactions in the crystalline state. Therefore, other small organic molecules have been included in this analysis and in certain cases, polymers have been discussed too. The focus of the review is on experimental analysis; however, a section on computational and theoretical methods has been added because these methods are becoming important and are obviously helpful in understanding for example transition mechanisms because the results can be easily visualized. The following aspects of solid-solid phase transitions between crystalline structures are presented in this review. The thermodynamics of phase transitions between polymorphs involving thermodynamic equilibrium and the variables temperature and pressure closely linked to the Gibbs free energy are discussed. The two main transition mechanisms in the organic crystalline solid, displacive and concerted, are discussed. Experimental methods that are used to understand the mechanisms and thermodynamic equilibrium between different polymorphs of an API are reviewed. The switching of polymorph properties is discussed, and heat storage and release are reviewed as it is one of the main applications of solid-state phase transitions. Of interest for the control of drug products, constraining phase transitions has been reviewed, as it may help increase the bioavailability of an API by using metastable phases. Finally, second order phase transitions of organic materials, which appear to be rare, are discussed. It can be concluded that although the general theory of polymorphism and phase transitions is well understood, how it works out for a specific molecule remains difficult to predict.

[1]
Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013; 65(1): 315-499.
[http://dx.doi.org/10.1124/pr.112.005660] [PMID: 23383426]
[2]
Riley CM, Yang H. General principles and regulatory considerations: Specifications and shelf life setting. Riley CM, Rosanske TW, Reid GL, Eds. In: Specification of Drug Substances and Products: Development and Validation of Analytical Tools; Elsevier: B.V, 2020; p. 9.
[http://dx.doi.org/10.1016/B978-0-08-102824-7.00002-6]
[3]
Abramov YA, Zell M, Krzyzaniak JF. Toward a rational solvent selection for conformational polymorph screening. am Ende DJ, am Ende MT, Eds. In: Chemical Engineering in the Pharmaceutical Industry: Active Pharmaceutical Ingredients: New Jerrsey, John Wiley & Sons, Inc. 2019; p. 519.ar.
[http://dx.doi.org/10.1002/9781119600800.ch23]
[4]
Singh P, Chadha R. Crystal structure prediction in the context of pharmaceutical polymorph screening and putative polymorphs of ciprofloxacin. Int J Pharm Pharm Sci 2017; 9(4): 1-9.
[http://dx.doi.org/10.22159/ijpps.2017v9i4.14332]
[5]
Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 2015; 20(10): 18759-76.
[http://dx.doi.org/10.3390/molecules201018759] [PMID: 26501244]
[6]
Variankaval N, McNevin M, Shultz S, Trzaska S. High-throughput screening to enable salt and polymorph screening, chemical purification, and chiral resolution. Knochel P, Ed. In: Comprehensive Organic Synthesis. Elsevier B.V. 2014; pp. 207-33.
[7]
Newman A. Specialized solid form screening techniques. Org Process Res Dev 2013; 17(3): 457-71.
[http://dx.doi.org/10.1021/op300241f]
[8]
Mattei A, Chen S, Chen J, Sheikh AY. Solid form development for poorly soluble compounds. am Ende DJ, am Ende MT, Eds. In: Chemical Engineering in the Pharmaceutical Industry: Active Pharmaceutical Ingredients. John Wiley & Sons, Inc: New Jerrsey, 2019, p. 665.
[http://dx.doi.org/10.1002/9781119600800.ch29]
[9]
Price SL, Reutzel-Edens SM. The potential of computed crystal energy landscapes to aid solid-form development. Drug Discov Today 2016; 21(6): 912-23.
[http://dx.doi.org/10.1016/j.drudis.2016.01.014] [PMID: 26851154]
[10]
Etse J. 6 - Novel dosage form analysis. Ahuja S, Scypinski S, Eds. In: Separation Science and Technology. Academic Press 2011; pp. 225-49.
[11]
Kitaigorodsky AI. Organic Chemical Crystallography. Consultant Bureau: New York 1961.
[12]
Braun DE, McMahon JA, Koztecki LH, Price SL, Reutzel-Edens SM. Contrasting polymorphism of related small molecule drugs correlated and guided by the computed crystal energy landscape. Cryst Growth Des 2014; 14(4): 2056-72.
[http://dx.doi.org/10.1021/cg500185h]
[13]
Gibbs JW. On the equilibrium of hetergeneous substances (concluded). Transactions of the Connecticut Academy 1877; 3: 343-524.
[14]
Gibbs JW. On the equilibrium of heterogeneous substances, first part. Transactions of the Connecticut Academy 1875; 3: 108-248.
[15]
Céolin R, Rietveld IB. Thermodynamic origin and graphical methods of phase theory. Eur Phys J Spec Top 2017; 226(5): 1001-15.
[http://dx.doi.org/10.1140/epjst/e2016-60318-7]
[16]
Joseph A, Bernardes CES, Druzhinina AI, et al. Polymorphic phase transition in 4′-hydroxyacetophenone: Equilibrium temperature, kinetic barrier, and the relative stability of Z ′ = 1 and Z ′ = 2 Forms. Cryst Growth Des 2017; 17(4): 1918-32.
[http://dx.doi.org/10.1021/acs.cgd.6b01876]
[17]
Baaklini G, Gbabode G, Clevers S, Négrier P, Mondieig D, Coquerel G. Trimorphism of N-methylurea: Crystal structures, phase transitions and thermodynamic stabilities. Cryst Eng Comm 2016; 18(25): 4772-8.
[http://dx.doi.org/10.1039/C6CE00652C]
[18]
Barrio M, Maccaroni E, Rietveld IB, et al. Pressure-temperature state diagram for the phase relationships between benfluorex hydrochloride forms I and II: A case of enantiotropic behavior. J Pharm Sci 2012; 101(3): 1073-8.
[http://dx.doi.org/10.1002/jps.22821] [PMID: 22102487]
[19]
Maccaroni E, Malpezzi L, Panzeri W, Masciocchi N. Thermal and X-ray powder diffraction structural characterization of two benfluorex hydrochloride polymorphs. J Pharm Biomed Anal 2010; 53(1): 1-6.
[http://dx.doi.org/10.1016/j.jpba.2010.02.037] [PMID: 20347245]
[20]
Gana I, Barrio M, Do B, Tamarit JL, Céolin R, Rietveld IB. Benzocaine polymorphism: Pressure-temperature phase diagram involving forms II and III. Int J Pharm 2013; 456(2): 480-8.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.031] [PMID: 23994015]
[21]
Rietveld IB, Barrio M, Ceolin R, Tamarit JL. Crystal structure of polymorph II and the pressure-temperature phase diagram of the dimorphic anesthetic butamben. Cryst Growth Des 2021; 21(12): 6766-75.
[http://dx.doi.org/10.1021/acs.cgd.1c00670]
[22]
Rietveld IB, Barrio M, Veglio N, Espeau P, Tamarit JL, Céolin R. Temperature and composition-dependent properties of the two- component system d- and l-camphor at ‘ordinary’ pressure. Thermochim Acta 2010; 511(1-2): 43-50.
[http://dx.doi.org/10.1016/j.tca.2010.07.023]
[23]
Rietveld IB, Barrio M, Espeau P, Tamarit JL, Céolin R. Topological and experimental approach to the pressure-temperature-composition phase diagram of the binary enantiomer system d- and l- camphor. J Phys Chem B 2011; 115(7): 1672-8.
[http://dx.doi.org/10.1021/jp108900v] [PMID: 21280597]
[24]
Nagumo T, Matsuo T, Suga H. Thermodynamic study on camphor crystals. Thermochim Acta 1989; 139: 121-32.
[http://dx.doi.org/10.1016/0040-6031(89)87015-7]
[25]
Toscani S, Céolin R, Minassian LT, et al. Stability hierarchy between Piracetam forms I, II, and III from experimental pressure–temperature diagrams and topological inferences. Int J Pharm 2016; 497(1-2): 96-105.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.036] [PMID: 26617316]
[26]
Perrin MA, Bauer M, Barrio M, Tamarit JL, Céolin R, Rietveld IB. Rimonabant dimorphism and its pressure-temperature phase diagram: A delicate case of overall monotropic behavior. J Pharm Sci 2013; 102(7): 2311-21.
[http://dx.doi.org/10.1002/jps.23612] [PMID: 23696075]
[27]
Rietveld IB, Barrio M, Tamarit JL, et al. Dimorphism of the prodrug l-tyrosine ethyl ester: Pressure-temperature state diagram and crystal structure of phase II. J Pharm Sci 2011; 100(11): 4774-82.
[http://dx.doi.org/10.1002/jps.22672] [PMID: 21698599]
[28]
Nicolaï B, Itié JP, Barrio M, Tamarit JL, Rietveld IB. Thermodynamics by synchrotron X-ray diffraction: Phase relationships and crystal structure of L-tyrosine ethyl ester form III. CrystEngComm 2015; 17(21): 3974-84.
[http://dx.doi.org/10.1039/C5CE00284B]
[29]
Nicolaï B, Barrio M, Lloveras P, et al. A thermodynamically consistent phase diagram of a trimorphic pharmaceutical, L -tyrosine ethyl ester, based on limited experimental data. Phys Chem Chem Phys 2018; 20(37): 24074-87.
[http://dx.doi.org/10.1039/C8CP01813H] [PMID: 30204172]
[30]
Castro RAE, Maria TMR, Évora AOL, et al. A new insight into pyrazinamide polymorphic forms and their thermodynamic relationships. Cryst Growth Des 2010; 10(1): 274-82.
[http://dx.doi.org/10.1021/cg900890n]
[31]
Cherukuvada S, Thakuria R, Nangia A. Pyrazinamide polymorphs: Relative stability and vibrational spectroscopy. Cryst Growth Des 2010; 10(9): 3931-41.
[http://dx.doi.org/10.1021/cg1004424]
[32]
Li K, Gbabode G, Vergé-Depré M, et al. The pressure-temperature phase diagram of tetramorphic pyrazinamide. CrystEngComm 2022; 24(28): 5041-51.
[http://dx.doi.org/10.1039/D2CE00484D]
[33]
Li K, Gbabode G, Barrio M, et al. The phase relationship between the pyrazinamide polymorphs α and γ. Int J Pharm 2020; 580: 119230.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119230] [PMID: 32199962]
[34]
Gana I, Barrio M, Ghaddar C, et al. An integrated view of the influence of temperature, pressure, and humidity on the stability of trimorphic cysteamine hydrochloride. Mol Pharm 2015; 12(7): 2276-88.
[http://dx.doi.org/10.1021/mp500830n] [PMID: 26042338]
[35]
Rietveld IB, Barrio M, Lloveras P, Céolin R, Tamarit JL. Polymorphism of spironolactone: An unprecedented case of monotropy turning to enantiotropy with a huge difference in the melting temperatures. Int J Pharm 2018; 552(1-2): 193-205.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.059] [PMID: 30266517]
[36]
Céolin R, Rietveld IB. Topological pressure-temperature state diagram of the crystalline dimorphism of 2,4,6-trinitrotoluene. Fluid Phase Equilib 2020; 506: 112395-400.
[http://dx.doi.org/10.1016/j.fluid.2019.112395]
[37]
Rietveld IB, Céolin R. Phenomenology of crystalline polymorphism. J Therm Anal Calorim 2015; 120(2): 1079-87.
[http://dx.doi.org/10.1007/s10973-014-4366-2]
[38]
Gana I, Céolin R, Rietveld IB. Phenomenology of polymorphism: The topological pressure-temperature phase relationships of the dimorphism of finasteride. Thermochim Acta 2012; 546: 134-7.
[http://dx.doi.org/10.1016/j.tca.2012.07.030]
[39]
Barrio M, Huguet J, Rietveld IB, Robert B, Céolin R, Tamarit JL. The pressure-temperature phase diagram of metacetamol and its comparison to the phase diagram of paracetamol. J Pharm Sci 2017; 106(6): 1538-44.
[http://dx.doi.org/10.1016/j.xphs.2017.02.003] [PMID: 28192078]
[40]
Ledru J, Imrie CT, Pulham CR, Céolin R, Hutchinson JM. High pressure differential scanning calorimetry investigations on the pressure dependence of the melting of paracetamol polymorphs I and II. J Pharm Sci 2007; 96(10): 2784-94.
[http://dx.doi.org/10.1002/jps.20903] [PMID: 17542017]
[41]
Espeau P, Céolin R, Tamarit JL, Perrin MA, Gauchi JP, Leveiller F. Polymorphism of paracetamol: Relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure‐temperature and temperature-volume phase diagrams. J Pharm Sci 2005; 94(3): 524-39.
[http://dx.doi.org/10.1002/jps.20261] [PMID: 15627255]
[42]
Romanini M, Rietveld IB, Barrio M, et al. Uniaxial negative thermal expansion in polymorphic 2-bromobenzophenone, due to aromatic interactions? Cryst Growth Des 2021; 21(4): 2167-75.
[http://dx.doi.org/10.1021/acs.cgd.0c01603]
[43]
Céolin R, Rietveld IB. The topological pressure-temperature phase diagram of fluoxetine nitrate: Monotropy unexpectedly turning into enantiotropy. Eur Phys J Spec Top 2017; 226(5): 881-8.
[http://dx.doi.org/10.1140/epjst/e2016-60275-1]
[44]
Céolin R, Rietveld IB. The topological pressure-temperature phase diagram of ritonavir, an extraordinary case of crystalline dimorphism. Ann Pharm Fr 2015; 73(1): 22-30.
[http://dx.doi.org/10.1016/j.pharma.2014.09.003] [PMID: 25496722]
[45]
Bauer J, Spanton S, Henry R, et al. Ritonavir: An extraordinary example of conformational polymorphism. Pharm Res 2001; 18(6): 859-66.
[http://dx.doi.org/10.1023/A:1011052932607] [PMID: 11474792]
[46]
Chemburkar SR, Bauer J, Deming K, et al. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev 2000; 4(5): 413-7.
[http://dx.doi.org/10.1021/op000023y]
[47]
Robert B, Perrin MA, Barrio M, et al. Crystal structures and phase relationships of 2 polymorphs of 1,4-diazabicyclo[3.2.2]nonane-4- carboxylic acid 4-bromophenyl ester fumarate, a selective α-7 nicotinic receptor partial agonist. J Pharm Sci 2016; 105(1): 64-70.
[http://dx.doi.org/10.1016/j.xphs.2015.10.015] [PMID: 26852840]
[48]
Boldyreva E. High-pressure polymorphs of molecular solids: When are they formed, and when are they not? Some examples of the role of kinetic control. Cryst Growth Des 2007; 7(9): 1662-8.
[http://dx.doi.org/10.1021/cg070098u]
[49]
Aznar A, Negrier P, Planes A, et al. Reversible colossal barocaloric effects near room temperature in 1-X-adamantane (X=Cl, Br) plastic crystals. Appl Mater Today 2021; 23: 101023.
[http://dx.doi.org/10.1016/j.apmt.2021.101023]
[50]
Mukaida M, Watanabe Y, Sugano K, Terada K. Identification and physicochemical characterization of caffeine-citric acid co-crystal polymorphs. Eur J Pharm Sci 2015; 79: 61-6.
[http://dx.doi.org/10.1016/j.ejps.2015.09.002] [PMID: 26360836]
[51]
Bommaka MK, Chaitanya Mannava MK, Rai SK, Suresh K, Nangia AK. Entacapone polymorphs: Crystal structures, dissolution, permeability, and stability. Cryst Growth Des 2021; 21(10): 5573-85.
[http://dx.doi.org/10.1021/acs.cgd.1c00381]
[52]
Seton L, Khamar D, Bradshaw IJ, Hutcheon GA. Solid state forms of theophylline: Presenting a new anhydrous polymorph. Cryst Growth Des 2010; 10(9): 3879-86.
[http://dx.doi.org/10.1021/cg100165t]
[53]
Aitipamula S, Chow PS, Tan RBH. Conformational polymorphs of a muscle relaxant, metaxalone. Cryst Growth Des 2011; 11(9): 4101-9.
[http://dx.doi.org/10.1021/cg200678e]
[54]
Maddileti D, Swapna B, Nangia A. Tetramorphs of the antibiotic drug trimethoprim: Characterization and stability. Cryst Growth Des 2015; 15(4): 1745-56.
[http://dx.doi.org/10.1021/cg501772t]
[55]
Ueto T, Takata N, Muroyama N, et al. Polymorphs and a hydrate of furosemide–nicotinamide 1:1 cocrystal. Cryst Growth Des 2012; 12(1): 485-94.
[http://dx.doi.org/10.1021/cg2013232]
[56]
Blázquez JS, Romero FJ, Conde CF, Conde A. A review of different models derived from classical Kolmogorov, Johnson and Mehl, and Avrami (KJMA) theory to recover physical meaning in solid-state transformations. Physica Status Solidi (b) 2022; 259: 2100524.
[57]
Smets MMH, Baaklini G, Tijink A, et al. Inhibition of the vapor- mediated phase transition of the high temperature form of pyrazinamide. Cryst Growth Des 2018; 18(2): 1109-16.
[http://dx.doi.org/10.1021/acs.cgd.7b01550] [PMID: 29445318]
[58]
Baaklini G, Dupray V, Coquerel G. Inhibition of the spontaneous polymorphic transition of pyrazinamide γ form at room temperature by co-spray drying with 1,3-dimethylurea. Int J Pharm (Amsterdam, Neth) 2015; 479: 163-70.
[59]
Gong Y, Collman BM, Mehrens SM, et al. Stable-form screening: Overcoming trace impurities that inhibit solution-mediated phase transformation to the stable polymorph of sulfamerazine. J Pharm Sci 2008; 97(6): 2130-44.
[http://dx.doi.org/10.1002/jps.21139] [PMID: 17879974]
[60]
Sanphui P, Sarma B, Nangia A. Phase transformation in conformational polymorphs of nimesulide. J Pharm Sci 2011; 100(6): 2287-99.
[http://dx.doi.org/10.1002/jps.22464] [PMID: 21491446]
[61]
Centore R, Causà M. Translating microscopic molecular motion into macroscopic body motion: Reversible self-reshaping in the solid state transition of an organic crystal. Cryst Growth Des 2018; 18(6): 3535-43.
[http://dx.doi.org/10.1021/acs.cgd.8b00337]
[62]
Wight CD, Xiao Q, Wagner HR, Hernandez EA, Lynch VM, Iverson BL. Mechanistic analysis of solid-state colorimetric switching: Monoalkoxynaphthalene-naphthalimide donor-acceptor dyads. J Am Chem Soc 2020; 142(41): 17630-43.
[http://dx.doi.org/10.1021/jacs.0c08137] [PMID: 32897707]
[63]
Braun DE, Krüger H, Kahlenberg V, Griesser UJ. Molecular level understanding of the reversible phase transformation between forms III and II of dapsone. Cryst Growth Des 2017; 17(10): 5054-60.
[http://dx.doi.org/10.1021/acs.cgd.7b01089] [PMID: 30337848]
[64]
Smets MMH, Brugman SJT, van Eck ERH, Tinnemans P, Meekes H, Cuppen HM. Understanding the single-crystal-to-single-crystal solid-state phase transition of DL-methionine. CrystEngComm 2016; 18(48): 9363-73.
[http://dx.doi.org/10.1039/C6CE02079H]
[65]
Shi G, Li S, Shi P, Gong J, Zhang M, Tang W. Distinct pathways of solid-to-solid phase transitions induced by defects: The case of DL -methionine. IUCrJ 2021; 8(4): 584-94.
[http://dx.doi.org/10.1107/S2052252521004401] [PMID: 34258007]
[66]
Görbitz CH, Wragg DS, Bakke IMB, et al. A phase transition from monoclinic C 2 with Z ′ = 1 to triclinic P 1 with Z ′ = 4 for the quasiracemate L -2-aminobutyric acid– D -methionine (1/1). Acta Crystallogr C Struct Chem 2016; 72(7): 536-43.
[http://dx.doi.org/10.1107/S2053229616008858] [PMID: 27377274]
[67]
Woollam GR, Neumann MA, Wagner T, Davey RJ. The importance of configurational disorder in crystal structure prediction: The case of loratadine. Faraday Discuss 2018; 211(0): 209-34.
[http://dx.doi.org/10.1039/C8FD00072G] [PMID: 30052254]
[68]
Ben Hassine B, Negrier P, Romanini M, et al. Structure and reorientational dynamics of 1-F-adamantane. Phys Chem Chem Phys 2016; 18(16): 10924-30.
[http://dx.doi.org/10.1039/C6CP01144F] [PMID: 27040739]
[69]
Brandel C, Cartigny Y, Couvrat N, et al. Mechanisms of reversible phase transitions in molecular crystals: Case of ciclopirox. Chem Mater 2015; 27(18): 6360-73.
[http://dx.doi.org/10.1021/acs.chemmater.5b02389]
[70]
Clevers S, Simon F, Sanselme M, Dupray V, Coquerel G. Monotropic transition mechanism of m-hydroxybenzoic acid investigated by temperature-resolved second harmonic generation. Cryst Growth Des 2013; 13(8): 3697-704.
[http://dx.doi.org/10.1021/cg400712s]
[71]
Oketani R, Takahashi H, Clevers S, et al. Order–disorder phase transition between high- and low- Z ′ crystal structures of the P 1 space group. Cryst Growth Des 2022; 22(4): 2230-8.
[http://dx.doi.org/10.1021/acs.cgd.1c01330]
[72]
Ehrenfest P. Phase transitions in the usual and extended sense, classified according to the corresponding singularity of the thermodynamic potential. Papers of the Royal Academy of Sciences 1933; 36: 153-7.
[73]
Jaeger G. The ehrenfest classification of phase transitions: Introduction and evolution. Arch Hist Exact Sci 1998; 53(1): 51-81.
[http://dx.doi.org/10.1007/s004070050021]
[74]
Ye J, Barrio M, Céolin R, et al. An order–disorder phase transition in the van der Waals based solvate of C 60 and CClBrH 2. CrystEngComm 2018; 20(19): 2729-32.
[http://dx.doi.org/10.1039/C8CE00271A]
[75]
Tashiro K, Hu J, Wang H, Hanesaka M, Saiani A. Refinement of the crystal structures of forms I and II of isotactic polybutene-1 and a proposal of phase transition mechanism between them. Macromolecules 2016; 49(4): 1392-404.
[http://dx.doi.org/10.1021/acs.macromol.5b02785]
[76]
Wasanasuk K, Tashiro K. Crystal structure and disorder in Poly(l-lactic acid) δ form (α′ form) and the phase transition mechanism to the ordered α form. Polymer 2011; 52(26): 6097-109.
[http://dx.doi.org/10.1016/j.polymer.2011.10.046]
[77]
Wang H, Zhang J, Tashiro K. Phase transition mechanism of poly(Lfr-lactic acid) among the α, δ, and β forms on the basis of the reinvestigated crystal structure of the β form. Macromolecules 2017; 50(8): 3285-300.
[http://dx.doi.org/10.1021/acs.macromol.7b00272]
[78]
Pramanick A, Misture S, Osti NC, Jalarvo N, Diallo SO, Mamontov E. Ferroelectric to paraelectric phase transition mechanism in poled PVDF-TrFE copolymer films. Phys Rev B 2017; 96: 174103/1.
[79]
Bull CL, Flowitt-Hill G, de Gironcoli S, et al. ζ-Glycine: Insight into the mechanism of a polymorphic phase transition. IUCrJ 2017; 4(5): 569-74.
[http://dx.doi.org/10.1107/S205225251701096X] [PMID: 28989714]
[80]
Szafrański M. Comment on the phase transition mechanism in diglycine methanesulfonate. Chem Asian J 2014; 9(12): 3342-3.
[http://dx.doi.org/10.1002/asia.201402492] [PMID: 25205554]
[81]
Casalegno M, Nicolini T, Famulari A, Raos G, Po R, Meille SV. Atomistic modelling of entropy driven phase transitions between different crystal modifications in polymers: The case of poly(3-alkylthiophenes). Phys Chem Chem Phys 2018; 20(46): 28984-9.
[http://dx.doi.org/10.1039/C8CP05820B] [PMID: 30457608]
[82]
Wang Y, Solano-Canchaya JG, Alcamí M, Busnengo HF, Martín F. Commensurate solid-solid phase transitions in self-assembled monolayers of alkylthiolates lying on metal surfaces. J Am Chem Soc 2012; 134(32): 13224-7.
[http://dx.doi.org/10.1021/ja305842t] [PMID: 22827341]
[83]
Abramczyk H, Paradowska-Moszkowska K. The correlation between the phase transitions and vibrational properties by Raman spectroscopy: Liquid-solid β and solid β-solid α acetonitrile transitions. Chem Phys 2001; 265(2): 177-91.
[http://dx.doi.org/10.1016/S0301-0104(01)00271-3]
[84]
Casson BD, Braun R, Bain CD. Phase transitions in monolayers of medium-chain alcohols on water studied by sum-frequency spectroscopy and ellipsometry. Faraday Discuss 1996; 104: 209-29.
[http://dx.doi.org/10.1039/fd9960400209]
[85]
Acrivos JV, Nguyen L, Norman T, et al. Chemical analysis by X-ray spectroscopy near phase transitions in the solid state. Microchem J 2002; 71(2-3): 117-31.
[http://dx.doi.org/10.1016/S0026-265X(02)00004-8]
[86]
Melamed D, Fox MA. Intramolecular charge-transfer fluorescence of 1-phenyl-4-[(4-cyano- 1-naphthyl) methylene] piperidine (fluoroprobe) as a sensor for phase transitions in the solid state. Chemtracts: Org Chem 1993; 6: 186.
[87]
Jenneskens LW, Verhey HJ, van Ramesdonk HJ, Verhoeven JW, van Malssen KF, Schenk H. Intramolecular charge-transfer fluorescence of 1-phenyl-4-[(4-cyano-1-naphthyl)methylene]piperidine (fluoroprobe) as a sensor for phase transitions in the solid state. Recl Trav Chim Pays Bas 1992; 111(12): 507-10.
[http://dx.doi.org/10.1002/recl.19921111202]
[88]
Yuan L, Clevers S, Burel A, et al. New intermediate polymorph of 1-fluoro-adamantane and its second-order-like transition toward the low temperature phase. Cryst Growth Des 2017; 17(6): 3395-401.
[http://dx.doi.org/10.1021/acs.cgd.7b00353]
[89]
Simon F, Clevers S, Dupray V, Coquerel G. Relevance of the second harmonic generation to characterize crystalline samples. Chem Eng Technol 2015; 38(6): 971-83.
[http://dx.doi.org/10.1002/ceat.201400756]
[90]
Takahashi H, Iwama S, Clevers S, et al. In situ observation of polymorphic transition during crystallization of organic compounds showing preferential enrichment by means of temperature-controlled video-microscopy and time-resolved X-ray powder diffraction. Cryst Growth Des 2017; 17(2): 671-6.
[http://dx.doi.org/10.1021/acs.cgd.6b01516]
[91]
Hudspeth JM, Goossens DJ, Welberry TR, Gutmann MJ. Diffuse scattering and the mechanism for the phase transition in triglycine sulphate. J Mater Sci 2013; 48(19): 6605-12.
[http://dx.doi.org/10.1007/s10853-013-7457-8]
[92]
Gonzalo JA. Critical behavior of ferroelectric triglycine sulfate. Phys Rev 1966; 144(2): 662-5.
[http://dx.doi.org/10.1103/PhysRev.144.662]
[93]
Romanini M, Negrier P, Tripathi P, et al. Polymorphism with conformational isomerism and incomplete crystallization in solid ethanolamine. Cryst Growth Des 2019; 19(11): 6360-9.
[http://dx.doi.org/10.1021/acs.cgd.9b00836]
[94]
Shi M, Yu SS, Zhang H, Liu SX, Duan HB. A hybrid molecular rotor crystal with dielectric relaxation and thermochromic luminescence. J Mol Struct 2020; 1206: 127650.
[http://dx.doi.org/10.1016/j.molstruc.2019.127650]
[95]
Švajdlenková H, Zgardzinska B, Lukešová M, Bartoš J. Spin probe dynamics in relation to free volume in crystalline organics from ESR and PALS: Cyclohexane. Chem Phys Lett 2016; 643: 98-102.
[http://dx.doi.org/10.1016/j.cplett.2015.11.023]
[96]
Rychkov DA, Stare J, Boldyreva EV. Pressure-driven phase transition mechanisms revealed by quantum chemistry: L-serine polymorphs. Phys Chem Chem Phys 2017; 19(9): 6671-6.
[http://dx.doi.org/10.1039/C6CP07721H] [PMID: 28210731]
[97]
Stokes HT, Hatch DM. Procedure for obtaining microscopic mechanisms of reconstructive phase transitions in crystalline solids. Phys Rev B: Condens Matter Mater Phys 2002; 65: 144114/1.
[98]
Rogal J, Schneider E, Tuckerman ME. Neural-network-based path collective variables for enhanced sampling of phase transformations. Phys Rev Lett 2019; 123(24): 245701.
[http://dx.doi.org/10.1103/PhysRevLett.123.245701] [PMID: 31922858]
[99]
Cao W, Wang Y, Saielli G. Metastable State during Melting and Solid–Solid Phase Transition of (Cn Mim)(NO 3) (n = 4–12) Ionic Liquids by Molecular Dynamics Simulation. J Phys Chem B 2018; 122(1): 229-39.
[http://dx.doi.org/10.1021/acs.jpcb.7b09073] [PMID: 29200292]
[100]
Tomellini M. Modeling the kinetics of consecutive phase transitions in the solid state. J Mater Sci 2016; 51(2): 809-21.
[http://dx.doi.org/10.1007/s10853-015-9404-3]
[101]
Tsourtou FD, Alexiadis O, Mavrantzas VG, Kolonias V, Housos E. Atomistic monte carlo and molecular dynamics simulation of the bulk phase self-assembly of semifluorinated alkanes. Chem Eng Sci 2015; 121: 32-50.
[http://dx.doi.org/10.1016/j.ces.2014.09.009]
[102]
Feng B, Tu J, Sun JW, Fan LW, Zeng Y. A molecular dynamics study of the effects of crystalline structure transition on the thermal conductivity of pentaerythritol as a solid-solid phase change material. Int J Heat Mass Transf 2019; 141: 789-98.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.07.017]
[103]
Cajahuaringa S, Antonelli A. Stochastic sampling of the isothermal-isobaric ensemble: Phase diagram of crystalline solids from molecular dynamics simulation. J Chem Phys 2018; 149(6): 064114.
[http://dx.doi.org/10.1063/1.5029842] [PMID: 30111152]
[104]
Steele BA, Stavrou E, Prakapenka VB, Kroonblawd MP, Kuo IFW. High-pressure equation of state of 1,3,5-triamino-2,4,6-trinitrobenzene: Insights into the monoclinic phase transition, hydrogen bonding, and anharmonicity. J Phys Chem A 2020; 124(50): 10580-91.
[http://dx.doi.org/10.1021/acs.jpca.0c09463] [PMID: 33267581]
[105]
Burrows SA, Korotkin I, Smoukov SK, Boek E, Karabasov S. Benchmarking of molecular dynamics force fields for solid-liquid and solid–solid phase transitions in alkanes. J Phys Chem B 2021; 125(19): 5145-59.
[http://dx.doi.org/10.1021/acs.jpcb.0c07587] [PMID: 33724846]
[106]
Fanani ML, Busto JV, Sot J, et al. Clearly detectable, kinetically restricted solid-solid phase transition in cis-ceramide monolayers. Langmuir 2018; 34(39): 11749-58.
[http://dx.doi.org/10.1021/acs.langmuir.8b02198] [PMID: 30183303]
[107]
Munday LB, Chung PW, Rice BM, Solares SD. Simulations of high-pressure phases in RDX. J Phys Chem B 2011; 115(15): 4378-86.
[http://dx.doi.org/10.1021/jp112042a] [PMID: 21434619]
[108]
Pang Y, Sun D, Gu Q, Chou KC, Wang X, Li Q. Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended jonhson-mehl-avrami–kolomogorov model with analytical solutions. Cryst Growth Des 2016; 16(4): 2404-15.
[http://dx.doi.org/10.1021/acs.cgd.6b00187]
[109]
Fife PC, Gill GS. Phase-transition mechanisms for the phase-field model under internal heating. Phys Rev A 1991; 43(2): 843-51.
[http://dx.doi.org/10.1103/PhysRevA.43.843] [PMID: 9905101]
[110]
Nakatsuka Y, Tsuneda T, Sato T, Hirao K. Theoretical investigations on the photoinduced phase transition mechanism of tetrathiafulvalene-p-chloranil. J Chem Theory Comput 2011; 7(7): 2233-9.
[http://dx.doi.org/10.1021/ct200072e] [PMID: 26606492]
[111]
Sun G, Liu X, Abramov YA, et al. Current state-of-the-art in- house and cloud-based applications of virtual polymorph screening of pharmaceutical compounds: A challenging case of AZD1305. Cryst Growth Des 2021; 21(4): 1972-83.
[http://dx.doi.org/10.1021/acs.cgd.0c01266]
[112]
Zhang X, Shao XD, Li SC, et al. Dynamics of a caged imidazolium cation–toward understanding the order-disorder phase transition and the switchable dielectric constant. Chem Commun (Camb) 2015; 51(22): 4568-71.
[http://dx.doi.org/10.1039/C4CC08693G] [PMID: 25579450]
[113]
Khan T, Asghar MA, Sun Z, Zeb A, Ji C, Luo J. A supra-molecular switchable dielectric material with non-linear optical properties. J Mater Chem C Mater Opt Electron Devices 2017; 5(11): 2865-70.
[http://dx.doi.org/10.1039/C6TC05574E]
[114]
Sun Z, Zhang S, Ji C, Chen T, Luo J. Exceptional dielectric performance induced by the stepwise reversible phase transitions of an organic crystal: Betainium chlorodifluoroacetate. J Mater Chem C Mater Opt Electron Devices 2014; 2(48): 10337-42.
[http://dx.doi.org/10.1039/C4TC01925C]
[115]
Harada J, Kawamura Y, Takahashi Y, et al. Plastic/ferroelectric crystals with easily switchable polarization: Low-voltage operation, unprecedentedly high pyroelectric performance, and large piezoelectric effect in polycrystalline forms. J Am Chem Soc 2019; 141(23): 9349-57.
[http://dx.doi.org/10.1021/jacs.9b03369] [PMID: 31184147]
[116]
Echeverri M, Ruiz C, Gámez-Valenzuela S, et al. Untangling the mechanochromic properties of benzothiadiazole-based luminescent polymorphs through supramolecular organic framework topology. J Am Chem Soc 2020; 142(40): 17147-55.
[http://dx.doi.org/10.1021/jacs.0c08059] [PMID: 32911933]
[117]
Jin M, Seki T, Ito H. Mechano-responsive luminescence via crystal-to-crystal phase transitions between chiral and non-chiral space groups. J Am Chem Soc 2017; 139(22): 7452-5.
[http://dx.doi.org/10.1021/jacs.7b04073] [PMID: 28535044]
[118]
Yu Y, Fan Y, Wang C, et al. Phenanthroimidazole derivatives with minor structural differences: Crystalline polymorphisms, different molecular packing, and totally different mechanoluminescence. J Mater Chem C Mater Opt Electron Devices 2019; 7(44): 13759-63.
[http://dx.doi.org/10.1039/C9TC05218F]
[119]
Zhang Z, Lieu T, Wu CH, et al. Solvation-dependent switching of solid-state luminescence of a fluorinated aromatic tetrapyrazole. Chem Commun 2019; 55(63): 9387-90.
[http://dx.doi.org/10.1039/C9CC03932E] [PMID: 31318363]
[120]
Mikita R, Ogihara N, Takahashi N, Kosaka S, Isomura N. Phase transition mechanism for crystalline aromatic dicarboxylate in Li + intercalation. Chem Mater 2020; 32(8): 3396-404.
[http://dx.doi.org/10.1021/acs.chemmater.9b04984]
[121]
Lu Z, Xue X, Meng L, et al. Heat-induced solid-solid phase transformation of TKX-50. J Phys Chem C 2017; 121(15): 8262-71.
[http://dx.doi.org/10.1021/acs.jpcc.7b00086]
[122]
Fu X, Xiao Y, Hu K, Wang J, Lei J, Zhou C. Thermosetting solid-solid phase change materials composed of poly(ethylene glycol)-based two components: Flexible application for thermal energy storage. Chem Eng J 2016; 291: 138-48.
[123]
Chen C, Liu W, Wang Z, Peng K, Pan W, Xie Q. Novel form stable phase change materials based on the composites of polyethylene glycol/polymeric solid-solid phase change material. Sol Energy Mater Sol Cells 2015; 134: 80-8.
[http://dx.doi.org/10.1016/j.solmat.2014.11.039]
[124]
Pielichowska K, Pielichowski K. Biodegradable PEO/cellulose-based solid-solid phase change materials. Polym Adv Technol 2011; 22(12): 1633-41.
[http://dx.doi.org/10.1002/pat.1651]
[125]
Zeng JL, Gan J, Zhu FR, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 2014; 127: 122-8.
[http://dx.doi.org/10.1016/j.solmat.2014.04.015]
[126]
Aznar A, Lloveras P, Kim JY, et al. Giant and reversible inverse barocaloric effects near room temperature in ferromagnetic MnCoGeB 0.03. Adv Mater 2019; 31(37): 1903577.
[http://dx.doi.org/10.1002/adma.201903577] [PMID: 31385369]
[127]
Lloveras P, Stern-Taulats E, Barrio M, et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat Commun 2015; 6(1): 8801.
[http://dx.doi.org/10.1038/ncomms9801] [PMID: 26607989]
[128]
Raj CR, Suresh S, Bhavsar RR, Singh VK. Recent developments in thermo-physical property enhancement and applications of solid solid phase change materials. J Therm Anal Calorim 2020; 139(5): 3023-49.
[http://dx.doi.org/10.1007/s10973-019-08703-w]
[129]
Bauer M, Lacoulonche F, Céolin R, et al. On the dimorphism of prednisolone: The topological pressure-temperature phase diagram involving forms I and II. Int J Pharm 2022; 624: 122047.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122047] [PMID: 35902055]
[130]
Nicolaï B, Mahé N, Céolin R, Rietveld IB, Barrio M, Tamarit JL. Tyrosine alkyl esters as prodrug: The structure and intermolecular interactions of l-tyrosine methyl ester compared to l-tyrosine and its ethyl and n-butyl esters. Struct Chem 2011; 22(3): 649-59.
[http://dx.doi.org/10.1007/s11224-010-9723-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy