Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Sustainable Bioconversion of Glycerine Pitch into the Novel Wickerhamomyces anomalus Bio-preservative

Author(s): Taufiq Ahmad Syauqi, Hau Seung Jeremy Wong, Nur Syuhada Izwani Ab Satar, Amirah Yusri, Nor Azura Azami, Nurul Julia Akmar and Amirul Al-Ashraf Abdullah*

Volume 12, Issue 1, 2023

Published on: 03 January, 2023

Page: [45 - 56] Pages: 12

DOI: 10.2174/2211550112666221216093202

Price: $65

Abstract

Background: Yeasts with high protein content are used as single-cell proteins due to their nutritional values and rare pathogenicity. However, the nucleic acid of the yeasts must be removed before consumption to avoid hazards to health. Wickerhamomyces anomalus is an authorized bio-preservative with promising antifungal activity and safety. However, its high protein content associated with high nucleic acid content results in high nitrogen content that imposes additional downstream processing costs due to the nucleic acid removal step required to prevent uric acid precipitation which leads to various health concerns.

Objectives: The objectives were to (i) isolate a novel Wickerhamomyces anomalus strain with low nitrogen content and (ii) to optimize the production of W. anomalus biomass through response surface methodology (RSM).

Methods: The novel Wickerhamomyces sp. USMAST-TP1 with low nitrogen content was isolated from fermented food and its biomass was optimized through RSM.

Results: Wickerhamomyces sp. USMAST-TP1 showed promising tolerance to glycerine pitch with a higher composition of growth-inhibiting impurities where its biomass was not negatively affected by excessive glycerine pitch supply. Upon optimization through RSM, 11.4 g/L biomass harboring protein content of 13% was achieved.

Conclusion: The >17-fold lower nitrogen content of 2% indicated low nucleic acid content compared to common W. anomalus strains, thus the costly nucleic acid purification steps can be excluded, easing applications in agro-food industries.

Graphical Abstract

[1]
Huang YT, Kinsella JE. Functional properties of phosphorylated yeast protein: Solubility, water-holding capacity, and viscosity. J Agric Food Chem 1986; 34(4): 670-4.
[http://dx.doi.org/10.1021/jf00070a020]
[2]
Anupama RP, Ravindra P. Value-added food. Biotechnol Adv 2000; 18(6): 459-79.
[http://dx.doi.org/10.1016/S0734-9750(00)00045-8] [PMID: 14538097]
[3]
Pahlow M, van Oel PR, Mekonnen MM, Hoekstra AY. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci Total Environ 2015; 536: 847-57.
[http://dx.doi.org/10.1016/j.scitotenv.2015.07.124] [PMID: 26258557]
[4]
Fry JP, Love DC, MacDonald GK, et al. Environmental health impacts of feeding crops to farmed fish. Environ Int 2016; 91: 201-14.
[http://dx.doi.org/10.1016/j.envint.2016.02.022]
[5]
Nasseri AT, Rasoul-Ami S, Morowvat MH, Ghasemi Y. Single cell protein: Production and process. Am J Food Technol 2011; 6(2): 103-16.
[http://dx.doi.org/10.3923/ajft.2011.103.116]
[6]
Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004; 25(26): 5681-703.
[http://dx.doi.org/10.1016/j.biomaterials.2004.01.023] [PMID: 15147815]
[7]
Liao SF, Wang T, Regmi N. Lysine nutrition in swine and the related monogastric animals: Muscle protein biosynthesis and beyond. Springerplus 2015; 4(1): 147.
[http://dx.doi.org/10.1186/s40064-015-0927-5] [PMID: 25830085]
[8]
Miller BM, Litsky W. Single cell protein in microbiology. New York: McGrow-Hill Book Co 1976.
[9]
Spalvins K, Zihare L, Blumberga D. Single cell protein production from waste biomass: Comparison of various industrial by-products. Energy Procedia 2018; 147: 409-18.
[http://dx.doi.org/10.1016/j.egypro.2018.07.111]
[10]
Pagliaro M, Rossi M. Glycerol: properties and production The future of glycerol. (2nd ed.), United Kingdom: Royal Society of Chemistry 2010.
[http://dx.doi.org/10.1039/9781849731089-00001]
[11]
Sdrula N. A study using classical or membrane separation in the biodiesel process. Desalination 2010; 250(3): 1070-2.
[http://dx.doi.org/10.1016/j.desal.2009.09.110]
[12]
Blasch KW, Kolivosky JE, Heller JM. Environmental air sampling near burn pit and incinerator operations at Bagram Airfield, Afghanistan. J Occup Environ Med 2016; 58(8) (Suppl. 1): S38-43.
[http://dx.doi.org/10.1097/JOM.0000000000000792] [PMID: 27501103]
[13]
Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J Radiat Res Appl Sci 2014; 7(2): 163-73.
[http://dx.doi.org/10.1016/j.jrras.2014.02.003]
[14]
Couture JL, Geyer R, Hansen JØ, et al. Environmental benefits of novel nonhuman food inputs to salmon feeds. Environ Sci Technol 2019; 53(4): 1967-75.
[http://dx.doi.org/10.1021/acs.est.8b03832] [PMID: 30653307]
[15]
Silva JP, Da Silva GP, Azevedo Neto AD, Cazetta ML. Single cell protein production by Wickerhamomyces anomalus CCC32 using crude glycerol. Semin Ciênc Exatas Tecnol 2019; 40(2): 179-88.
[http://dx.doi.org/10.5433/1679-0375.2019v40n2p179]
[16]
Dobrowolski A. Mituła P, Rymowicz W, Mirończuk AM. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour Technol 2016; 207: 237-43.
[http://dx.doi.org/10.1016/j.biortech.2016.02.039] [PMID: 26890799]
[17]
Daniel HM, Moons MC, Huret S, Vrancken G, De Vuyst L. Wickerhamomyces anomalus in the sourdough microbial ecosystem. Antonie van Leeuwenhoek 2011; 99(1): 63-73.
[http://dx.doi.org/10.1007/s10482-010-9517-2] [PMID: 20963492]
[18]
Padilla B, Gil J, Manzanares P. Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation 2018; 4(3): 68-82.
[http://dx.doi.org/10.3390/fermentation4030068]
[19]
Coda R, Cassone A, Rizzello CG, Nionelli L, Cardinali G, Gobbetti M. Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: identification of novel compounds and long-term effect during storage of wheat bread. Appl Environ Microbiol 2011; 77(10): 3484-92.
[http://dx.doi.org/10.1128/AEM.02669-10] [PMID: 21441340]
[20]
Vrancken G, De Vuyst L, Van der Meulen R, Huys G, Vandamme P, Daniel HM. Yeast species composition differs between artisan bakery and spontaneous laboratory sourdoughs. FEMS Yeast Res 2010; 10(4): 471-81.
[http://dx.doi.org/10.1111/j.1567-1364.2010.00621.x] [PMID: 20384785]
[21]
Wang L, Yue L, Chi Z, Wang X. Marine killer yeasts active against a yeast strain pathogenic to crab Portunus trituberculatus. Dis Aquat Organ 2008; 80(3): 211-8.
[http://dx.doi.org/10.3354/dao01943] [PMID: 18814546]
[22]
Sundh I, Melin P. Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain. Antonie van Leeuwenhoek 2011; 99(1): 113-9.
[http://dx.doi.org/10.1007/s10482-010-9528-z] [PMID: 21086043]
[23]
Agboola JO, Øverland M, Skrede A, Hansen JØ. Yeast as major protein-rich ingredient in aquafeeds: A review of the implications for aquaculture production. Rev Aquacult 2021; 13(2): 949-70.
[http://dx.doi.org/10.1111/raq.12507]
[24]
Gnaiger E, Bitterlich G. Proximate biochemical composition and caloric content calculated from elemental CHN analysis: A stoichiometric concept. Oecologia 1984; 62(3): 289-98.
[http://dx.doi.org/10.1007/BF00384259] [PMID: 28310880]
[25]
Fujita SI, Senda Y, Nakaguchi S, Hashimoto T. Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. J Clin Microbiol 2001; 39(10): 3617-22.
[http://dx.doi.org/10.1128/JCM.39.10.3617-3622.2001] [PMID: 11574582]
[26]
Santos EO, Michelon M, Gallas JA, Kalil SJ, André Veiga Burkert C. Raw glycerol as substrate for the production of yeast biomass. Int J Food Eng 2013; 9(4): 413-20.
[http://dx.doi.org/10.1515/ijfe-2012-0248]
[27]
Choi MH, Park YH. Production of yeast biomass using waste Chinese cabbage. Biomass Bioenergy 2003; 25(2): 221-6.
[http://dx.doi.org/10.1016/S0961-9534(02)00194-0]
[28]
Khuri AI, Mukhopadhyay S. Response surface methodology. Wiley Interdiscip Rev Comput Stat 2010; 2(2): 128-49.
[http://dx.doi.org/10.1002/wics.73]
[29]
Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[30]
Pyle DJ, Garcia RA, Wen Z. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 2008; 56(11): 3933-9.
[http://dx.doi.org/10.1021/jf800602s] [PMID: 18465872]
[31]
Milala MA, Yakubu M, Burah B, Laminu HH, Bashir H. Production and optimization of single cell protein from orange peels by Saccharomyces cerevisiae. J Biosci Biotechnol Discov 2018; 3(5): 99-104.
[http://dx.doi.org/10.31248/JBBD2018.081]
[32]
Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol 2016; 213: 8-14.
[http://dx.doi.org/10.1016/j.ijcard.2015.08.109] [PMID: 26316329]
[33]
Aloui H, Licciardello F, Khwaldia K, Hamdi M, Restuccia C. Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. Int J Food Microbiol 2015; 200: 22-30.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.01.015] [PMID: 25666444]
[34]
Muccilli S, Restuccia C. Bioprotective role of yeasts. Microorganisms 2015; 3(4): 588-611.
[http://dx.doi.org/10.3390/microorganisms3040588] [PMID: 27682107]
[35]
Therdthai N, Zhou W, Adamczak T. Optimisation of the temperature profile in bread baking. J Food Eng 2002; 55(1): 41-8.
[http://dx.doi.org/10.1016/S0260-8774(01)00240-0]
[36]
Mehlomakulu NN, Setati ME, Divol B. Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int J Food Microbiol 2014; 188: 83-91.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.07.015] [PMID: 25087208]
[37]
Satora P, Tarko T, Sroka P, Blaszczyk U. The influence of Wickerhamomyces anomalus killer yeast on the fermentation and chemical composition of apple wines. FEMS Yeast Res 2014; 14(5): 729-40.
[http://dx.doi.org/10.1111/1567-1364.12159] [PMID: 24750993]
[38]
Linde M, Galbe M, Zacchi G. Steam pretreatment of acid-sprayed and acid-soaked barley straw for production of ethanol. In: McMillan, J.D., Adney, W.S., Mielenz, J.R., Klasson, K.T. (eds). Twenty- Seventh Symposium on Biotechnology for Fuels and Chemicals. Humana Press: New Jersey, pp. 546-62.
[http://dx.doi.org/10.1007/978-1-59745-268-7_44]
[39]
Borneman AR, Zeppel R, Chambers PJ, Curtin CD. Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates. PLoS Genet 2014; 10(2)e1004161
[http://dx.doi.org/10.1371/journal.pgen.1004161] [PMID: 24550744]
[40]
Perli T, Wronska AK, Ortiz-Merino RA, Pronk JT, Daran JM. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020; 37(4): 283-304.
[http://dx.doi.org/10.1002/yea.3461] [PMID: 31972058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy