Abstract
Quercetin, a natural antioxidant, exhibits potential neuroprotective effects by efficiently downregulating α-synuclein protein aggregation and associated neurological hallmarks, responsible for the progression of Parkinson’s Disease.
[1]
Henríquez, G.; Gomez, A.; Guerrero, E.; Narayan, M. Potential role of natural polyphenols against protein aggregation toxicity: In vitro, in vivo, and clinical studies. ACS Chem. Neurosci., 2020, 11(19), 2915-2934.
[http://dx.doi.org/10.1021/acschemneuro.0c00381] [PMID: 32822152]
[http://dx.doi.org/10.1021/acschemneuro.0c00381] [PMID: 32822152]
[2]
Islam, M.S.; Quispe, C.; Hossain, R.; Islam, M.T.; Al-Harrasi, A.; Al-Rawahi, A.; Martorell, M.; Mamurova, A.; Seilkhan, A.; Altybaeva, N.; Abdullayeva, B.; Docea, A.O.; Calina, D.; Sharifi-Rad, J. Neuropharmacological effects of quercetin: A literature-based review. Front. Pharmacol., 2021, 12, 665031.
[http://dx.doi.org/10.3389/fphar.2021.665031] [PMID: 34220504]
[http://dx.doi.org/10.3389/fphar.2021.665031] [PMID: 34220504]
[3]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida, S.A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[4]
Mancuso, C.; Pani, G.; Calabrese, V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep., 2006, 11(5), 207-213.
[http://dx.doi.org/10.1179/135100006X154978] [PMID: 17132269]
[http://dx.doi.org/10.1179/135100006X154978] [PMID: 17132269]
[5]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[6]
Das, S.S.; Verma, P.R.P.; Singh, S.K. Quercetin-loaded nanomedicine as nutritional application. In: Nanomedicine for Bioactives; Rahman, M.; Beg, S.; Kumar, V.; Ahmad, F.J., Eds.; Springer Singapore, 2020; pp. 259-301.
[http://dx.doi.org/10.1007/978-981-15-1664-1_9]
[http://dx.doi.org/10.1007/978-981-15-1664-1_9]
[7]
Das, S.S.; Sarkar, A.; Chabattula, S.C.; Verma, P.R.P.; Nazir, A.; Gupta, P.K.; Ruokolainen, J.; Kesari, K.K.; Singh, S.K. Food-grade quercetin-loaded nanoemulsion ameliorates effects associated with parkinson’s disease and cancer: Studies employing a transgenic C. elegans model and human cancer cell lines. Antioxidants, 2022, 11(7), 1378.
[http://dx.doi.org/10.3390/antiox11071378] [PMID: 35883869]
[http://dx.doi.org/10.3390/antiox11071378] [PMID: 35883869]
[8]
Drake, J.; Sultana, R.; Aksenova, M.; Calabrese, V.; Butterfield, D.A. Elevation of mitochondrial glutathione by? -glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2003, 74(6), 917-927.
[http://dx.doi.org/10.1002/jnr.10810] [PMID: 14648597]
[http://dx.doi.org/10.1002/jnr.10810] [PMID: 14648597]
[9]
Munishkina, L.A.; Henriques, J.; Uversky, V.N.; Fink, A.L. Role of protein-water interactions and electrostatics in alpha-synuclein fibril formation. Biochemistry, 2004, 43(11), 3289-3300.
[http://dx.doi.org/10.1021/bi034938r] [PMID: 15023080]
[http://dx.doi.org/10.1021/bi034938r] [PMID: 15023080]
[10]
Zhu, M.; Han, S.; Fink, A.L. Oxidized quercetin inhibits α-synuclein fibrillization. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(4), 2872-2881.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.027] [PMID: 23295967]
[http://dx.doi.org/10.1016/j.bbagen.2012.12.027] [PMID: 23295967]
[11]
Masuda, M.; Suzuki, N.; Taniguchi, S.; Oikawa, T.; Nonaka, T.; Iwatsubo, T.; Hisanaga, S.; Goedert, M.; Hasegawa, M. Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry, 2006, 45(19), 6085-6094.
[http://dx.doi.org/10.1021/bi0600749] [PMID: 16681381]
[http://dx.doi.org/10.1021/bi0600749] [PMID: 16681381]
[12]
Suganthy, N.; Devi, K.P.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother., 2016, 84, 892-908.
[http://dx.doi.org/10.1016/j.biopha.2016.10.011] [PMID: 27756054]
[http://dx.doi.org/10.1016/j.biopha.2016.10.011] [PMID: 27756054]
[13]
Pogačnik, L.; Pirc, K.; Palmela, I.; Skrt, M.; Kim, K.S.; Brites, D.; Brito, M.A.; Ulrih, N.P.; Silva, R.F.M. Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection In vitro. Brain Res., 2016, 1651, 17-26.
[http://dx.doi.org/10.1016/j.brainres.2016.09.020] [PMID: 27639810]
[http://dx.doi.org/10.1016/j.brainres.2016.09.020] [PMID: 27639810]
[14]
Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol., 2018, 9, 1383.
[http://dx.doi.org/10.3389/fphar.2018.01383] [PMID: 30618732]
[http://dx.doi.org/10.3389/fphar.2018.01383] [PMID: 30618732]
[15]
Pakrashi, S.; Chakraborty, J.; Bandyopadhyay, J. Neuroprotective role of quercetin on rotenone-induced toxicity in SH-SY5Y cell line through modulation of apoptotic and autophagic pathways. Neurochem. Res., 2020, 45(8), 1962-1973.
[http://dx.doi.org/10.1007/s11064-020-03061-8] [PMID: 32488468]
[http://dx.doi.org/10.1007/s11064-020-03061-8] [PMID: 32488468]
[16]
Pretsch, D.; Rollinger, J.M.; Schmid, A.; Genov, M.; Wöhrer, T.; Krenn, L.; Moloney, M.; Kasture, A.; Hummel, T.; Pretsch, A. Prolongation of metallothionein induction combats Aß and α-synuclein toxicity in aged transgenic Caenorhabditis elegans. Sci. Rep., 2020, 10(1), 11707.
[http://dx.doi.org/10.1038/s41598-020-68561-7] [PMID: 32678125]
[http://dx.doi.org/10.1038/s41598-020-68561-7] [PMID: 32678125]
[17]
Perluigi, M.; Di Domenico, F.; Giorgi, A.; Schininà, M.E.; Coccia, R.; Cini, C.; Bellia, F.; Cambria, M.T.; Cornelius, C.; Butterfield, D.A.; Calabrese, V. Redox proteomics in aging rat brain: Involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J. Neurosci. Res., 2010, 88(16), 3498-3507.
[http://dx.doi.org/10.1002/jnr.22500] [PMID: 20936692]
[http://dx.doi.org/10.1002/jnr.22500] [PMID: 20936692]
[18]
Sriraksa, N.; Wattanathorn, J.; Muchimapura, S.; Tiamkao, S.; Brown, K.; Chaisiwamongkol, K. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/823206] [PMID: 21792372]
[http://dx.doi.org/10.1155/2012/823206] [PMID: 21792372]
[19]
Wang, W.W.; Han, R.; He, H.J.; Li, J.; Chen, S.Y.; Gu, Y.; Xie, C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging (Albany NY), 2021, 13(8), 11738-11751.
[http://dx.doi.org/10.18632/aging.202868] [PMID: 33878030]
[http://dx.doi.org/10.18632/aging.202868] [PMID: 33878030]
[20]
Amanzadeh, E.; Esmaeili, A.; Rahgozar, S.; Nourbakhshnia, M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev. Neurosci., 2019, 30(5), 555-572.
[http://dx.doi.org/10.1515/revneuro-2018-0080] [PMID: 30753166]
[http://dx.doi.org/10.1515/revneuro-2018-0080] [PMID: 30753166]