Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Excavation of Nanoethosomes in Current Drug Delivery

Author(s): Aishwarya Agrawal, Aalind Joshi and Sankha Bhattacharya*

Volume 21, Issue 2, 2024

Published on: 20 January, 2023

Page: [168 - 183] Pages: 16

DOI: 10.2174/1567201820666221220103013

Price: $65

Abstract

In the current era, the Transdermal delivery of bioactive molecules has become an area of research interest. The transdermal route of administration enables direct entry of bioactive molecules into the systemic circulation with better and easy accessibility, bypassing the hepatic metabolism and improving patient compliance. Permeation through the skin has always been a barrier. To overcome this challenge, an efficient route by the vesicular system has been adopted so as to have better skin permeation of the bioactive molecules. A novel vesicular and non-invasive drug delivery system called Nanoethosomes was developed. Nanoethosomes are lipid-based vesicular carriers that are used for deeper permeation of the bioactive agents into the skin. The main components of Nanoethosomes are Phospholipids, water, and ethanol. High ethanol concentration in Nanoethosomes distinguishes them from other nano-formulation and results in deeper permeation and smaller vesicular size. This review article gives detailed information on the formulation techniques, and characterization parameters of nanoethosomes along with the research work done by various researchers in the same field. The compiled manuscript gives detailed elaboration about the various drugs used to treat different diseases which when incorporated in nanoethosomes resulted in better permeability and enhanced bioavailability.

Graphical Abstract

[1]
Rangasamy, M.; Parthiban, K.G. Recent advances in novel drug delivery systems. Int. J. Res. Ayurveda Pharm., 2010, 1(2), 316-326.
[2]
Tiwari, G.; Tiwari, R.; Bannerjee, S.K.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[3]
Zhang, Y.; Yu, J.; Kahkoska, A.R.; Wang, J.; Buse, J.B.; Gu, Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev., 2019, 139, 51-70.
[http://dx.doi.org/10.1016/j.addr.2018.12.006] [PMID: 30528729]
[4]
Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.K.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine, 2016, 11, 2279-2304.
[http://dx.doi.org/10.2147/IJN.S105016] [PMID: 27307730]
[5]
Kumar, L.; Verma, S.; Singh, K.; Prasad, D.N. Ethanol based vesicular carriers in transdermal drug delivery: Nanoethosomes and transethosomes in focus. NanoWorld J., 2016, 2(3), 41-51.
[6]
Pucek, A.; Tokarek, B.; Waglewska, E. Bazylińska, U. Recent advances in the structural design of photosensitive agent formulations using “soft” colloidal nanocarriers. Pharmaceutics, 2020, 12(6), 587.
[http://dx.doi.org/10.3390/pharmaceutics12060587] [PMID: 32599791]
[7]
Natsheh, H.; Touitou, E. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: the effect of surfactants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties. Molecules, 2020, 25(13), 2959.
[http://dx.doi.org/10.3390/molecules25132959] [PMID: 32605117]
[8]
Pandey, V.; Golhani, D.; Shukla, R. Ethosomes: Versatile vesicular carriers for efficient transdermal delivery of therapeutic agents. 2014, 22(8), 988-1002.
[http://dx.doi.org/10.3109/10717544.2014.889777]
[9]
Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633.
[http://dx.doi.org/10.2174/1567201813666160520114436] [PMID: 27199229]
[10]
Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr., 2014, 5(4), 404-417.
[http://dx.doi.org/10.3945/an.113.005603] [PMID: 25022990]
[11]
Ethosomes: A promising tool for transdermal delivery of drug. Request PDF, Available from: https://www.researchgate.net/publication/26576233_Ethosomes_A_Promising_Tool_For_Transdermal_Delivery_Of_Drug (accessed Apr. 08, 2022).
[12]
Gollavilli, H.; Hegde, A.R.; Managuli, R.S.; Bhaskar, K.V.; Dengale, S.J.; Reddy, M.S.; Kalthur, G.; Mutalik, S. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids Surf. B Biointerfaces, 2020, 193, 111122.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111122] [PMID: 32498002]
[13]
Salem, H.F.; El-Menshawe, S.F.; Khallaf, R.A.; Rabea, Y.K. A novel transdermal nanoethosomal gel of lercanidipine HCl for treatment of hypertension: optimization using Box-Benkhen design, in vitro and in vivo characterization. Drug Deliv. Transl. Res., 2020, 10(1), 227-240.
[http://dx.doi.org/10.1007/s13346-019-00676-5] [PMID: 31625026]
[14]
Ahmed, S.; Sarim Imam, S.; Zafar, A.; Ali, A.; Aqil, M.; Gull, A. In vitro and preclinical assessment of factorial design based nanoethosomes transgel formulation of an opioid analgesic. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1793-1802.
[http://dx.doi.org/10.3109/21691401.2015.1102742] [PMID: 26584819]
[15]
Deshpande, P.B.; Gurram, A.K.; Deshpande, A.; Shavi, G.V.; Musmade, P.; Arumugam, K.; Averineni, R.K.; Mutalik, S.; Reddy, M.S.; Udupa, N. A novel nanoproliposomes of lercanidipine: Development, in vitro and preclinical studies to support its effectiveness in hypertension therapy. Life Sci., 2016, 162, 125-137.
[http://dx.doi.org/10.1016/j.lfs.2016.08.016] [PMID: 27544752]
[16]
The Lipid Bilayer - Molecular Biology of the Cell - NCBI Bookshelf. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26871/ (accessed Apr. 08, 2022).
[17]
Shakeel, F.; Baboota, S.; Ahuja, A.; Ali, J.; Shafiq, S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J. Nanobiotechnology, 2008, 6(1), 8.
[http://dx.doi.org/10.1186/1477-3155-6-8] [PMID: 18613981]
[18]
Abdel Messih, H.A.; Ishak, R.A.H.; Geneidi, A.S.; Mansour, S. Nanoethosomes for transdermal delivery of tropisetron HCl: multi-factorial predictive modeling, characterization, and ex vivo skin permeation. Drug Dev. Ind. Pharm., 2017, 43(6), 958-971.
[http://dx.doi.org/10.1080/03639045.2017.1287717] [PMID: 28121196]
[19]
Ansari, M.D. khan, I.; Solanki, P.; Pandit, J.; Jahan, R.N.; Aqil, M.; Sultana, Y. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J. Drug Deliv. Sci. Technol., 2022, 68, 103102.
[http://dx.doi.org/10.1016/j.jddst.2022.103102]
[20]
Hamideh, R.; Sajad, J. Nanoethosomes in tansdermal drug delivery, RJMS (Journal of Iran University of Medical Sciences) 24(160), 100-113.
[21]
Datta, M.S.; Prajapati, S.K.; Kumar, A.; Gyanendra, G.; Saxena, K.; Dhakar, R.C. Formulation development and evaluation of ethosome of stavudine. Indian J. Pharm. Educ. Res., 2010, 44(1), 102-108.
[22]
Vyas, L.K.; Tapar, K.K.; Wasankar, S.R. Formulation and development of liposomal delivery of anticellulite. Int. J. Pharm. Sci. Res., 2013, 3270-3285.
[23]
El-Shenawy, A.A.; Mahmoud, R.A.; Mahmoud, E.A.; Mohamed, M.S. Intranasal in situ gel of apixaban-loaded nanoethosomes: Preparation, optimization, and in vivo evaluation. AAPS PharmSciTech, 2021, 22(4), 147.
[http://dx.doi.org/10.1208/s12249-021-02020-y] [PMID: 33948767]
[24]
Tiwari, R.; Tiwari, G. WAl, P.; Wal, A. Development, characterization and transdermal delivery of dapsone and an antibiotic entrapped in ethanolic liposomal gel for the treatment of lapromatous leprosy. Nanomed. J., 2018, 5(1)
[25]
Pathan, I.B.; Jaware, B.P.; Shelke, S.; Ambekar, W. Curcumin loaded ethosomes for transdermal application: Formulation, optimization, in-vitro and in-vivo study. J. Drug Deliv. Sci. Technol., 2018, 44, 49-57.
[http://dx.doi.org/10.1016/j.jddst.2017.11.005]
[26]
Cao, B.; Xu, H.; Mao, C. Transmission electron microscopy as a tool to image bioinorganic nanohybrids: The case of phage-gold nanocomposites. Microsc. Res. Tech., 2011, 74(7), 627-635.
[http://dx.doi.org/10.1002/jemt.21030] [PMID: 21678527]
[28]
Jain, S.; Patel, N.B.; Madan, P.; Lin, S. Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route. Pharm. Dev. Technol., 2014, 20(4), 1-18.
[29]
Smith, E.A.; Dea, P.K. Differential scanning calorimetry studies of phospholipid membranes: The interdigitated gel phase. In: Applications of Calorimetry in A Wide Context-Differential Scanning Calorimetry. Isothermal Titration Calorimetry and Microcalorimetry; Elkordy, A.A., Ed.; IntechOpen: London, 2013.
[http://dx.doi.org/10.5772/51882]
[30]
Sakdiset, P.; Kitao, Y.; Todo, H.; Sugibayashi, K. High-throughput screening of potential skin penetration-enhancers using stratum corneum lipid liposomes: Preliminary evaluation for different concentrations of ethanol. J. Pharm., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/7409420] [PMID: 28321359]
[31]
Chourasia, M.K.; Kang, L.; Chan, S.Y. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results Pharma Sci., 2011, 1(1), 60-67.
[32]
Babaie, S.; Ghanbarzadeh, S.; Davaran, S.; Kouhsoltani, M.; Hamishehkar, H. Nanoethosomes for dermal delivery of lidocaine. Adv. Pharm. Bull., 2015, 5(4), 549-556.
[http://dx.doi.org/10.15171/apb.2015.074] [PMID: 26819928]
[33]
Chourasia, R.; Jain, S. Drug targeting through pilosebaceous route. Curr. Drug Targets, 2009, 10(10), 950-967.
[http://dx.doi.org/10.2174/138945009789577918] [PMID: 19663765]
[34]
Suchonwanit, P.; Thammarucha, S.; Leerunyakul, K. Minoxidil and its use in hair disorders: A review. Drug Des. Devel. Ther., 2019, 13, 2777-2786.
[http://dx.doi.org/10.2147/DDDT.S214907] [PMID: 31496654]
[35]
Yu, Y.Q.; Yang, X.; Wu, X.F. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol., 2021, 9, 200.
[http://dx.doi.org/10.3389/FBIOE.2021.646554/BIBTEX]
[36]
Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res., 2022, 12(4), 758-791.
[http://dx.doi.org/10.1007/s13346-021-00909-6] [PMID: 33474709]
[37]
Touitou, E.; Godin, B. Dermal drug delivery with ethosomes: Therapeutic potential. Therapy, 2007, 4(4), 465-472.
[http://dx.doi.org/10.2217/14750708.4.4.465]
[38]
Jin, P.; Yao, R.; Qin, D.; Chen, Q.; Du, Q. Enhancement in antibacterial activities of eugenol-entrapped ethosome nanoparticles via strengthening its permeability and sustained release. J. Agric. Food Chem., 2019, 67(5), 1371-1380.
[http://dx.doi.org/10.1021/acs.jafc.8b06278] [PMID: 30624923]
[39]
Lewis, S.; Dave, V. Aceclofenac ethosomes for enhanced transdermal delivery. 2nd International Conference on Biomedical and Pharmaceutical Engineering, ICBPE 2009 - Conference Proceedings, 2009.
[http://dx.doi.org/10.1109/ICBPE.2009.5384096]
[40]
Shabreen, R.; Sangeetha, S. Ethosomes: A novel drug delivery system and their therapeutic applications -A review. Res. J. Pharm. Technol., 2020, 13(4), 1972.
[http://dx.doi.org/10.5958/0974-360X.2020.00355.8]
[41]
Sakdiset, P.; Amnuaikit, T.; Pichayakorn, W.; Pinsuwan, S. Formulation development of ethosomes containing indomethacin for transdermal delivery. J. Drug Deliv. Sci. Technol., 2019, 52, 760-768.
[http://dx.doi.org/10.1016/j.jddst.2019.05.048]
[42]
Mahmood, S.; Mandal, U.K.; Chatterjee, B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int. J. Pharm., 2018, 542(1-2), 36-46.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.044] [PMID: 29501737]
[43]
Elsayed, M.M.A.; Okda, T.M.; Atwa, G.M.K.; Omran, G.A.; Abd Elbaky, A.E.; Ramadan, A.E. Design and optimization of orally administered luteolin nanoethosomes to enhance its anti-tumor activity against hepatocellular carcinoma. Pharmaceutics, 2021, 13(5), 648.
[http://dx.doi.org/10.3390/pharmaceutics13050648] [PMID: 34063274]
[44]
Nasri, S.; Ebrahimi, H.B.; Rahaie, M.; Hatamian, Z.A.; Sahraeian, R. Thymoquinone-loaded ethosome with breast cancer potential: Optimization, in vitro and biological assessment. J. Nanostructure Chem., 2020, 10(1), 19-31.
[http://dx.doi.org/10.1007/s40097-019-00325-w]
[45]
Anjum, F.; Zakir, F.; Verma, D.; Aqil, M.; Singh, M.; Jain, P.; Mirza, M.A.; Anwer, M.K.; Iqbal, Z. Exploration of nanoethosomal transgel of naproxen sodium for the treatment of arthritis. Curr. Drug Deliv., 2020, 17(10), 885-897.
[http://dx.doi.org/10.2174/1567201817666200724170203] [PMID: 32713340]
[46]
Carolus, H.; Pierson, S.; Lagrou, K.; Van Dijck, P. Amphotericin b and other polyenes-discovery, clinical use, mode of action and drug resistance. J. Fungi, 2020, 6(4), 321.
[http://dx.doi.org/10.3390/jof6040321] [PMID: 33261213]
[47]
Kaur, L.; Jain, S.K.; Manhas, R.K.; Sharma, D. Nanoethosomal formulation for skin targeting of amphotericin B: An in vitro and in vivo assessment. J. Liposome Res., 2015, 25(4), 294-307.
[http://dx.doi.org/10.3109/08982104.2014.995670] [PMID: 25547800]
[48]
Verma, P.; Pathak, K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine, 2012, 8(4), 489-496.
[http://dx.doi.org/10.1016/j.nano.2011.07.004] [PMID: 21839053]
[49]
Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M. Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: Statistical optimization, characterization and pharmacokinetic assessment. Int. J. Pharm., 2013, 443(1-2), 26-38.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.011] [PMID: 23313344]
[50]
Ibrahim, T.M.; Abdallah, M.H.; El-Megrab, N.A.; El-Nahas, H.M. Transdermal ethosomal gel nanocarriers; a promising strategy for enhancement of anti-hypertensive effect of carvedilol. J. Liposome Res., 2019, 29(3), 215-228.
[http://dx.doi.org/10.1080/08982104.2018.1529793] [PMID: 30272506]
[51]
Ramakrishna, C.; Mendonca, S.; Ruegger, P.M.; Kim, J.H.; Borneman, J.; Cantin, E.M. Herpes simplex virus infection, acyclovir and ivig treatment all independently cause gut dysbiosis. PLoS One, 2020, 15(8), e0237189.
[http://dx.doi.org/10.1371/journal.pone.0237189] [PMID: 32760124]
[52]
Cojocaru, F.D.; Botezat, D.; Gardikiotis, I.; Uritu, C.M.; Dodi, G.; Trandafir, L.; Rezus, C.; Rezus, E.; Tamba, B.I.; Mihai, C.T. Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics, 2020, 12(2), 171.
[http://dx.doi.org/10.3390/pharmaceutics12020171] [PMID: 32085535]
[53]
Dubey, V.; Mishra, D.; Nahar, M.; Jain, V.; Jain, N. K. Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes Nanomedicine, 2010, 6(4), 590-596.
[http://dx.doi.org/10.1016/J.NANO.2010.01.002]
[54]
Patel, K. K.; Kumar, P.; Thakkar, H. P. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel AAPS PharmSciTech, 2012, 13(4), 1502-1510.
[http://dx.doi.org/10.1208/S12249-012-9871-7]
[55]
Mishra, D.; Mishra, P. K.; Dabadghao, S.; Dubey, V.; Nahar, M.; Jain, N. K. Comparative evaluation of hepatitis B surface antigen-loaded elastic liposomes and ethosomes for human dendritic cell uptake and immune response Nanomedicine, 2010, 6(1), 110-118.
[http://dx.doi.org/10.1016/J.NANO.2009.04.003]
[56]
Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D.; Shengule, S. Formulation and evaluation of thermoreversible mucoadhesive in-situ gel for intranasal delivery of naratriptan hydrochloride. J. Drug Deliv. Sci. Technol., 2015, 29, 238-244.
[http://dx.doi.org/10.1016/j.jddst.2015.08.003]
[57]
Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D. Dhamecha, Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies J. Liposome Res., 2016, 26(4), 313-323.
[http://dx.doi.org/10.3109/08982104.2015.1132232]
[58]
Sarwar Beg. Design of Experiments for Pharmaceutical Product Development. 2nd vol; Springer: Singapore, 2021.
[59]
El-Shenawy, A. A.; Mahmoud, R. A.; Mahmoud, E. A.; Mohamed, M. S. Intranasal In Situ Gel of Apixaban-Loaded Nanoethosomes: Preparation, Optimization, and In vivo Evaluation AAPS PharmSciTech, 2021, 22(4)
[http://dx.doi.org/10.1208/S12249-021-02020-Y]
[60]
Meng, X.-P.; Gao, J.; Chen, T.; Wang, Y.; Wang, Z. Anti-hepatocarcinoma effects of puerarin-nanoethosomes against human HepG2 cells. 2018, 10823, 189-194.
[http://dx.doi.org/10.1117/12.2500149]
[61]
Gao, J.; Shi, F.; Du, J.; Wang, Z.-P.; Chen, T.-S.; Wang, Y. Evaluation of free-radical scavenging and antioxidant activities of polydatin nanoethosomes. In: Proceedings Volume 10823, Nanophotonics and Micro/Nano Optics IV; 1082315; Beijing, China, 2018.
[http://dx.doi.org/10.1117/12.2500148]
[62]
Limsuwan, T.; Boonme, P.; Khongkow, P.; Amnuaikit, T. Ethosomes of phenylethyl resorcinol as vesicular delivery system for skin lightening applications. BioMed Res. Int., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/8310979] [PMID: 28804723]
[63]
Moghaddam, A.A.; Aqil, M.; Ahmad, F.J.; Ali, M.M.; Sultana, Y.; Ali, A. Nanoethosomes mediated transdermal delivery of vinpocetine for management of Alzheimer’s disease. Drug Deliv., 2015, 22(8), 1018-1026.
[http://dx.doi.org/10.3109/10717544.2013.846433] [PMID: 24717007]
[64]
Heydari, S.; Ghanbarzadeh, S.; Anoush, B.; Ranjkesh, M.; Javadzadeh, Y.; Kouhsoltani, M.; Hamishehkar, H. Nanoethosomal formulation of gammaoryzanol for skin-aging protection and wrinkle improvement: A histopathological study. Drug Dev. Ind. Pharm., 2017, 43(7), 1154-1162.
[http://dx.doi.org/10.1080/03639045.2017.1300169] [PMID: 28277843]
[65]
Y. P. Fang, Y. bin Huang, P. C. Wu, and Y. H. Tsai. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2009, 73(3), 391-398.
[http://dx.doi.org/10.1016/J.EJPB.2009.07.011]
[66]
Liu, Y. S.; Wen, C. F.; Yang, Y. M. Development of ethosome-like catanionic vesicles for dermal drug delivery J Taiwan Inst Chem Eng, 2012, 43(6), 830-838.
[http://dx.doi.org/10.1016/J.JTICE.2012.06.008]
[67]
Zhang, Y. T.; Shen, L. N.; Zhao, J. H.; Feng, N. P. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis Int J Nanomedicine, 2012, 9(1), 669-678.
[http://dx.doi.org/10.2147/IJN.S57314]
[68]
Zhai, Y.; Xu, R.; Wang, Y.; Liu, J.; Wang, Z.; Zhai, G. Ethosomes for skin delivery of ropivacaine: preparation, characterization and ex vivo penetration properties J Liposome Res, 2015, 25(4), 316-324.
[http://dx.doi.org/10.3109/08982104.2014.999686]
[69]
Investopedia. What Is a Patent in Simple Terms? With Examples. Available from: https://www.investopedia.com/terms/p/patent.asp
[70]
Touitou, E. Composition of applying active substances to or through the skin. US 5716638, 1996.
[71]
Yu, M. K.; Gi, H. J. Method for producing an ethosome enclosing a bioactive substance, ethosome composition, and cosmetic composition containing ethosome composition. Germany Patent DE112018003377T5, March 5. 2020.
[72]
Yu, M. K.; Gi, H. J.; Young, J. P. H. Method of preparing bioactive substance-encapsulated ethosome, ethosome composition, and cosmetic composition including ethosome composition. WO2019004563A1, March 3. 2019.
[73]
Liang, J. W.; Wenlan, L. M.; Miaojuan, W. X.; Chen, S. W. Y. Preparation method of lidocaine ethosome. CN102688194B, Dec 17, 2012.
[74]
Moheb, M. Transdermal composition for treating pain. WO2015123750A1, Aug 27, 2015.
[75]
Kumar Mishra, K.; Deep Kaur, C.; Verma, S.; Kumar Sahu, A.; Kumar Dash, D.; Kashyap, P.; Prasad Mishra, S. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system. In: Nanomedicines; Farrukh, M.A., Ed.; IntechOpen: London, 2019.
[http://dx.doi.org/10.5772/intechopen.81152]
[76]
Gangopadhyay, A.; Dandagi, P.M.; Sutar, K.P. Development and evaluation of thermoreversible ethosomal gel of donepezil hydrochloride for intranasal delivery. J. Pharm. Innov., 2022, 2022, 1-9.
[http://dx.doi.org/10.1007/s12247-022-09636-y]
[77]
Apolinário, A.C.; Salata, G.C.; de Souza, M.M.; Chorilli, M.; Lopes, L.B. Rethinking breast cancer chemoprevention: Technological advantages and enhanced performance of a nanoethosomal-based hydrogel for topical administration of fenretinide. AAPS PharmSciTech, 2022, 23(4), 104.
[http://dx.doi.org/10.1208/s12249-022-02257-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy