Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Perspective

Hydrogen-producing Photocatalyst at Sunscreen for Athletes in Preventing and Healing Muscle-nerve-skin Injuries

Author(s): Pathik Sahoo*

Volume 23, Issue 4, 2023

Published on: 02 January, 2023

Page: [249 - 256] Pages: 8

DOI: 10.2174/1568026623666221216142158

Price: $65

Abstract

Physical injuries in sports are unavoidable, but they can be mitigated and even treated by using molecular hydrogen, which can be administered via a specially formulated sunscreen. The photocatalysts are a special class of semiconductors that can absorb a specific spectrum of light to promote its electron from the valance band (VB) to the conduction band (CB). This creates positively charged holes at VB and negatively charged electrons at CB in generating photochemical reaction centres. Once a photocatalyst that absorbs a harmful UV band from sunlight and can split water is doped inside a hydrogel will produce hydrogen in the presence of sunlight. If we employ such photocatalyst-doped hydrogel over naked skin, the hydrogel will act as a continuous source of water, which will absorb water from sweet, store it inside the hydrogel matrix and deliver it to the photocatalyst for splitting it further into the hydrogen. As a result, such photocatalyst-doped hydrogel can be used as a sunscreen to protect against sunlight and can use that spectrum of light for producing hydrogen from sweat continuously. Hydrogen can be absorbed through the skin and diffused in the body to heal wound-prone or injured muscles, and nerves. Because hydrogen may travel throughout the body, the catalyst-doped hydrogel can be used as a topical gel to treat various ailments such as muscle-nerve skin injuries, cancer, Parkinson's disease, and others. Besides common people, even athletes can use it as sunscreen during sports, which is not feasible for other hydrogen administrating systems.

Next »
Graphical Abstract

[1]
Delos, D.; Maak, T.G.; Rodeo, S.A. Muscle injuries in athletes: Enhancing recovery through scientific understanding and novel therapies. Sports Health, 2013, 5(4), 346-352.
[http://dx.doi.org/10.1177/1941738113480934] [PMID: 24459552]
[2]
Tian, Y.; Zhang, Y.; Wang, Y.; Chen, Y.; Fan, W.; Zhou, J.; Qiao, J.; Wei, Y. Hydrogen, a novel therapeutic molecule, regulates oxidative stress, inflammation, and apoptosis. Front. Physiol., 2021, 12, 789507.
[http://dx.doi.org/10.3389/fphys.2021.789507] [PMID: 34987419]
[3]
Schon, L.C. Nerve entrapment, neuropathy, and nerve dysfunction in athletes. Orthop. Clin. North Am., 1994, 25(1), 47-59.
[http://dx.doi.org/10.1016/S0030-5898(20)31866-6] [PMID: 8290231]
[4]
Hootman, J.M.; Dick, R.; Agel, J. Epidemiology of collegiate injuries for 15 sports: Summary and recommendations for injury prevention initiatives. J. Athl. Train., 2007, 42(2), 311-319.
[PMID: 17710181]
[5]
Conn, J.M.; Annest, J.L.; Gilchrist, J. Sports and recreation related injury episodes in the US population, 1997-99. Inj. Prev., 2003, 9(2), 117-123.
[http://dx.doi.org/10.1136/ip.9.2.117] [PMID: 12810736]
[6]
Nicholl, J.P.; Coleman, P.; Williams, B.T. The epidemiology of sports and exercise related injury in the United Kingdom. Br. J. Sports Med., 1995, 29(4), 232-238.
[http://dx.doi.org/10.1136/bjsm.29.4.232] [PMID: 8808535]
[7]
Tesarz, J.; Gerhardt, A.; Schommer, K.; Treede, R.D.; Eich, W. Alterations in endogenous pain modulation in endurance athletes: An experimental study using quantitative sensory testing and the cold-pressor task. Pain, 2013, 154(7), 1022-1029.
[http://dx.doi.org/10.1016/j.pain.2013.03.014] [PMID: 23657118]
[8]
Hoskins, W.; Pollard, H.; Daff, C.; Odell, A.; Garbutt, P.; McHardy, A.; Hardy, K.; Dragasevic, G. Low back pain status in elite and semi-elite Australian football codes: A cross-sectional survey of football (soccer), Australian rules, rugby league, rugby union and non-athletic controls. BMC Musculoskelet. Disord., 2009, 10(1), 38.
[http://dx.doi.org/10.1186/1471-2474-10-38] [PMID: 19371446]
[9]
Jonasson, P.; Halldin, K.; Karlsson, J.; Thoreson, O.; Hvannberg, J.; Swärd, L.; Baranto, A. Prevalence of joint-related pain in the extremities and spine in five groups of top athletes. Knee Surg. Sports Traumatol. Arthrosc., 2011, 19(9), 1540-1546.
[http://dx.doi.org/10.1007/s00167-011-1539-4] [PMID: 21559845]
[10]
Small, E.; Arthrosc, E. Chronic musculoskeletal pain in young athletes. Pediatr. Clin. North Am., 2002, 49(3), 655-662. [vii].
[http://dx.doi.org/10.1016/S0031-3955(02)00008-1] [PMID: 12119870]
[11]
Bushnell, M.C. Čeko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci., 2013, 14(7), 502-511.
[http://dx.doi.org/10.1038/nrn3516] [PMID: 23719569]
[12]
Eccleston, C.; Crombez, G. Pain demands attention: A cognitive–affective model of the interruptive function of pain. Psychol. Bull., 1999, 125(3), 356-366.
[http://dx.doi.org/10.1037/0033-2909.125.3.356] [PMID: 10349356]
[13]
Gatchel, R.J.; Peng, Y.B.; Peters, M.L.; Fuchs, P.N.; Turk, D.C. The biopsychosocial approach to chronic pain: Scientific advances and future directions. Psychol. Bull., 2007, 133(4), 581-624.
[http://dx.doi.org/10.1037/0033-2909.133.4.581] [PMID: 17592957]
[14]
Racine, M.; Tousignant-Laflamme, Y.; Kloda, L.A.; Dion, D.; Dupuis, G.; Choinière, M. A systematic literature review of 10 years of research on sex/gender and pain perception – Part 2: Do biopsychosocial factors alter pain sensitivity differently in women and men? Pain, 2012, 153(3), 619-635.
[http://dx.doi.org/10.1016/j.pain.2011.11.026] [PMID: 22236999]
[15]
Turk, D.C.; Okifuji, A. Psychological factors in chronic pain: Evolution and revolution. J. Consult. Clin. Psychol., 2002, 70(3), 678-690.
[http://dx.doi.org/10.1037/0022-006X.70.3.678] [PMID: 12090376]
[16]
Villemure, C.; Bushnell, C.M. Cognitive modulation of pain: How do attention and emotion influence pain processing? Pain, 2002, 95(3), 195-199.
[http://dx.doi.org/10.1016/S0304-3959(02)00007-6] [PMID: 11839418]
[17]
Singh, P.; Sahoo, P.; Ghosh, S.; Saxena, K.; Manna, J.S.; Ray, K.; Krishnananda, S.D.; Poznanski, R.R.; Bandyopadhyay, A. Filaments and four ordered structures inside a neuron fire a thousand times faster than the membrane: Theory and experiment. J. Integr. Neurosci., 2021, 20(4), 777-790.
[http://dx.doi.org/10.31083/j.jin2004082] [PMID: 34997704]
[18]
Fernandes, T.L.; Pedrinelli, A.; Hernandez, A.J. Muscle injury – physiopathology, diagonisis, treatment and clinical presentation. Revista Brasileira de Ortopedia, 2011, 46(3), 247-255.
[http://dx.doi.org/10.1016/S2255-4971(15)30190-7] [PMID: 27047816]
[19]
Tscholl, P.; Meynard, T.; Le Thanh, N.; Neroladaki, A. Diagnostics and classification of muscle injuries in sports. Swiss Sports Exerc. Med., 2018, 67, 8-15.
[http://dx.doi.org/10.34045/SSEM/2018/1]
[20]
Järvinen, T.A.H.; Järvinen, T.L.N.; Kääriäinen, M.; Kalimo, H.; Järvinen, M. Muscle Injuries. Am. J. Sports Med., 2005, 33(5), 745-764.
[http://dx.doi.org/10.1177/0363546505274714] [PMID: 15851777]
[21]
Hurme, T.; Kalimo, H.; Lehto, M.; Järvinen, M. Healing of skeletal muscle injury: An ultrastructural and immunohistochemical study. Med. Sci. Sports Exerc., 1991, 23(7), 801-810.
[http://dx.doi.org/10.1249/00005768-199107000-00006] [PMID: 1921672]
[22]
Järvinen, T.A.H.; Järvinen, T.L.N.; Kääriäinen, M.; Äärimaa, V.; Vaittinen, S.; Kalimo, H.; Järvinen, M. Muscle injuries: Optimising recovery. Best Pract. Res. Clin. Rheumatol., 2007, 21(2), 317-331.
[http://dx.doi.org/10.1016/j.berh.2006.12.004] [PMID: 17512485]
[23]
Kääriäinen, M.; Kääriäinen, J.; Järvinen, T.L.N.; Sievänen, H.; Kalimo, H.; Järvinen, M. Correlation between biomechanical and structural changes during the regeneration of skeletal muscle after laceration injury. J. Orthop. Res., 1998, 16(2), 197-206.
[http://dx.doi.org/10.1002/jor.1100160207] [PMID: 9621894]
[24]
Saartok, T. Muscle injuries associated with soccer. Clin. Sports Med., 1998, 17(4), 811-817. [viii.
[http://dx.doi.org/10.1016/S0278-5919(05)70121-6] [PMID: 9922904]
[25]
Lehto, M.; Duance, V.C.; Restall, D. Collagen and fibronectin in a healing skeletal muscle injury. An immunohistological study of the effects of physical activity on the repair of injured gastrocnemius muscle in the rat. J. Bone Joint Surg. Br., 1985, 67-B(5), 820-828.
[http://dx.doi.org/10.1302/0301-620X.67B5.3902851] [PMID: 3902851]
[26]
Lehto, M.; Sims, T.J.; Bailey, A.J. Skeletal muscle injury-molecular changes in the collagen during healing. Res. Exp. Med., 1985, 185(2), 95-106.
[http://dx.doi.org/10.1007/BF01854894] [PMID: 3992061]
[27]
Pollock, N.; James, S.L.J.; Lee, J.C.; Chakraverty, R. British athletics muscle injury classification: A new grading system. Br. J. Sports Med., 2014, 48(18), 1347-1351.
[http://dx.doi.org/10.1136/bjsports-2013-093302] [PMID: 25031367]
[28]
Ostojic, S.M.; Vukomanovic, B.; Calleja-Gonzalez, J.; Hoffman, J.R. Effectiveness of oral and topical hydrogen for sports-related soft tissue injuries. Postgrad. Med., 2014, 126(5), 188-196.
[http://dx.doi.org/10.3810/pgm.2014.09.2813] [PMID: 25295663]
[29]
Dohi, K.; Satoh, K.; Miyamoto, K.; Momma, S.; Fukuda, K.; Higuchi, R.; Ohtaki, H.; A. Banks, W. Molecular hydrogen in the treatment of acute and chronic neurological conditions: Mechanisms of protection and routes of administration. J. Clin. Biochem. Nutr., 2017, 61(1), 1-5.
[http://dx.doi.org/10.3164/jcbn.16-87] [PMID: 28751802]
[30]
Ohno, K.; Ito, M.; Ichihara, M.; Ito, M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid. Med. Cell. Longev., 2012, 2012, 353152.
[http://dx.doi.org/10.1155/2012/353152]
[31]
Yoritaka, A.; Takanashi, M.; Hirayama, M.; Nakahara, T.; Ohta, S.; Hattori, N. Pilot study of H 2 therapy in Parkinson’s disease: A randomized double-blind placebo-controlled trial. Mov. Disord., 2013, 28(6), 836-839.
[http://dx.doi.org/10.1002/mds.25375] [PMID: 23400965]
[32]
Wu, Y.; Yuan, M.; Song, J.; Chen, X.; Yang, H. Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano, 2019, 13(8), 8505-8511.
[http://dx.doi.org/10.1021/acsnano.9b05124] [PMID: 31329427]
[33]
Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Antitumor activity of protons and molecular hydrogen: Underlying mechanisms. Cancers, 2021, 13(4), 893.
[http://dx.doi.org/10.3390/cancers13040893] [PMID: 33672714]
[34]
Li, S.; Liao, R.; Sheng, X.; Luo, X.; Zhang, X.; Wen, X.; Zhou, J.; Peng, K. Hydrogen gas in cancer treatment. Front. Oncol., 2019, 9, 696.
[http://dx.doi.org/10.3389/fonc.2019.00696] [PMID: 31448225]
[35]
Shang, L.; Xie, F.; Li, J.; Zhang, Y.; Liu, M.; Zhao, P.; Ma, X.; Lebaron, T.W. Therapeutic potential of molecular hydrogen in ovarian cancer. Transl. Cancer Res., 2018, 7(4), 988-995.
[http://dx.doi.org/10.21037/tcr.2018.07.09]
[36]
Sahoo, P.; Adarsh, N.N.; Chacko, G.E.; Raghavan, S.R.; Puranik, V.G.; Dastidar, P. Combinatorial library of primaryalkylammonium dicarboxylate gelators: A supramolecular synthon approach. Langmuir, 2009, 25(15), 8742-8750.
[http://dx.doi.org/10.1021/la9001362] [PMID: 19301875]
[37]
Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev., 2015, 115(24), 13165-13307.
[http://dx.doi.org/10.1021/acs.chemrev.5b00299] [PMID: 26646318]
[38]
Bag, P.P.; Wang, X.S.; Sahoo, P.; Xiong, J.; Cao, R. Efficient photocatalytic hydrogen evolution under visible light by ternary composite CdS@NU-1000/RGO. Catal. Sci. Technol., 2017, 7(21), 5113-5119.
[http://dx.doi.org/10.1039/C7CY01254C]
[39]
Powers, S.K.; Ji, L.L.; Kavazis, A.N.; Jackson, M.J. Reactive oxygen species: Impact on skeletal muscle. Compr. Physiol., 2011, 1(2), 941-969.
[http://dx.doi.org/10.1002/cphy.c100054] [PMID: 23737208]
[40]
Chuai, Y.; Gao, F.; Li, B.; Zhao, L.; Qian, L.; Cao, F.; Wang, L.; Sun, X.; Cui, J.; Cai, J. Hydrogen-rich saline attenuates radiation-induced male germ cell loss in mice through reducing hydroxyl radicals. Biochem. J., 2012, 442(1), 49-56.
[http://dx.doi.org/10.1042/BJ20111786] [PMID: 22077489]
[41]
Lanphier, E.H. Human respiration under increased pressures. Symp. Soc. Exp. Biol., 1972, 26, 379-394.
[PMID: 4574861]
[42]
Lafay, V.; Barthelemy, P.; Comet, B.; Frances, Y.; Jammes, Y. ECG changes during the experimental human dive HYDRA 10 (71 atm/7,200 kPa). Undersea Hyperb. Med., 1995, 22(1), 51-60.
[PMID: 7742710]
[43]
Gharib, B.; Hanna, S.; Abdallahi, O.M.S.; Lepidi, H.; Gardette, B.; De Reggi, M. Anti-inflammatory properties of molecular hydrogen: Investigation on parasite-induced liver inflammation. C. R. Acad. Sci. III, 2001, 324(8), 719-724.
[http://dx.doi.org/10.1016/S0764-4469(01)01350-6] [PMID: 11510417]
[44]
Nishiwaki, H.; Ito, M.; Negishi, S.; Sobue, S.; Ichihara, M.; Ohno, K. Molecular hydrogen upregulates heat shock response and collagen biosynthesis, and downregulates cell cycles: Meta-analyses of gene expression profiles. Free Radic. Res., 2018, 52(4), 434-445.
[http://dx.doi.org/10.1080/10715762.2018.1439166] [PMID: 29424253]
[45]
Kato, S.; Saitoh, Y.; Iwai, K.; Miwa, N. Hydrogen-rich electrolyzed warm water represses wrinkle formation against UVA ray together with type-I collagen production and oxidative-stress diminishment in fibroblasts and cell-injury prevention in keratinocytes. J. Photochem. Photobiol. B, 2012, 106, 24-33.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.09.006] [PMID: 22070900]
[46]
Liu, H.; Hua, N.; Xie, K.; Zhao, T.; Yu, Y. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury. Mol. Med. Rep., 2015, 12(2), 2495-2502.
[http://dx.doi.org/10.3892/mmr.2015.3731] [PMID: 25954991]
[47]
Safonov, M.; You, J.; Lee, J.; Safonov, V.L.; Berman, D.; Zhu, D. Hydrogen generating patch improves skin cell viability, migration activity, and collagen expression. Engineered Regeneration, 2020, 1, 1-5.
[http://dx.doi.org/10.1016/j.engreg.2020.05.001]
[48]
Kawamura, T.; Gando, Y.; Takahashi, M.; Hara, R.; Suzuki, K.; Muraoka, I. Effects of hydrogen bathing on exercise-induced oxidative stress and delayed-onset muscle soreness. Japan. J. Phys. Fit. Sports Med., 2016, 65(3), 297-305.
[http://dx.doi.org/10.7600/jspfsm.65.297]
[49]
Qi, D.D.; Ding, M.Y.; Wang, T.; Hayat, M.A.; Liu, T.; Zhang, J.T. The therapeutic effects of oral intake of hydrogen rich water on cutaneous wound healing in dogs. Vet. Sci., 2021, 8(11), 264.
[http://dx.doi.org/10.3390/vetsci8110264] [PMID: 34822637]
[50]
Cejka, C.; Kossl, J.; Hermankova, B.; Holan, V.; Kubinova, S.; Zhang, J.H.; Cejkova, J. Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage. Sci. Rep., 2017, 7(1), 18017.
[http://dx.doi.org/10.1038/s41598-017-18334-6] [PMID: 29269749]
[51]
Li, Y.; Peng, Y.K.; Hu, L.; Zheng, J.; Prabhakaran, D.; Wu, S.; Puchtler, T.J.; Li, M.; Wong, K.Y.; Taylor, R.A.; Tsang, S.C.E. Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat. Commun., 2019, 10(1), 4421.
[http://dx.doi.org/10.1038/s41467-019-12385-1] [PMID: 31562317]
[52]
Domcke, W.; Sobolewski, A.L.; Schlenker, C.W. Photooxidation of water with heptazine-based molecular photocatalysts: Insights from spectroscopy and computational chemistry. J. Chem. Phys., 2020, 153(10), 100902.
[http://dx.doi.org/10.1063/5.0019984] [PMID: 32933269]
[53]
Dong, Q.; Mohamad Latiff, N.; Mazánek, V.; Rosli, N.F.; Chia, H.L.; Sofer, Z.; Pumera, M. Triazine- and heptazine-based carbon nitrides: Toxicity. ACS Appl. Nano Mater., 2018, 1(9), 4442-4449.
[http://dx.doi.org/10.1021/acsanm.8b00708]
[54]
Sahoo, P.; Ghosh, S. Space and time crystal engineering in developing futuristic chemical technology. ChemEngineering, 2021, 5(4), 67.
[http://dx.doi.org/10.3390/chemengineering5040067]
[55]
Jiang, Z.; Tan, X.; Huang, Y. Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. Sci. Total Environ., 2022, 806(Pt 4), 150924.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150924] [PMID: 34655628]
[56]
Sun, J.; Hua, Q.; Zhou, R.; Li, D.; Guo, W.; Li, X.; Hu, G.; Shan, C.; Meng, Q.; Dong, L.; Pan, C.; Wang, Z.L. Piezo-phototronic effect enhanced efficient flexible perovskite solar cells. ACS Nano, 2019, 13(4), 4507-4513.
[http://dx.doi.org/10.1021/acsnano.9b00125] [PMID: 30875189]
[57]
Sun, J.; Li, N.; Dong, L.; Niu, X.; Zhao, M.; Xu, Z.; Zhou, H.; Shan, C.; Pan, C. Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells. Nanotechnology, 2021, 32(47), 475204.
[http://dx.doi.org/10.1088/1361-6528/abdbeb] [PMID: 33445158]
[58]
Chandrasekaran, S.; Bowen, C.; Zhang, P.; Li, Z.; Yuan, Q.; Ren, X.; Deng, L. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(24), 11078-11104.
[http://dx.doi.org/10.1039/C8TA03669A]
[59]
Sahoo, P.; Shrestha, R.G.; Shrestha, L.K.; Hill, J.P.; Takei, T.; Ariga, K. Surface oxidized carbon nanotubes uniformly coated with nickel ferrite nanoparticles. J. Inorg. Organomet. Polym. Mater., 2016, 26(6), 1301-1308.
[http://dx.doi.org/10.1007/s10904-016-0365-z]
[60]
Imboon, T.; Khumphon, J.; Yotkuna, K.; Tang, I-M.; Thongmee, S. Enhancement of photocatalytic by Mn3O4 spinel ferrite decorated graphene oxide nanocomposites. SN Appl. Sci., 2021, 3(6), 653.
[http://dx.doi.org/10.1007/s42452-021-04644-y]
[61]
Sahoo, P.; Tan, J.B.; Zhang, Z.M.; Singh, S.K.; Lu, T.B. Engineering the surface structure of binary/ternary ferrite nanoparticles as high-performance electrocatalysts for the oxygen evolution reaction. ChemCatChem, 2018, 10(5), 1075-1083.
[http://dx.doi.org/10.1002/cctc.201701790]
[62]
Chakraborty, I.; Guo, Z.; Bandyopadhyay, A.; Sahoo, P. Physical modifications and algorithmic predictions behind further advancing 2D water splitting photocatalyst: An overview. Eng. Sci., 2022, 20, 31-41.
[http://dx.doi.org/10.30919/es8d755]
[63]
Steed, J.W. Supramolecular gel chemistry: Developments over the last decade. Chem. Commun., 2011, 47(5), 1379-1383.
[http://dx.doi.org/10.1039/C0CC03293J] [PMID: 20967393]
[64]
Sahoo, P.; Sankolli, R.; Lee, H.Y.; Raghavan, S.R.; Dastidar, P. Gel sculpture: Moldable, load-bearing and self-healing non-polymeric supramolecular gel derived from a simple organic salt. Chemistry, 2012, 18(26), 8057-8063.
[http://dx.doi.org/10.1002/chem.201200986] [PMID: 22628195]
[65]
Sahoo, P.; Chakraborty, I.; Dastidar, P. Reverse thermal gelation of aromatic solvents by a series of easily accessible organic salt based gelators. Soft Matter, 2012, 8(9), 2595.
[http://dx.doi.org/10.1039/c2sm06957a]
[66]
Sahoo, P. Designing heat-set gels for crystallizing APIs at different temperatures: A crystal engineering approach. ChemEngineering, 2022, 6(5), 65.
[http://dx.doi.org/10.3390/chemengineering6050065]
[67]
Tena-Solsona, M.; Nanda, J.; Díaz-Oltra, S.; Chotera, A.; Ashkenasy, G.; Escuder, B. Emergent catalytic behavior of self-assembled low molecular weight peptide-based aggregates and hydrogels. Chemistry, 2016, 22(19), 6687-6694.
[http://dx.doi.org/10.1002/chem.201600344] [PMID: 27004623]
[68]
Lü, S.; Gao, C.; Xu, X.; Bai, X.; Duan, H.; Gao, N.; Feng, C.; Xiong, Y.; Liu, M. Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation. ACS Appl. Mater. Interfaces, 2015, 7(23), 13029-13037.
[http://dx.doi.org/10.1021/acsami.5b03143] [PMID: 26016388]
[69]
Hawkins, K.; Patterson, A.K.; Clarke, P.A.; Smith, D.K. Catalytic gels for a prebiotically relevant asymmetric aldol reaction in water: From organocatalyst design to hydrogel discovery and back again. J. Am. Chem. Soc., 2020, 142(9), 4379-4389.
[http://dx.doi.org/10.1021/jacs.9b13156] [PMID: 32023044]
[70]
Bo, Y.; Zhang, L.; Wang, Z.; Shen, J.; Zhou, Z.; Yang, Y.; Wang, Y.; Qin, J.; He, Y. Antibacterial hydrogel with self-healing property for wound-healing applications. ACS Biomater. Sci. Eng., 2021, 7(11), 5135-5143.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00719] [PMID: 34634909]
[71]
Shi, C.; Huang, Z.; Kilic, S.; Xu, J.; Enick, R.M.; Beckman, E.J.; Carr, A.J.; Melendez, R.E.; Hamilton, A.D. The gelation of CO2: A sustainable route to the creation of microcellular materials. Science, 1999, 286(5444), 1540-1543.
[http://dx.doi.org/10.1126/science.286.5444.1540] [PMID: 10567255]
[72]
Fuhrhop, J.H.; Spiroski, D.; Boettcher, C. Molecular monolayer rods and tubules made of. α-(L-lysine).ω-(amino) bolaamphiphiles. J. Am. Chem. Soc., 1993, 115(4), 1600-1601.
[http://dx.doi.org/10.1021/ja00057a069]
[73]
Kiyonaka, S.; Shinkai, S. Combinatorial library of low molecular-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis. Chemistry, 2003, 9, 976-983.
[http://dx.doi.org/10.1002/chem.200390120] [PMID: 12584714]
[74]
Gore, T.; Dori, Y.; Talmon, Y.; Tirrell, M.; Bianco-Peled, H. Self-assembly of model collagen peptide amphiphiles. Langmuir, 2001, 17(17), 5352-5360.
[http://dx.doi.org/10.1021/la010223i]
[75]
Suzuki, M.; Hanabusa, K. l-Lysine-based low-molecular-weight gelators. Chem. Soc. Rev., 2009, 38(4), 967-975.
[http://dx.doi.org/10.1039/b816192e] [PMID: 19421575]
[76]
Zhang, Y.; Gu, H.; Yang, Z.; Xu, B. Supramolecular hydrogels respond to ligand-receptor interaction. J. Am. Chem. Soc., 2003, 125(45), 13680-13681.
[http://dx.doi.org/10.1021/ja036817k] [PMID: 14599204]
[77]
Xing, B.; Yu, C.W.; Chow, K.H.; Ho, P.L.; Fu, D.; Xu, B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: A potential candidate for biomaterials. J. Am. Chem. Soc., 2002, 124(50), 14846-14847.
[http://dx.doi.org/10.1021/ja028539f] [PMID: 12475316]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy