Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Epigenetic Regulation in Urothelial Carcinoma

Author(s): Ke Li, Lin Qi, Guyu Tang, Haozhe Xu, Zhi Li, Bo Fan, Zhongbei Li and Yuan Li*

Volume 24, Issue 1, 2024

Published on: 18 January, 2023

Page: [85 - 97] Pages: 13

DOI: 10.2174/1566524023666221221094432

Price: $65

Abstract

Urothelial carcinoma (UC) is a common malignancy that remains a clinical challenge: Non-muscle-invasive urothelial carcinoma (NMIUC) has a high rate of recurrence and risk of progression, while muscle-invasive urothelial carcinoma (MIUC) has a high mortality. Although some new treatments, such as immunotherapies, have shown potential effects on some patients, most cases of advanced UC remain incurable. While treatments based on epigenetic mechanisms, whether combined with traditional platinum-based chemotherapy or emerging immunotherapy, show therapeutic advantages. With the advancement of sequencing and bioinformatics, the study of epigenomics, containing DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA, is increasingly linked with the occurrence and progression of UC. Since the epigenetics of UC is a constantly developing field of medicine, this review aims to summarize the latest research on epigenetic regulation of UC, generalize the mechanism of epigenetics in UC, and reveal the potential epigenetic therapies in the clinical setting, in order to provide some new clues on the discovery of new drugs based on the epigenetics.

« Previous
[1]
Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 2017; 71(1): 96-108.
[http://dx.doi.org/10.1016/j.eururo.2016.06.010] [PMID: 27370177]
[2]
van Rhijn BWG, Burger M, Lotan Y, et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol 2009; 56(3): 430-42.
[http://dx.doi.org/10.1016/j.eururo.2009.06.028] [PMID: 19576682]
[3]
Cronin KA, Ries LA, Edwards BK. The surveillance, epidemiology, and end results (SEER) Program of the National Cancer Institute. Cancer 2014; 120 (Suppl. 23): 3755-7.
[http://dx.doi.org/10.1002/cncr.29049] [PMID: 25412387]
[4]
Galsky MD, Hahn NM, Rosenberg J, et al. Treatment of patients with metastatic urothelial cancer “unfit” for Cisplatin-based chemotherapy. J Clin Oncol 2011; 29(17): 2432-8.
[http://dx.doi.org/10.1200/JCO.2011.34.8433] [PMID: 21555688]
[5]
Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol 2020; 17(2): 91-107.
[http://dx.doi.org/10.1038/s41571-019-0267-4] [PMID: 31570827]
[6]
Rice SJ, Beier F, Young DA, Loughlin J. Interplay between genetics and epigenetics in osteoarthritis. Nat Rev Rheumatol 2020; 16(5): 268-81.
[http://dx.doi.org/10.1038/s41584-020-0407-3] [PMID: 32273577]
[7]
Voyias PD, Patel A, Arasaradnam RP. Epigenetic biomarkers of disease. Med Epigenet 2016; 14: 159-76.
[8]
Wu H, Caffo B, Jaffee HA, Irizarry RA, Feinberg AP. Redefining CpG islands using hidden Markov models. Biostatistics 2010; 11(3): 499-514.
[http://dx.doi.org/10.1093/biostatistics/kxq005] [PMID: 20212320]
[9]
Ferreira HJ, Esteller M. CpG islands in cancer: heads, tails, and sides. Methods Mol Biol 2018; 1766: 49-80.
[http://dx.doi.org/10.1007/978-1-4939-7768-0_4] [PMID: 29605847]
[10]
Reinert T. Methylation markers for urine-based detection of bladder cancer: The next generation of urinary markers for diagnosis and surveillance of bladder cancer. Adv Urol 2012; 2012: 1-11.
[http://dx.doi.org/10.1155/2012/503271] [PMID: 22761614]
[11]
Morgan AE, Davies TJ, Mc Auley MT. The role of DNA methylation in ageing and cancer. Proc Nutr Soc 2018; 77(4): 412-22.
[http://dx.doi.org/10.1017/S0029665118000150] [PMID: 29708096]
[12]
Dudziec E, Miah S, Choudhry HMZ, et al. Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res 2011; 17(6): 1287-96.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2017] [PMID: 21138856]
[13]
Wright DJ, Day FR, Kerrison ND, et al. Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nat Genet 2017; 49(5): 674-9.
[http://dx.doi.org/10.1038/ng.3821] [PMID: 28346444]
[14]
Aleman A, Cebrian V, Alvarez M, et al. Identification of PMF1 methylation in association with bladder cancer progression. Clin Cancer Res 2008; 14(24): 8236-43.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0778] [PMID: 19088041]
[15]
Leão R, Lee D, Figueiredo A, et al. Combined genetic and epigenetic alterations of the TERT promoter affect clinical and biological behavior of bladder cancer. Int J Cancer 2019; 144(7): 1676-84.
[http://dx.doi.org/10.1002/ijc.31935] [PMID: 30350309]
[16]
Bernardo C, Eriksson P, Marzouka N, Liedberg F, Sjödahl G, Höglund M. Molecular pathology of the luminal class of urothelial tumors. J Pathol 2019; 249(3): 308-18.
[http://dx.doi.org/10.1002/path.5318] [PMID: 31232464]
[17]
Paluch EK, Aspalter IM, Sixt M. Focal Adhesion–Independent Cell Migration. Annu Rev Cell Dev Biol 2016; 32(1): 469-90.
[http://dx.doi.org/10.1146/annurev-cellbio-111315-125341] [PMID: 27501447]
[18]
Cebrian V, Fierro M, Orenes-Piñero E, et al. KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosticators for bladder cancer patients. Am J Pathol 2011; 179(2): 540-6.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.009] [PMID: 21683672]
[19]
Janiszewska M, Primi MC, Izard T. Cell adhesion in cancer: Beyond the migration of single cells. J Biol Chem 2020; 295(8): 2495-505.
[http://dx.doi.org/10.1074/jbc.REV119.007759] [PMID: 31937589]
[20]
Lin YL, Wang YL, Ma JG, Li WP. Clinical significance of protocadherin 8 (PCDH8) promoter methylation in non-muscle invasive bladder cancer. J Exp Clin Cancer Res 2014; 33(1): 68.
[http://dx.doi.org/10.1186/s13046-014-0068-7] [PMID: 25927589]
[21]
Duarte-Pereira S, Paiva F, Costa VL, et al. Prognostic value of opioid binding protein/cell adhesion molecule-like promoter methylation in bladder carcinoma. Eur J Cancer 2011; 47(7): 1106-14.
[http://dx.doi.org/10.1016/j.ejca.2010.12.025] [PMID: 21273058]
[22]
Jung M, Kim B, Moon KC. Immunohistochemistry of cytokeratin (CK) 5/6, CD44 and CK20 as prognostic biomarkers of non-muscle-invasive papillary upper tract urothelial carcinoma. Histopathology 2019; 74(3): 483-93.
[http://dx.doi.org/10.1111/his.13763] [PMID: 30286252]
[23]
Hu J, Zhou L, Song Z, et al. The identification of new biomarkers for bladder cancer: A study based on TCGA and GEO datasets. J Cell Physiol 2019; 234(9): 15607-18.
[http://dx.doi.org/10.1002/jcp.28208] [PMID: 30779109]
[24]
Yang JL, Wang CCN, Cai JH, Chou CY, Lin YC, Hung CC. Identification of GSN and LAMC2 as key prognostic genes of bladder cancer by integrated bioinformatics analysis. Cancers (Basel) 2020; 12(7): 1809.
[http://dx.doi.org/10.3390/cancers12071809] [PMID: 32640634]
[25]
Kaczanowski S. Apoptosis: Its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 2016; 13(3): 031001.
[http://dx.doi.org/10.1088/1478-3975/13/3/031001] [PMID: 27172135]
[26]
Sacristan R, Gonzalez C, Fernández-Gómez JM, Fresno F, Escaf S, Sánchez-Carbayo M. Molecular classification of non-muscle-invasive bladder cancer (pTa low-grade, pT1 low-grade, and pT1 high-grade subgroups) using methylation of tumor-suppressor genes. J Mol Diagn 2014; 16(5): 564-72.
[http://dx.doi.org/10.1016/j.jmoldx.2014.04.007] [PMID: 24998186]
[27]
Zhou Q, Song W, Xiao W. Dioscin induces demethylation of DAPK-1 and RASSF-1alpha genes via the antioxidant capacity, resulting in apoptosis of bladder cancer T24 cells. EXCLI J 2017; 16: 101-12.
[PMID: 28435431]
[28]
Drayton RM, Peter S, Myers K, et al. MicroRNA-99a and 100 mediated upregulation of FOXA1 in bladder cancer. Oncotarget 2014; 5(15): 6375-86.
[http://dx.doi.org/10.18632/oncotarget.2221] [PMID: 25071007]
[29]
Liu XP, Yin XH, Yan XH, Zeng XT, Wang XH. The clinical relevance of fragile histidine triad protein (FHIT) in patients with bladder cancer. Med Sci Monit 2018; 24: 3113-8.
[http://dx.doi.org/10.12659/MSM.906721] [PMID: 29752880]
[30]
Druck T, Cheung DG, Park D, et al. Fhit–Fdxr interaction in the mitochondria: Modulation of reactive oxygen species generation and apoptosis in cancer cells. Cell Death Dis 2019; 10(3): 147.
[http://dx.doi.org/10.1038/s41419-019-1414-7] [PMID: 30770797]
[31]
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016; 8(4): 603-19.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[32]
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting transcription factors for cancer treatment. Molecules 2018; 23(6): 1479.
[http://dx.doi.org/10.3390/molecules23061479] [PMID: 29921764]
[33]
Xu X, Li J, Zhu Y, et al. CRISPR-ON-Mediated KLF4 overexpression inhibits the proliferation, migration and invasion of urothelial bladder cancer in vitro and in vivo. Oncotarget 2017; 8(60): 102078-87.
[http://dx.doi.org/10.18632/oncotarget.22158] [PMID: 29254226]
[34]
Aleman A, Adrien L, Lopez-Serra L, et al. Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays. Br J Cancer 2008; 98(2): 466-73.
[http://dx.doi.org/10.1038/sj.bjc.6604143] [PMID: 18087279]
[35]
Ge Q, Lu M, Ju L, et al. miR‐4324‐RACGAP1‐STAT3‐ESR1 feedback loop inhibits proliferation and metastasis of bladder cancer. Int J Cancer 2019; 144(12): 3043-55.
[http://dx.doi.org/10.1002/ijc.32036] [PMID: 30511377]
[36]
Li H, Wang J, Xiao W, et al. Epigenetic inactivation of KLF4 is associated with urothelial cancer progression and early recurrence. J Urol 2014; 191(2): 493-501.
[http://dx.doi.org/10.1016/j.juro.2013.08.087] [PMID: 24018236]
[37]
Wongpaiboonwattana W, Tosukhowong P, Dissayabutra T, Mutirangura A, Boonla C. Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line. Asian Pac J Cancer Prev 2013; 14(6): 3773-8.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3773] [PMID: 23886181]
[38]
Zhou X, Zhang P, Han H, Lei H, Zhang X. Hypermethylated in cancer 1 (HIC1) suppresses bladder cancer progression by targeting yes‐associated protein (YAP) pathway. J Cell Biochem 2019; 120(4): 6471-81.
[http://dx.doi.org/10.1002/jcb.27938] [PMID: 30417565]
[39]
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 2017; 58(5): 235-63.
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[40]
Börcsök J, Diossy M, Sztupinszki Z, et al. Detection of molecular signatures of homologous recombination deficiency in bladder cancer. Clin Cancer Res 2021; 27(13): 3734-43.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-5037] [PMID: 33947694]
[41]
Alvarez-Múgica M, Fernández-Gómez JM, Cebrian V, Fresno F, Escaf S, Sánchez-Carbayo M. Polyamine-modulated factor-1 methylation predicts Bacillus Calmette-Guérin response in patients with high-grade non-muscle-invasive bladder carcinoma. Eur Urol 2013; 63(2): 364-70.
[http://dx.doi.org/10.1016/j.eururo.2012.05.050] [PMID: 22682992]
[42]
Khandelwal M, Anand V, Appunni S, et al. Decitabine augments cytotoxicity of cisplatin and doxorubicin to bladder cancer cells by activating hippo pathway through RASSF1A. Mol Cell Biochem 2018; 446(1-2): 105-14.
[http://dx.doi.org/10.1007/s11010-018-3278-z] [PMID: 29368096]
[43]
Grunewald CM, Haist C, König C, et al. Epigenetic priming of bladder cancer cells with decitabine increases cytotoxicity of human EGFR and CD44v6 CAR engineered T-cells. Front Immunol 2021; 12: 782448.
[http://dx.doi.org/10.3389/fimmu.2021.782448] [PMID: 34868059]
[44]
Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet 2016; 32(1): 42-56.
[http://dx.doi.org/10.1016/j.tig.2015.10.007] [PMID: 26704082]
[45]
Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol 2015; 35: 68-75.
[http://dx.doi.org/10.1016/j.sbi.2015.09.007] [PMID: 26496625]
[46]
Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: A new frontier for drug discovery. Nat Rev Drug Discov 2012; 11(5): 384-400.
[http://dx.doi.org/10.1038/nrd3674] [PMID: 22498752]
[47]
Simó-Riudalbas L, Esteller M. Targeting the histone orthography of cancer: Drugs for writers, erasers and readers. Br J Pharmacol 2015; 172(11): 2716-32.
[http://dx.doi.org/10.1111/bph.12844] [PMID: 25039449]
[48]
Kondo Y, Shen L, Cheng AS, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 2008; 40(6): 741-50.
[http://dx.doi.org/10.1038/ng.159] [PMID: 18488029]
[49]
Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 2013; 333(2): 213-21.
[http://dx.doi.org/10.1016/j.canlet.2013.01.033] [PMID: 23354591]
[50]
Wang H, Mei Y, Luo C, et al. Single-cell analyses reveal mechanisms of cancer stem cell maintenance and epithelial–mesenchymal transition in recurrent bladder cancer. Clin Cancer Res 2022; 27(22): 6265-78.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-4796] [PMID: 34526362]
[51]
Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med 2016; 22(2): 128-34.
[http://dx.doi.org/10.1038/nm.4036] [PMID: 26845405]
[52]
Sun P, Wu T, Sun X, et al. KMT2D inhibits the growth and metastasis of bladder Cancer cells by maintaining the tumor suppressor genes. Biomed Pharmacother 2019; 115: 108924.
[http://dx.doi.org/10.1016/j.biopha.2019.108924] [PMID: 31100540]
[53]
Segovia C, San José-Enériz E, Munera-Maravilla E, et al. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med 2019; 25(7): 1073-81.
[http://dx.doi.org/10.1038/s41591-019-0499-y] [PMID: 31270502]
[54]
Duex JE, Swain KE, Dancik GM, et al. Functional impact of chromatin remodeling gene mutations and predictive signature for therapeutic response in bladder cancer. Mol Cancer Res 2018; 16(1): 69-77.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0260] [PMID: 28970362]
[55]
Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol 2018; 837: 8-24.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.021] [PMID: 30125562]
[56]
Hölscher AS, Schulz WA, Pinkerneil M, Niegisch G, Hoffmann MJ. Combined inhibition of BET proteins and class I HDACs synergistically induces apoptosis in urothelial carcinoma cell lines. Clin Epigenetics 2018; 10(1): 1.
[http://dx.doi.org/10.1186/s13148-017-0434-3] [PMID: 29312470]
[57]
Donati B, Lorenzini E, Ciarrocchi A. BRD4 and Cancer: Going beyond transcriptional regulation. Mol Cancer 2018; 17(1): 164.
[http://dx.doi.org/10.1186/s12943-018-0915-9] [PMID: 30466442]
[58]
van Haaften G, Dalgliesh GL, Davies H, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 2009; 41(5): 521-3.
[http://dx.doi.org/10.1038/ng.349] [PMID: 19330029]
[59]
Ler LD, Ghosh S, Chai X, et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med 2017; 9(378): eaai8312.
[http://dx.doi.org/10.1126/scitranslmed.aai8312] [PMID: 28228601]
[60]
Ramakrishnan S, Granger V, Rak M, et al. Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death Differ 2019; 26(10): 2100-14.
[http://dx.doi.org/10.1038/s41418-019-0278-9] [PMID: 30692641]
[61]
Chen Z, Du Y, Liu X, et al. EZH2 inhibition suppresses bladder cancer cell growth and metastasis via the JAK2/STAT3 signaling pathway. Oncol Lett 2019; 18(1): 907-15.
[http://dx.doi.org/10.3892/ol.2019.10359] [PMID: 31289569]
[62]
Cao Y, Sun J, Li M, et al. Inhibition of G9a by a small molecule inhibitor, UNC0642, induces apoptosis of human bladder cancer cells. Acta Pharmacol Sin 2019; 40(8): 1076-84.
[http://dx.doi.org/10.1038/s41401-018-0205-5] [PMID: 30765842]
[63]
Leschziner AE. Electron microscopy studies of nucleosome remodelers. Curr Opin Struct Biol 2011; 21(6): 709-18.
[http://dx.doi.org/10.1016/j.sbi.2011.10.002] [PMID: 22040801]
[64]
Becker PB, Workman JL. Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol 2013; 5(9): a017905.
[http://dx.doi.org/10.1101/cshperspect.a017905] [PMID: 24003213]
[65]
Gui Y, Guo G, Huang Y, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 2011; 43(9): 875-8.
[http://dx.doi.org/10.1038/ng.907] [PMID: 21822268]
[66]
Jancewicz I, Siedlecki JA, Sarnowski TJ, Sarnowska E. BRM: The core ATPase subunit of SWI/SNF chromatin-remodelling complex—a tumour suppressor or tumour-promoting factor? Epigenetics Chromatin 2019; 12(1): 68.
[http://dx.doi.org/10.1186/s13072-019-0315-4] [PMID: 31722744]
[67]
Casadevall D, Kilian AY, Bellmunt J. The prognostic role of epigenetic dysregulation in bladder cancer: A systematic review. Cancer Treat Rev 2017; 61: 82-93.
[http://dx.doi.org/10.1016/j.ctrv.2017.10.004] [PMID: 29121502]
[68]
Stachowiak M, Szymanski M, Ornoch A, et al. SWI/SNF chromatin remodeling complex and glucose metabolism are deregulated in advanced bladder cancer. IUBMB Life 2020; 72(6): 1175-88.
[http://dx.doi.org/10.1002/iub.2254] [PMID: 32073734]
[69]
Garczyk S, Schneider U, Lurje I, et al. ARID1A-deficiency in urothelial bladder cancer: No predictive biomarker for EZH2-inhibitor treatment response? PLoS One 2018; 13(8): e0202965.
[http://dx.doi.org/10.1371/journal.pone.0202965] [PMID: 30138427]
[70]
Wang B, Xie H, Ma C, et al. Expression of ARID1B is associated with poor outcomes and predicts the benefit from adjuvant chemotherapy in bladder urothelial carcinoma. J Cancer 2017; 8(17): 3490-7.
[http://dx.doi.org/10.7150/jca.19109] [PMID: 29151933]
[71]
Balbás-Martínez C, Rodríguez-Pinilla M, Casanova A, et al. ARID1A alterations are associated with FGFR3-wild type, poor-prognosis, urothelial bladder tumors. PLoS One 2013; 8(5): e62483.
[http://dx.doi.org/10.1371/journal.pone.0062483] [PMID: 23650517]
[72]
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: Regulators of disease. J Pathol 2010; 220(2): 126-39.
[http://dx.doi.org/10.1002/path.2638] [PMID: 19882673]
[73]
Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer 2013; 108(12): 2419-25.
[http://dx.doi.org/10.1038/bjc.2013.233] [PMID: 23660942]
[74]
Schulz WA, Koutsogiannouli EA, Niegisch G, Hoffmann MJ. Epigenetics of urothelial carcinoma. Methods Mol Biol 2015; 1238: 183-215.
[http://dx.doi.org/10.1007/978-1-4939-1804-1_10] [PMID: 25421661]
[75]
Hoffmann MJ, Florl AR, Seifert HH, Schulz WA. Multiple mechanisms downregulateCDKN1C in human bladder cancer. Int J Cancer 2005; 114(3): 406-13.
[http://dx.doi.org/10.1002/ijc.20749] [PMID: 15551363]
[76]
Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10(1): 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[77]
Sidi AA, Ohana P, Benjamin S, et al. Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to Bacillus Calmette-Guerin. J Urol 2008; 180(6): 2379-83.
[http://dx.doi.org/10.1016/j.juro.2008.08.006] [PMID: 18950807]
[78]
Liu Z, Wang W, Jiang J, et al. Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS One 2013; 8(9): e73991.
[http://dx.doi.org/10.1371/journal.pone.0073991] [PMID: 24069260]
[79]
Wu J, Li W, Ning J, Yu W, Rao T, Cheng F. Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition. OncoTargets Ther 2019; 12: 495-508.
[http://dx.doi.org/10.2147/OTT.S183940] [PMID: 30666128]
[80]
Xue M, Chen W, Xiang A, et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer 2017; 16(1): 143.
[http://dx.doi.org/10.1186/s12943-017-0714-8] [PMID: 28841829]
[81]
Chen X, Xie R, Gu P, et al. Long noncoding RNA LBCS inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clin Cancer Res 2019; 25(4): 1389-403.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1656] [PMID: 30397178]
[82]
Hou G, Xu W, Jin Y, Wu J, Pan Y, Zhou F. MiRNA-217 accelerates the proliferation and migration of bladder cancer via inhibiting KMT2D. Biochem Biophys Res Commun 2019; 519(4): 747-53.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.029] [PMID: 31547991]
[83]
Li H, Yu G, Shi R, et al. Cisplatin-induced epigenetic activation of miR-34a sensitizes bladder cancer cells to chemotherapy. Mol Cancer 2014; 13(1): 8.
[http://dx.doi.org/10.1186/1476-4598-13-8] [PMID: 24423412]
[84]
Usuba W, Urabe F, Yamamoto Y, et al. Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci 2019; 110(1): 408-19.
[http://dx.doi.org/10.1111/cas.13856] [PMID: 30382619]
[85]
Liu T, Lu Q, Liu J, et al. Circular RNA FAM114A2 suppresses progression of bladder cancer via regulating ∆NP63 by sponging miR-762. Cell Death Dis 2020; 11(1): 47.
[http://dx.doi.org/10.1038/s41419-020-2226-5] [PMID: 31969560]
[86]
Xie F, Li Y, Wang M, et al. Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol Cancer 2018; 17(1): 144.
[http://dx.doi.org/10.1186/s12943-018-0892-z] [PMID: 30285878]
[87]
Su H, Tao T, Yang Z, et al. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Mol Cancer 2019; 18(1): 27.
[http://dx.doi.org/10.1186/s12943-019-0951-0] [PMID: 30782157]
[88]
Chen X, Chen RX, Wei WS, et al. PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial–mesenchymal transition. Clin Cancer Res 2018; 24(24): 6319-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1270] [PMID: 30305293]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy