Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Nanomaterials: Potential Broad Spectrum Antimicrobial Agents

Author(s): Prabhurajeshwar Chidre*, Ashajyothi Chavan, Navya Hulikunte Mallikarjunaiah and Kelmani Chandrakanth Revanasiddappa

Volume 8, Issue 4, 2023

Published on: 26 December, 2022

Page: [319 - 327] Pages: 9

DOI: 10.2174/2405461508666221214120304

Price: $65

Abstract

Nanotechnology is a promising science with new aspects to fight and prevent various diseases using nanomaterials. The capability to expose the structure and functions of biosystems at the nanoscale level supports research leading to development in biology, biotechnology, medicine and healthcare. This is predominantly advantageous in treating microbial infections as an alternative to antibiotics. However, widespread production, and use and misuse of antibiotics have led to the emergence of Multiple-Drug Resistant (MDR) pathogenic bacteria. Due to infectious diseases from these drug-resistant pathogenic strains, human mortality rates have consistently increased and are becoming an epidemic in our society. Consequently, there is a strong demand for developing novel strategies and new materials that can cope with these problems. The emergence of nanotechnology has created many new antimicrobial options. The small size of these nanomaterials is suitable for carrying out biological operations. Several metals and metal oxides, such as silver, copper, gold, zinc oxide and iron oxide nanoparticle types, have shown toxicity toward several pathogenic microbes. Metal-based nanoparticles have been broadly examined for a set of biomedical applications. According to the World Health Organization, the reduced size and selectivity of metal-based nanoparticles for bacteria have established them to be effective against pathogens, causing concern. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms, which not only make the development of resistance by bacteria difficult, but also widen the spectrum of antibacterial activity. Metal-based nanoparticle efficiency studies achieved so far have revealed promising results against both Gram-positive and Gram-negative bacteria. Here we discuss the potential nanomaterials to either treat microbial resistance or induce the development of resistance. However, fundamental research is required to focus on the molecular mechanism causing the antimicrobial activity of nanomaterials.

[1]
Dean S, Mansoori G, Fauzi Soelaiman TA. Nanotechnology-an introduction for the standards community. J ASTM Int 2005; 2(6): 13110.
[http://dx.doi.org/10.1520/JAI13110]
[2]
Schmidt KF. Nanofrontiers: Visions for the future of nanotechnology. Washington, DC, USA: woodrow wilson international center for scholars 2007.
[3]
National nanotechnology initiative. Available from: http:// www.nano.gov(accessed on 14 June 2019)
[4]
Davies JC. Nanotechnology oversight; Project on emerging nanotechnologies. Washington, DC, USA: woodrow wilson international center for scholars 2008.
[5]
Guerrini L, Alvarez-Puebla R, Pazos-Perez N. Surface modifications of nanoparticles for stability in biological fluids. Materials 2018; 11(7): 1154.
[http://dx.doi.org/10.3390/ma11071154].] [PMID: 29986436]
[6]
Dutta PP, Bordoloi M, Gogoi K, et al. Antimalarial silver and gold nanoparticles: Green synthesis, characterization and in vitro study. Biomed Pharmacother 2017; 91: 567-80.
[http://dx.doi.org/10.1016/j.biopha.2017.04.032].] [PMID: 28486189]
[7]
Danie KJ, Ranjan S, Dasgupta N, Saha P. Nanotechnology for tissue engineering: Need, techniques and applications. J Pharm Res 2013; 7(2): 200-4.
[http://dx.doi.org/10.1016/j.jopr.2013.02.021]
[8]
Ellis-Behnke RG, Liang YX, You SW, et al. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci 2006; 103(13): 5054-9.
[http://dx.doi.org/10.1073/pnas.0600559103].] [PMID: 16549776]
[9]
De Kwaadsteniet M, Botes M, Cloete TE. Application of nanotechnology in antimicrobial coatings in the water industry. Nano 2011; 6(5): 395-407.
[http://dx.doi.org/10.1142/S1793292011002779]
[10]
Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 2006; 62(1): 58-63.
[http://dx.doi.org/10.1016/j.jhin.2005.04.015].] [PMID: 16099072]
[11]
Bera A, Belhaj H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery - A comprehensive review. J Nat Gas Sci Eng 2016; 34: 1284-309.
[http://dx.doi.org/10.1016/j.jngse.2016.08.023]
[12]
Yang W, Peters JI, Williams RO III. Inhaled nanoparticles—A current review. Int J Pharm 2008; 356(1-2): 239-47.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.011].] [PMID: 18358652]
[13]
Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J Pharm Sci 2007; 96(10): 2547-65.
[http://dx.doi.org/10.1002/jps.20875].] [PMID: 17688284]
[14]
Onoue S, Yamada S, Chan K. Nanodrugs: Pharmacokinetics and safety. Int J Nanomedicine 2014; 9: 1025-37.
[http://dx.doi.org/10.2147/IJN.S38378].] [PMID: 24591825]
[15]
Rudramurthy G, Swamy M, Sinniah U, Ghasemzadeh A. Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules 2016; 21(7): 836.
[http://dx.doi.org/10.3390/molecules21070836].] [PMID: 27355939]
[16]
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine-challenge and perspectives. Angew Chem Int Ed 2009; 48(5): 872-97.
[http://dx.doi.org/10.1002/anie.200802585].] [PMID: 19142939]
[17]
Sanchez F, Sobolev K. Nanotechnology in concrete – A review. Constr Build Mater 2010; 24(11): 2060-71.
[http://dx.doi.org/10.1016/j.conbuildmat.2010.03.014]
[18]
Ingle AP, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl Microbiol Biotechnol 2014; 98(3): 1001-9.
[http://dx.doi.org/10.1007/s00253-013-5422-8].] [PMID: 24305741]
[19]
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010; 6(1): 12-21.
[http://dx.doi.org/10.1002/smll.200901158].] [PMID: 19844908]
[20]
Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol 2017; 15(1): 31-9.
[http://dx.doi.org/10.1016/j.jgeb.2017.04.005].] [PMID: 30647639]
[21]
Navneet P, Matthias K, Imran U, et al. Interaction of nanoparticles with biomolecules, protein, enzymes, and its applications. In: Precision Medicine. Atlanta, GA, USA: Academic Press, Elsevier 2018; pp. 253-76.
[22]
Vigneshwaran N, Jain P. Biomolecules–nanoparticles: Interaction in nanoscale. In: Rai M, Duran N, Eds. Metal nanoparticles in microbiology. Berlin/Heidelberg, Germany: Springer 2011; pp. 135-50.
[23]
de Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596].] [PMID: 18686775]
[24]
Liu W, Yang XL, Winston Ho WS. Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification. J Pharm Sci 2011; 100(1): 75-93.
[http://dx.doi.org/10.1002/jps.22272].] [PMID: 20589949]
[25]
Yadav SK, Kumari A, Kumar V. Nanotechnology: A tool to enhance therapeutic values of natural plant products. Trends Med Res 2012; 7(2): 34-42.
[http://dx.doi.org/10.3923/tmr.2012.34.42]
[26]
Huang YW, Cambre M, Lee HJ. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci 2017; 18(12): 2702.
[http://dx.doi.org/10.3390/ijms18122702].] [PMID: 29236059]
[27]
Ajdary M, Moosavi M, Rahmati M, et al. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials 2018; 8(9): 634.
[http://dx.doi.org/10.3390/nano8090634].] [PMID: 30134524]
[28]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016; 11(6): 673-92.
[http://dx.doi.org/10.2217/nnm.16.5].] [PMID: 27003448]
[29]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14(1): 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124].] [PMID: 22524388]
[30]
Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf B Biointerfaces 2008; 66(2): 274-80.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.004].] [PMID: 18722754]
[31]
Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci 2006; 103(13): 4930-4.
[http://dx.doi.org/10.1073/pnas.0600997103].] [PMID: 16549762]
[32]
Lee YJ, Ahn EY, Park Y. Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Res Lett 2019; 14(1): 129.
[http://dx.doi.org/10.1186/s11671-019-2967-1].] [PMID: 30976946]
[33]
Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 2005; 592(1-2): 119-37.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.06.012].] [PMID: 16085126]
[34]
Favi PM, Gao M, Johana SAL, et al. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus gold nanostars. J Biomed Mater Res A 2015; 103(11): 3449-62.
[http://dx.doi.org/10.1002/jbm.a.35491].] [PMID: 25904210]
[35]
Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystals quantum dots depend on their surface modification. Nano Lett 2004; 4(11): 2163-9.
[http://dx.doi.org/10.1021/nl048715d]
[36]
Pietroiusti A, Massimiani M, Fenoglio I, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano 2011; 5(6): 4624-33.
[http://dx.doi.org/10.1021/nn200372g].] [PMID: 21615177]
[37]
Georgieva JV, Kalicharan D, Couraud PO, et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol Ther 2011; 19(2): 318-25.
[http://dx.doi.org/10.1038/mt.2010.236].] [PMID: 21045812]
[38]
Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular tracking of nanoparticles. Nanoscale Res Lett 2018; 13(1): 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6].] [PMID: 30361809]
[39]
Hühn D, Kantner K, Geidel C, et al. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano 2013; 7(4): 3253-63.
[http://dx.doi.org/10.1021/nn3059295].] [PMID: 23566380]
[40]
Chompoosor A, Saha K, Ghosh PS, et al. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 2010; 6(20): 2246-9.
[http://dx.doi.org/10.1002/smll.201000463].] [PMID: 20818619]
[41]
Curtis C, Toghani D, Wong B, Nance E. Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids Surf B Biointerfaces 2018; 170: 673-82.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.050].] [PMID: 29986264]
[42]
Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 2008; 27(9): 1972-8.
[http://dx.doi.org/10.1897/08-002.1].] [PMID: 18690762]
[43]
Gatoo MA, Naseem S, Yasir Arfat M, et al. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res Int 2014; 2014: 498420.
[44]
van der Zande M, Vandebriel RJ, Van Doren E, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 2012; 6(8): 7427-42.
[http://dx.doi.org/10.1021/nn302649p].] [PMID: 22857815]
[45]
Peng Q, Zhang S, Yang Q, et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 2013; 34(33): 8521-30.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.102].] [PMID: 23932500]
[46]
Lee YK, Choi EJ, Webster TJ, Kim SH, Khang D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomedicine 2014; 10(1): 97-113.
[PMID: 25565807]
[47]
Liu W, Rose J, Plantevin S, Auffan M, Bottero JY, Vidaud C. Protein corona formation for nanomaterials and proteins of a similar size: Hard or soft corona? Nanoscale 2013; 5(4): 1658-68.
[http://dx.doi.org/10.1039/c2nr33611a].] [PMID: 23334428]
[48]
Konduru NV, Molina RM, Swami A, et al. Protein corona: Implications for nanoparticle interactions with pulmonary cells. Part Fibre Toxicol 2017; 14(1): 42.
[http://dx.doi.org/10.1186/s12989-017-0223-3].] [PMID: 29084556]
[49]
Hadjidemetriou M, McAdam S, Garner G, et al. The human in vivo biomolecules corona onto pegylated liposomes: A proof-of-concept clinical study. Adv Mater 2019; 31(4): 1803335.
[http://dx.doi.org/10.1002/adma.201803335].] [PMID: 30488990]
[50]
Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ. Protein corona formation around nanoparticles – from the past to the future. Mater Horiz 2014; 1(3): 301-13.
[http://dx.doi.org/10.1039/C3MH00106G]
[51]
Strojan K, Leonardi A, Bregar VB, Križaj I, Svete J, Pavlin M. Dispersion of nanoparticles in different media importantly determines the composition of their protein corona. PLoS One 2017; 12(1): e0169552.
[http://dx.doi.org/10.1371/journal.pone.0169552].] [PMID: 28052135]
[52]
Stark WJ, Stoessel PR, Wohlleben W, Hafner A. Industrial applications of nanoparticles. Chem Soc Rev 2015; 44(16): 5793-805.
[http://dx.doi.org/10.1039/C4CS00362D].] [PMID: 25669838]
[53]
Nanotechnology for green innovation. In: OECD Science, Technology and Industry Policy Papers. Paris: OECD Publishing 2013; pp. 1-35.
[54]
Rickerby DG, Morrison M. Nanotechnology and the environment: A European perspective. Sci Technol Adv Mater 2007; 8(1-2): 19-24.
[http://dx.doi.org/10.1016/j.stam.2006.10.002]
[55]
Lewis NS. Toward cost-effective solar energy use. Science 2007; 315(5813): 798-801.
[http://dx.doi.org/10.1126/science.1137014].] [PMID: 17289986]
[56]
Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F. Photoinduced electron transfer from a conducting polymer to buckminster-fullerene. Science 1992; 258(5087): 1474-6.
[http://dx.doi.org/10.1126/science.258.5087.1474].] [PMID: 17755110]
[57]
He Y, Li Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys 2011; 13(6): 1970-83.
[http://dx.doi.org/10.1039/C0CP01178A].] [PMID: 21180723]
[58]
Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 2011; 23(13): 1482-513.
[http://dx.doi.org/10.1002/adma.201003188].] [PMID: 21322065]
[59]
Somani PR, Somani SP, Flahaut E, Umeno M. Improving the photovoltaic response of a poly(3-octylthiophene)/n-Si heterojunction by incorporating double-walled carbon nanotubes. Nanotechnology 2007; 18(18): 185708.
[http://dx.doi.org/10.1088/0957-4484/18/18/185708]
[60]
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666-9.
[http://dx.doi.org/10.1126/science.1102896].] [PMID: 15499015]
[61]
Luo B, Liu S, Zhi L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 2012; 8(5): 630-46.
[http://dx.doi.org/10.1002/smll.201101396].] [PMID: 22121112]
[62]
Chen X, Li C, Grätzel M, Kostecki R, Mao SS. Nanomaterials for renewable energy production and storage. Chem Soc Rev 2012; 41(23): 7909-37.
[http://dx.doi.org/10.1039/c2cs35230c].] [PMID: 22990530]
[63]
Zukalová M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Grätzel M. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett 2005; 5(9): 1789-92.
[http://dx.doi.org/10.1021/nl051401l].] [PMID: 16159225]
[64]
Zhang J, Li CM. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem Soc Rev 2012; 41(21): 7016-31.
[http://dx.doi.org/10.1039/c2cs35210a].] [PMID: 22975622]
[65]
Qiao Y, Li CM. Nanostructured catalysts in fuel cells. J Mater Chem 2011; 21(12): 4027-36.
[http://dx.doi.org/10.1039/C0JM02871A]
[66]
Zhao X, Sánchez BM, Dobson PJ, Grant PS. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 2011; 3(3): 839-55.
[http://dx.doi.org/10.1039/c0nr00594k].] [PMID: 21253650]
[67]
Ke YF, Tsai DS, Huang YS. Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates. J Mater Chem 2005; 15(21): 2122-7.
[http://dx.doi.org/10.1039/b502754c]
[68]
Hu CC, Chang KH, Lin MC, Wu YT. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 2006; 6(12): 2690-5.
[http://dx.doi.org/10.1021/nl061576a].] [PMID: 17163689]
[69]
Haun JB, Yoon TJ, Lee H, Weissleder R. Magnetic nanoparticles biosensors. Nanomed Nanobiotechnol 2010; 2: 291-304.
[http://dx.doi.org/10.1002/wnan.84]
[70]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18(3): 175-96.
[http://dx.doi.org/10.1038/s41573-018-0006-z].] [PMID: 30622344]
[71]
Park W, Heo YJ, Han DK. New opportunities for nanoparti-cles in cancer immunotherapy. Biomater Res 2018; 22(1): 24.
[http://dx.doi.org/10.1186/s40824-018-0133-y].] [PMID: 30275967]
[72]
Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater 2019; 4(6): 398-414.
[http://dx.doi.org/10.1038/s41578-019-0108-1]
[73]
Wang Z, Liu W, Shi J, Chen N, Fan C. Nanoscale delivery systems for cancer immunotherapy. Mater Horiz 2018; 5(3): 344-62.
[http://dx.doi.org/10.1039/C7MH00991G]
[74]
Mi Y, Smith CC, Yang F, et al. A dual immunotherapy nanoparticle improves t-cell activation and cancer immunotherapy. Adv Mater 2018; 30(25): 1706098.
[http://dx.doi.org/10.1002/adma.201706098].] [PMID: 29691900]
[75]
Surendran SP, Moon MJ, Park R, Jeong YY. Bioactive nanoparticles for cancer immunotherapy. Int J Mol Sci 2018; 19(12): 3877.
[http://dx.doi.org/10.3390/ijms19123877].] [PMID: 30518139]
[76]
Nikalje AP. Nanotechnology and its applications in medicine. Med Chem 2015; 5(2): 81-9.
[http://dx.doi.org/10.4172/2161-0444.1000247]
[77]
Latterich M, Corbeil J. Label-free detection of biomolecular interactions in real time with a nano-porous silicon-based detection method. Proteome Sci 2008; 6(1): 31.
[http://dx.doi.org/10.1186/1477-5956-6-31].] [PMID: 18983648]
[78]
Jia L, Lu Y, Shao J, Liang XJ, Xu Y. Nanoproteomics: A new sprout from emerging links between nanotechnology and proteomics. Trends Biotechnol 2013; 31(2): 99-107.
[http://dx.doi.org/10.1016/j.tibtech.2012.11.010].] [PMID: 23280409]
[79]
Sharifi M, Avadi MR, Attar F, et al. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron 2019; 126: 773-84.
[http://dx.doi.org/10.1016/j.bios.2018.11.026].] [PMID: 30554099]
[80]
Ambrosi A, Airò F, Merkoçi A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal Chem 2010; 82(3): 1151-6.
[http://dx.doi.org/10.1021/ac902492c].] [PMID: 20043655]
[81]
Ramos M, Castillo C. Aplicacionesbiomedicas de las nanopartículasmagnéticas. Ideas concyteg 2011; 6(72): 629-46.
[82]
Landini I, Lapucci A, Pratesi A, et al. Selection and characterization of a human ovarian cancer cell line resistant to auranofin. Oncotarget 2017; 8(56): 96062-78.
[http://dx.doi.org/10.18632/oncotarget.21708].] [PMID: 29221187]
[83]
Guidi F, Modesti A, Landini I, et al. The molecular mechanisms of antimetastatic ruthenium compounds explored through DIGE proteomics. J Inorg Biochem 2013; 118: 94-9.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.10.003].] [PMID: 23142974]
[84]
Gamberi T, Massai L, Magherini F, et al. Proteomic analysis of A2780/S ovarian cancer cell response to the cytotoxic organogold(III) compound Aubipyc. J Proteomics 2014; 103: 103-20.
[http://dx.doi.org/10.1016/j.jprot.2014.03.032].] [PMID: 24705091]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy