Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Systematic Review Article

Superoxide Dismutase Inhibitors against Malaria, Leishmaniasis, and Chagas Disease: Systematic Review

Author(s): Janay Stefany Carneiro Araújo, Larissa de Mattos Oliveira, Kaio Vinícius Freitas de Andrade, Raquel Guimarães Benevides, Franco Henrique Andrade Leite and Manoelito Coelho dos Santos Junior*

Volume 24, Issue 2, 2023

Published on: 30 December, 2022

Page: [201 - 210] Pages: 10

DOI: 10.2174/1389450124666221209105822

Price: $65

Abstract

Introduction: Diseases caused by protozoa are one of the leading causes of death worldwide, especially in tropical regions such as Brazil. Chagas disease, leishmaniasis, and malaria are responsible for around 234 million cases and more than 400,000 deaths worldwide. Despite this scenario, drugs for these diseases have several limitations, which justifies the search for new treatments. Iron superoxide dismutase is a promising target for the drug design to treat patients with these diseases. It is a validated target and protects against oxidative stress.

Aim: Thus, this systematic review aimed to synthesize evidence on the importance of superoxide dismutase in the drug design to treat patients with this protozoosis.

Methods: A search was performed for in vitro and in vivo studies, without publication and language restrictions, in MEDLINE (PubMed), LILACS (BVS), Science Direct, and EMBASE (Elsevier). Studies that pointed to the relationship between the reduction or increase in superoxide dismutase activity and the diseases were included. 23 studies were selected for the qualitative synthesis.

Results: The results showed that the inhibition or reduction of the enzyme activity decreases the degree of infection and reinfection and improves the results in treating these diseases. In contrast, the increase in activity caused a high degree of survival and resistance of the parasites.

Conclusion: However, the overall quality of evidence is low and more studies with methodological rigor are provided.

« Previous
Graphical Abstract

[1]
Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol 2019; 17(10): 607-20.
[http://dx.doi.org/10.1038/s41579-019-0238-x] [PMID: 31444481]
[2]
View of socioeconomic, environmental and cultural aspects of parasitic diseases. Completion of course work (Specialization- Laboratory Surveillance in Public Health)-São Paulo State Health Department, CEFOR/SUS-SP, Adolfo Lutz Institute. 2020. Available from: http://search.ebscohost.com/login.aspx?direct=true&Auth Type=ip,shib&db=bth&AN=92948285&site=eds-live&scope=site %0Ahttp://bimpactassessment.net/sites/all/themes/bcorp_impact/pd fs/em_stakeholder_engagement.pdf%0Ahttps://www.globus. com/help/helpFiles/CDJ-Pa
[3]
de Souza HP, de Oliveira WTGH, dos Santos JPC, et al. Doenças infecciosas e parasitárias no Brasil de 2010 a 2017: aspectos para vigilância em saúde. Rev Panam Salud Publica 2020; 44: 1.
[http://dx.doi.org/10.26633/RPSP.2020.10]
[4]
Barcelos NB, Silva LF, Dias RFG, Menezes Filho HR, Rodrigues RM. Opportunistic and non-opportunistic intestinal parasites in HIV/AIDS patients in relation to their clinical and epidemiological status in a specialized medical service in Goiás, Brazil. Rev Inst Med Trop São Paulo 2018; 60: e13.
[http://dx.doi.org/10.1590/s1678-9946201860013] [PMID: 29538510]
[5]
Monzote L, Siddiq A. Drug development to protozoan diseases. Open Med Chem J 2011; 5: 1-3.
[http://dx.doi.org/10.2174/1874104501105010001] [PMID: 21629506]
[6]
Scarim CB, Jornada DH, Machado MGM, Ferreira CMR, dos Santos JL, Chung MC. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, Human African Trypanosomiasis (HAT), leishmaniasis, and malaria. Eur J Med Chem 2019; 162: 378-95.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.013] [PMID: 30453246]
[7]
World Health Organization. ((2017Guideline: preventive . -transmitted helminth infections in at-chemotherapy to control soil risk population groups. Available from: https://apps.who.int/iris/handle/10665/258983
[8]
World Health Organization. World Malaria Report. 2019. Available from: https://www.who.int/publications-detail/world-malaria-report-2019
[9]
World Malaria Report: 20 years of global progress and challenges. Vol. WHO/HTM/GM, World Health. 2020. Available from https://www.who.int/publications/i/item/9789240015791
[10]
WHO. Chagas disease (also known as American trypanosomiasis). 2021. Available from: https://www.who.int/health-topics/chagas-disease#tab=tab_1
[11]
WHO. Leishmaniasis. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
[12]
Oliveira LB, Celes FS, Paiva CN, de Oliveira CI. The paradoxical leishmanicidal effects of Superoxide Dismutase (SOD)-mimetic tempol in Leishmania braziliensis Infection in vitro. Front Cell Infect Microbiol 2019; 9: 237.
[http://dx.doi.org/10.3389/fcimb.2019.00237] [PMID: 31297344]
[13]
Chu CS, White NJ. The prevention and treatment of Plasmodium vivax malaria. PLoS Med 2021; 18(4): e1003561.
[http://dx.doi.org/10.1371/journal.pmed.1003561]
[14]
Araujo JSC, de Souza BC, Costa Junior D.B., et al. Identification of new promising Plasmodium falciparum superoxide dismutase allosteric inhibitors through hierarchical pharmacophore-based virtual screening and molecular dynamics. J Mol Model 2018; 24(8): 220.
[http://dx.doi.org/10.1007/s00894-018-3746-0] [PMID: 30056475]
[15]
van Schalkwyk DA, Saliba KJ, Biagini GA, Bray PG, Kirk K. Loss of pH control in Plasmodium falciparum parasites subjected to oxidative stress. PLoS One 2013; 8(3): e58933.
[http://dx.doi.org/10.1371/journal.pone.0058933] [PMID: 23536836]
[16]
Bachega JFR, Navarro MVAS, Bleicher L, et al. Systematic structural studies of iron superoxide dismutases from human parasites and a statistical coupling analysis of metal binding specificity. Proteins 2009; 77(1): 26-37.
[http://dx.doi.org/10.1002/prot.22412] [PMID: 19384994]
[17]
Martínez A, Prolo C, Estrada D, et al. Cytosolic Fe-superoxide dismutase safeguards Trypanosoma cruzi from macrophage-derived superoxide radical. Proc Natl Acad Sci USA 2019; 116(18): 8879-88.
[http://dx.doi.org/10.1073/pnas.1821487116] [PMID: 30979807]
[18]
Raj S, Sasidharan S, Balaji SN, Saudagar P. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitol Res 2020; 119(7): 2025-37.
[http://dx.doi.org/10.1007/s00436-020-06736-x] [PMID: 32504119]
[19]
Mittra B, Andrews NW. IRONy OF FATE: role of iron-mediated ROS in Leishmania differentiation Trends Parasitol 2013; 29(10): 489-96.https://www.embase.com/search/results?subaction=viewrecord&id=L52726203&from=export
[http://dx.doi.org/10.1016/j.pt.2013.07.007] [PMID: 23948431]
[20]
Brito CCB, Silva HVC, Brondani DJ, et al. Synthesis and biological evaluation of thiazole derivatives as Lb SOD inhibitors. J Enzyme Inhib Med Chem 2019; 34(1): 333-42.
[http://dx.doi.org/10.1080/14756366.2018.1550752] [PMID: 30734600]
[21]
Paucar R, Martín-Escolano R, Moreno-Viguri E, et al. Rational modification of Mannich base-type derivatives as novel antichagasic compounds: Synthesis, in vitro and in vivo evaluation. Bioorg Med Chem 2019; 27(17): 3902-17.
[http://dx.doi.org/10.1016/j.bmc.2019.07.029] [PMID: 31345745]
[22]
Martín-Escolano R, Guardia JJ, Martín-Escolano J, Cirauqui N. In vivo biological evaluation of a synthetic royleanone derivative as a promising fast-acting trypanocidal agent by inducing mitochondrial-dependent necrosis. J Nat Prod 2020; 83(12): 3571-83.
[23]
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339(721): b2535.
[http://dx.doi.org/10.1136/bmj.b2535] [PMID: 19622551]
[24]
Fabbri S, Silva C, Hernandes E, Octaviano F, Di Thommazo A, Belgamo A. Improvements in the StArt tool to better support the systematic review process. Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering. Jun 01, 2016, New York, NY, United States, pp. 1-5, 2016.
[25]
Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14(1): 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[26]
Betarelli Junior AA, Faria WR, Gonçalves Montenegro RL, Bahia DS, Gonçalves E, Goncalves E. Research and development, productive structure and economic effects: Assessing the role of public financing in Brazil. Econ Model 2020; 90: 235-53.
[http://dx.doi.org/10.1016/j.econmod.2020.04.017]
[27]
Homma A, Freire MS, Possas C. Vacinas para doenças negligenciadas e emergentes no Brasil até 2030  o “vale da morte” e oportunidades para PD&I na Vacinologia 4.0. Vaccines for neglected and emerging diseases in Brazil by 2030: the “valley of death” and opportunities for RD&I in Vaccinology 4.0. Cad Saude Publica 2020; 36(S2): 1-17.
[28]
Turrens JF. Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Aspects Med 2004; 25(1-2): 211-20.
[http://dx.doi.org/10.1016/j.mam.2004.02.021] [PMID: 15051329]
[29]
Rodrigues Henriques JR, Gamboa de Domínguez N. Modulation of the oxidative stress in malaria infection by clotrimazole. Braz J Pharm Sci 2012; 48(3): 519-28.
[http://dx.doi.org/10.1590/S1984-82502012000300019]
[30]
Adinehbeigi K, Razi Jalali MH, Shahriari A, Bahrami S. In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutathione biosynthesis and arginase activity in Leishmania infantum. Pathog Glob Health 2017; 111(4): 176-85.
[http://dx.doi.org/10.1080/20477724.2017.1312777] [PMID: 28385129]
[31]
Kavishe RA, Koenderink JB, Alifrangis M. Oxidative stress in malaria and artemisinin combination therapy: Pros and cons. FEBS J 2017; 284(16): 2579-91.
[http://dx.doi.org/10.1111/febs.14097] [PMID: 28467668]
[32]
Bécuwe P, Slomianny C, Camus D, Dive D. Presence of an endogenous superoxide dismutase activity in three rodent malaria species. Parasitol Res 1993; 79(5): 349-52.
[http://dx.doi.org/10.1007/BF00931821] [PMID: 8415538]
[33]
Davenport BJ, Martin CG, Beverley SM, Orlicky DJ, Vazquez-Torres A, Morrison TE. SODB1 is essential for Leishmania major infection of macrophages and pathogenesis in mice. PLoS Negl Trop Dis 2018; 12(10): e0006921.
[http://dx.doi.org/10.1371/journal.pntd.0006921] [PMID: 30372439]
[34]
Carillon J, Rouanet JM, Cristol JP, Brion R. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: several routes of supplementation and proposal of an original mechanism of action. Pharm Res 2013; 30(11): 2718-28.
[http://dx.doi.org/10.1007/s11095-013-1113-5] [PMID: 23793992]
[35]
García-Huertas P, Olmo F, Sánchez-Moreno M, Dominguez J, Chahboun R, Triana-Chávez O. Activity in vitro and in vivo against Trypanosoma cruzi of a furofuran lignan isolated from Piper jericoense. Exp Parasitol 2018; 189: 34-42.
[http://dx.doi.org/10.1016/j.exppara.2018.04.009] [PMID: 29656102]
[36]
de Mattos Oliveira L, Araújo JSC, Bacelar Costa Junior D, et al. Pharmacophore modeling, docking and molecular dynamics to identify Leishmania major farnesyl pyrophosphate synthase inhibitors. J Mol Model 2018; 24(11): 314.
[http://dx.doi.org/10.1007/s00894-018-3838-x] [PMID: 30327889]
[37]
Bernhardt VG, Pinto JRT, Pai VR. Superoxide dismutase: An alternate target for Plasmodium. Biomed Res 2009; 20(2): 127-35.
[38]
Azadmanesh J, Trickel SR, Borgstahl GEO. Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 2017; 199(1): 68-75.
[http://dx.doi.org/10.1016/j.jsb.2017.04.011] [PMID: 28461152]
[39]
Gupta S, Raychaudhuri B, Banerjee S, Das B, Mukhopadhaya S, Datta SC. Momordicatin purified from fruits of Momordica charantia is effective to act as a potent antileishmania agent. Parasitol Int 2010; 59(2): 192-7.
[http://dx.doi.org/10.1016/j.parint.2010.01.004] [PMID: 20132905]
[40]
Martín-Escolano R, Marín C, Vega M, et al. Synthesis and biological evaluation of new long-chain squaramides as anti-chagasic agents in the BALB/c mouse model. Bioorg Med Chem 2019; 27(5): 865-79.
[http://dx.doi.org/10.1016/j.bmc.2019.01.033] [PMID: 30728107]
[41]
Martín-Escolano R, Etxebeste-Mitxeltorena M, Martín-Escolano J, et al. Selenium derivatives as promising therapy for Chagas disease: in vitro and in vivo studies. ACS Infect Dis 2021; 7(6): 1727-38.
[http://dx.doi.org/10.1021/acsinfecdis.1c00048] [PMID: 33871252]
[42]
Olmo F, Marín C, Clares MP, et al. Scorpiand-like azamacrocycles prevent the chronic establishment of Trypanosoma cruzi in a murine model. Eur J Med Chem 2013; 70: 189-98.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.048] [PMID: 24158012]
[43]
Olmo F, Urbanová K, Rosales MJ, Martín-Escolano R, Sánchez-Moreno M, Marín C. An in vitro iron superoxide dismutase inhibitor decreases the parasitemia levels of Trypanosoma cruzi in BALB/c mouse model during acute phase. Int J Parasitol Drugs Drug Resist 2015; 5(3): 110-6.
[http://dx.doi.org/10.1016/j.ijpddr.2015.05.002] [PMID: 26236582]
[44]
Olmo F, Gómez-Contreras F, Navarro P, et al. Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur J Med Chem 2015; 106: 106-19.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.034] [PMID: 26523668]
[45]
Olmo F, Cussó O, Marín C, et al. In vitro and in vivo identification of tetradentated polyamine complexes as highly efficient metallodrugs against Trypanosoma cruzi. Exp Parasitol 2016; 164: 20-30.
[http://dx.doi.org/10.1016/j.exppara.2016.02.004] [PMID: 26874306]
[46]
Olmo F, Costas M, Marín C, et al. Tetradentate polyamines as efficient metallodrugs for Chagas disease treatment in murine model. J Chemother 2017; 29(2): 83-93.
[http://dx.doi.org/10.1080/1120009X.2016.1190536] [PMID: 27251893]
[47]
Raychaudhury B, Banerjee S, Gupta S, Singh RV, Datta SC. Antiparasitic activity of a triphenyl tin complex against Leishmania donovani. Acta Trop 2005; 95(1): 1-8.
[http://dx.doi.org/10.1016/j.actatropica.2005.03.008] [PMID: 15896700]
[48]
Reviriego F, Olmo F, Navarro P, et al. Simple dialkyl pyrazole-3,5-dicarboxylates show in vitro and in vivo activity against disease-causing trypanosomatids. Parasitology 2017; 144(9): 1133-43.
[http://dx.doi.org/10.1017/S0031182017000415] [PMID: 28367781]
[49]
Sánchez-Moreno M, Sanz AM, Gómez-Contreras F, et al. In vivo trypanosomicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against acute and chronic phases of Chagas disease. J Med Chem 2011; 54(4): 970-9.
[http://dx.doi.org/10.1021/jm101198k] [PMID: 21229977]
[50]
Sánchez-Moreno M, Marín C, Navarro P, et al. In vitro and in vivo trypanosomicidal activity of pyrazole-containing macrocyclic and macrobicyclic polyamines: their action on acute and chronic phases of Chagas disease. J Med Chem 2012; 55(9): 4231-43.
[http://dx.doi.org/10.1021/jm2017144] [PMID: 22443115]
[51]
Sánchez-Moreno M, Gómez-Contreras F, Navarro P, et al. Phthalazine derivatives containing imidazole rings behave as Fe-SOD inhibitors and show remarkable anti-T. cruzi activity in immunodeficient-mouse mode of infection. J Med Chem 2012; 55(22): 9900-13.
[http://dx.doi.org/10.1021/jm3011004] [PMID: 23043291]
[52]
Martínez A, Prolo C, Estrada D, et al. Cytosolic Fe-superoxide dismutase protects Trypanosoma cruzi from host-derived superoxide and increases pathogen virulence in vivo. Free Radic Biol Med 2016; 100: S104.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.265]
[53]
Nabi Z, Rabinovitch M. Inhibition by superoxide dismutase and catalase of the damage of isolated Leishmania mexicana amazonensis by phenazine methosulfate. Mol Biochem Parasitol 1984; 10(3): 297-303.
[http://dx.doi.org/10.1016/0166-6851(84)90028-8] [PMID: 6328296]
[54]
Hooijmans CR, Pasker-de Jong PCM, de Vries RBM, Ritskes-Hoitinga M. The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer’s pathology in animal models of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 2012; 28(1): 191-209.
[http://dx.doi.org/10.3233/JAD-2011-111217] [PMID: 22002791]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy