Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

4-Aminocoumarin Derivatives as Multifaceted Building Blocks for the Development of Various Bioactive Fused Coumarin Heterocycles: A Brief Review

Author(s): Prasanta Patra* and Susanta Patra

Volume 26, Issue 17, 2022

Published on: 21 December, 2022

Page: [1585 - 1614] Pages: 30

DOI: 10.2174/1385272827666221209101112

Price: $65

Abstract

Aminocoumarins are found to be present in many natural products, pharmaceuticals, and organic materials. These derivatives demonstrate numerous biological activities including DNA gyrase, anti-proliferative and anti-breast cancer activities. Among the allaminocoumarin derivatives, 4-aminocoumarin derivatives have been reported to exhibit anticancer and anti-fungal properties. 4-Aminocoumarins and their derivatives are important precursors for the synthesis of coumarin fused N-heterocycles. Due to the presence of an amino group as well as enamine carbon, it is very reactive towards electrophiles and in most of the cases, it has a higher tendency to cyclize immediately by the various reaction path ways and provides the heterocyclic products. Unlike other aromatic amines, it did not give any Schiff base on reaction with aldehydes or ketones. Lamellarins, ningalin A, ningalin B, schumanniophytin, santiagonamine, goniothaline, and polyneomarline C are important natural coumarin fused N-heterocycles and show excellent biological activities, including antitumor, reversal of multidrug resistance, anti-HIV, wound healing, anti-malarial, anti-hepatitis, and anti-syphilis activities. The synthesized coumarin fused N-heterocycles have been reported to display Topoisomerases I inhibitory, DYRK1A inhibitory, and anti-cancer activities. Most of the syntheses of pyrrolo/imidazolo/indolo[3,2-c]coumarin, pyrido/quinolino[3,2-c]coumarins, pyrimidino[ c]coumarin and oxazino[c]coumarin have been synthesized easily from 4-aminocoumarin. This paper reviews the research data in the literature on the synthesis of bioactive coumarin fused heterocycles using 4-aminocoumarin derivatives over the period of 2-3 decades. It covers the synthetic applicability of 4-aminocoumarin for the development of coumarin fused 5-, 6-, and 8-membered ring derivatives via classical reaction protocols, microwavemediated reactions, organo-catalyzed reactions, transition metal-catalyzed reactions, and green reaction protocols.

Next »
Graphical Abstract

[1]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[http://dx.doi.org/10.2174/0929867053507315] [PMID: 15853704]
[2]
Medina, F.G.; Marrero, J.G.; Macías-Alonso, M.; González, M.C.; Córdova-Guerrero, I.; Teissier García, A.G.; Osegueda-Robles, S. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat. Prod. Rep., 2015, 32(10), 1472-1507.
[http://dx.doi.org/10.1039/C4NP00162A] [PMID: 26151411]
[3]
Dugrand, A.; Olry, A.; Duval, T.; Hehn, A.; Froelicher, Y.; Bourgaud, F. Coumarin and furanocoumarin quantitation in citrus peel via ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS). J. Agric. Food Chem., 2013, 61(45), 10677-10684.
[http://dx.doi.org/10.1021/jf402763t] [PMID: 24117278]
[4]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[http://dx.doi.org/10.2174/1381612043382693] [PMID: 15579072]
[5]
Patra, P.; Kar, G.K.; Sarkar, A.; Ray, J.K.; Dasgupta, T.; Ghosh, M.; Bhattacharya, S. N-Aryl modification in γ-lactam: design and synthesis of novel monocyclic γ-lactam derivatives as inhibitor for bacterial propagation. Synth. Commun., 2012, 42(20), 3031-3041.
[http://dx.doi.org/10.1080/00397911.2011.574807]
[6]
Feng, D.; Zhang, A.; Yang, Y.; Yang, P. Coumarin‐containing hybrids and their antibacterial activities. Arch. Pharm. (Weinheim), 2020, 353(6), 1900380.
[http://dx.doi.org/10.1002/ardp.201900380] [PMID: 32253782]
[7]
Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol., 2020, 10, 592853.
[http://dx.doi.org/10.3389/fonc.2020.592853] [PMID: 33344242]
[8]
Mazimba, O. Umbelliferone: sources, chemistry and bioactivities review. Bull. Fac. Pharm, 2017, 55, 223-232.
[9]
Wadelius, M.; Pirmohamed, M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J., 2007, 7(2), 99-111.
[http://dx.doi.org/10.1038/sj.tpj.6500417] [PMID: 16983400]
[10]
Sun, C.; Zhao, W.; Wang, X.; Sun, Y.; Chen, X. A pharmacological review of dicoumarol: An old natural anticoagulant agent. Pharmacol. Res., 2020, 160, 105193.
[http://dx.doi.org/10.1016/j.phrs.2020.105193] [PMID: 32911072]
[11]
Hamama, W.S.; Ibrahim, M.E.; Metwalli, A.E.; Zoorob, H.H. Recent synthetic aspects on the chemistry of aminocoumarins. Res. Chem. Intermed., 2017, 43(11), 5943-5983.
[http://dx.doi.org/10.1007/s11164-017-2973-9]
[12]
Saigal; Shareef, S.; Rahman, H.; Khan, M.M. Aminocoumarins: a privileged precursor for the synthesis of fused heterocycles. Curr. Org. Chem., 2019, 23(9), 1045-1075.
[http://dx.doi.org/10.2174/1385272823666190514073610]
[13]
Heide, L. The aminocoumarins: biosynthesis and biology. Nat. Prod. Rep., 2009, 26(10), 1241-1250.
[http://dx.doi.org/10.1039/b808333a] [PMID: 19779639]
[14]
Flatman, R.H.; Eustaquio, A.; Li, S.M.; Heide, L.; Maxwell, A. Structure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis. Antimicrob. Agents Chemother., 2006, 50(4), 1136-1142.
[http://dx.doi.org/10.1128/AAC.50.4.1136-1142.2006] [PMID: 16569821]
[15]
Hooper, D.C.; Wolfson, J.S.; McHugh, G.L.; Winters, M.B.; Swartz, M.N. Effects of novobiocin, coumermycin A1, clorobiocin, and their analogs on Escherichia coli DNA gyrase and bacterial growth. Antimicrob. Agents Chemother., 1982, 22(4), 662-671.
[http://dx.doi.org/10.1128/AAC.22.4.662] [PMID: 6295263]
[16]
Marcu, M.G.; Chadli, A.; Bouhouche, I.; Catelli, M.; Neckers, L.M. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J. Biol. Chem., 2000, 275(47), 37181-37186.
[http://dx.doi.org/10.1074/jbc.M003701200] [PMID: 10945979]
[17]
Audisio, D.; Methy-Gonnot, D.; Radanyi, C.; Renoir, J.M.; Denis, S.; Sauvage, F.; Vergnaud-Gauduchon, J.; Brion, J.D.; Messaoudi, S.; Alami, M. Synthesis and antiproliferative activity of novobiocin analogues as potential hsp90 inhibitors. Eur. J. Med. Chem., 2014, 83, 498-507.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.067] [PMID: 24992077]
[18]
Carneiro, L.S.A.; Almeida-Souza, F.; Lopes, Y.S.C.; Novas, R.C.V.; Santos, K.B.A.; Ligiero, C.B.P.; Calabrese, K.S.; Buarque, C.D. Synthesis of 3-aryl-4-(N-aryl)aminocoumarins via photoredox arylation and the evaluation of their biological activity. Bioorg. Chem., 2021, 114, 105141.
[http://dx.doi.org/10.1016/j.bioorg.2021.105141] [PMID: 34328862]
[19]
Xu, L.; Yu, J.; Jin, L.; Pan, L. Design, synthesis, and antifungal activity of 4-amino coumarin based derivatives. Molecules, 2022, 27(9), 2738.
[http://dx.doi.org/10.3390/molecules27092738] [PMID: 35566096]
[20]
Sadeghpour, M.; Olyaei, A.; Adl, A. 4-Aminocoumarin derivatives: synthesis and applications. New J. Chem., 2021, 45(13), 5744-5763.
[http://dx.doi.org/10.1039/D1NJ00614B]
[21]
Stamboliyska, B.; Janevska, V.; Shivachev, B.; Nikolova, R.P.; Stojkovic, G.; Mikhova, B.; Popovski, E. Experimental and theoretical investigation of the structure and nucleophilic properties of 4-aminocoumarin. ARKIVOC, 2010, 10, 62-76.
[22]
Al-Amiery, A.A.; Kadhum, A.A.H.; Al-Majedy, Y.K.; Ibraheem, H.H.; Al-Temimi, A.A.; Al-Bayati, R.I.; Mohamad, A.B. The legend of 4-aminocoumarin: use of the Delépine reaction for synthesis of 4-iminocoumarin. Res. Chem. Intermed., 2013, 39(3), 1385-1391.
[http://dx.doi.org/10.1007/s11164-012-0694-7]
[23]
Ibrahim, M.E.; Hamama, W.S.; Metwalli, A.E.; Zoorob, H.H. Chemoselective synthesis of enamino-coumarin derivatives identified as potent antitumor agents. J. Heterocycl. Chem., 2016, 53(4), 1318-1323.
[http://dx.doi.org/10.1002/jhet.2367]
[24]
Bailly, C. Anticancer properties of lamellarins. Mar. Drugs, 2015, 13(3), 1105-1123.
[http://dx.doi.org/10.3390/md13031105] [PMID: 25706633]
[25]
Iwao, M.; Fukuda, T.; Ishibashi, F. Synthesis and biological activity of lamellarin alkaloids: an overview. Heterocycles, 2011, 83(3), 491-529.
[http://dx.doi.org/10.3987/REV-10-686]
[26]
Kluza, J.; Gallego, M.A.; Loyens, A.; Beauvillain, J.C.; Sousa-Faro, J.M.F.; Cuevas, C.; Marchetti, P.; Bailly, C. Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin D. Cancer Res., 2006, 66(6), 3177-3187.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1929] [PMID: 16540669]
[27]
Silyanova, E.A.; Samet, A.V.; Salamandra, L.K.; Khrustalev, V.N.; Semenov, V.V. Formation of 3,4-diarylpyrrole- and pyrrolocoumarin core of natural marine products via Barton–Zard reaction and selective O-demethylation. Eur. J. Org. Chem., 2020, 2020(14), 2093-2100.
[http://dx.doi.org/10.1002/ejoc.202000099]
[28]
Plisson, F.; Huang, X.C.; Zhang, H.; Khalil, Z.; Capon, R.J. Lamellarins as inhibitors of P-glycoprotein-mediated multidrug resistance in a human colon cancer cell line. Chem. Asian J., 2012, 7(7), 1616-1623.
[http://dx.doi.org/10.1002/asia.201101049] [PMID: 22473938]
[29]
Mohamed, K.S.; Elbialy, E.E. Synthesis, characterization, and cytotoxicity evaluation of some new benzo[f]coumarin derivatives. J. Heterocycl. Chem., 2018, 55(4), 893-898.
[http://dx.doi.org/10.1002/jhet.3115]
[30]
Chittchang, M.; Batsomboon, P.; Ruchirawat, S.; Ploypradith, P. Cytotoxicities and structure-activity relationships of natural and unnatural lamellarins toward cancer cell lines. ChemMedChem, 2009, 4(3), 457-465.
[http://dx.doi.org/10.1002/cmdc.200800339] [PMID: 19152364]
[31]
Reddy, M.V.R.; Rao, M.R.; Rhodes, D.; Hansen, M.S.T.; Rubins, K.; Bushman, F.D.; Venkateswarlu, Y.; Faulkner, D.J. Lamellarin alpha 20-sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture. J. Med. Chem., 1999, 42(11), 1901-1907.
[http://dx.doi.org/10.1021/jm9806650] [PMID: 10354398]
[32]
Ridley, C.; Reddy, M.V.R.; Rocha, G.; Bushman, F.D.; Faulkner, D.J. Total synthesis and evaluation of lamellarin α 20-Sulfate analogues. Bioorg. Med. Chem., 2002, 10(10), 3285-3290.
[http://dx.doi.org/10.1016/S0968-0896(02)00237-7] [PMID: 12150874]
[33]
Boger, D.L.; Soenen, D.R.; Boyce, C.W.; Hedrick, M.P.; Jin, Q. Total synthesis of ningalin B utilizing a heterocyclic azadiene Diels-Alder reaction and discovery of a new class of potent multidrug resistant (MDR) reversal agents. J. Org. Chem., 2000, 65(8), 2479-2483.
[http://dx.doi.org/10.1021/jo9916535] [PMID: 10789460]
[34]
Quesada, A.R.; García Grávalos, M.D.; Fernández Puentes, J.L. Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. Br. J. Cancer, 1996, 74(5), 677-682.
[http://dx.doi.org/10.1038/bjc.1996.421] [PMID: 8795567]
[35]
Neagoie, C.; Vedrenne, E.; Buron, F.; Mérour, J.Y.; Rosca, S.; Bourg, S.; Lozach, O.; Meijer, L.; Baldeyrou, B.; Lansiaux, A.; Routier, S. Synthesis of chromeno[3,4-b]indoles as Lamellarin D analogues: A novel DYRK1A inhibitor class. Eur. J. Med. Chem., 2012, 49, 379-396.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.040] [PMID: 22305342]
[36]
Koo, K.A.; Kim, N.D.; Chon, Y.S.; Jung, M.S.; Lee, B.J.; Kim, J.H.; Song, W.J. QSAR analysis of pyrazolidine-3,5-diones derivatives as Dyrk1A inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(8), 2324-2328.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.062] [PMID: 19282176]
[37]
Foucourt, A.; Hédou, D.; Dubouilh-Benard, C.; Désiré, L.; Casagrande, A.S.; Leblond, B.; Loäec, N.; Meijer, L.; Besson, T. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, part I. Molecules, 2014, 19(10), 15546-15571.
[http://dx.doi.org/10.3390/molecules191015546] [PMID: 25268714]
[38]
Falke, H.; Chaikuad, A.; Becker, A.; Loaëc, N.; Lozach, O.; Abu Jhaisha, S.; Becker, W.; Jones, P.G.; Preu, L.; Baumann, K.; Knapp, S.; Meijer, L.; Kunick, C. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. J. Med. Chem., 2015, 58(7), 3131-3143.
[http://dx.doi.org/10.1021/jm501994d] [PMID: 25730262]
[39]
Facompré, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez, C.; Manzanares, I.; Cuevas, C.; Bailly, C. Lamellarin D: a novel potent inhibitor of topoisomerase I. Cancer Res., 2003, 63(21), 7392-7399.
[PMID: 14612538]
[40]
Zhang, N.; Wang, D.; Zhu, Y.; Wang, J.; Lin, H. Inhibition effects of lamellarin D on human leukemia K562 cell proliferation and underlying mechanisms. Asian Pac. J. Cancer Prev., 2014, 15(22), 9915-9919.
[http://dx.doi.org/10.7314/APJCP.2014.15.22.9915] [PMID: 25520128]
[41]
Samanta, K.; Patra, P.; Kar, G.K.; Dinda, S.K.; Mahanty, D.S. Diverse synthesis of pyrrolo/indolo[3,2- c]coumarins as isolamellarin-A scaffolds: a brief update. New J. Chem., 2021, 45(17), 7450-7485.
[http://dx.doi.org/10.1039/D0NJ06267G]
[42]
Fukuda, T.; Nanjo, Y.; Fujimoto, M.; Yoshida, K.; Natsui, Y.; Ishibashi, F.; Okazaki, F.; To, H.; Iwao, M. Lamellarin-inspired potent topoisomerase I inhibitors with the unprecedented benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-one scaffold. Bioorg. Med. Chem., 2019, 27(2), 265-277.
[http://dx.doi.org/10.1016/j.bmc.2018.11.037] [PMID: 30553626]
[43]
Wang, W.; Shenqing, F. Z. Chromene compound capable of inhibiting tumor angiogenesis and preparation method thereof. Patent CN102321090A, 2012.
[44]
Dakshanamurthy, S.; Kim, M.; Brown, M.L.; Byers, S.W. In-silico fragment-based identification of novel angiogenesis inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(16), 4551-4556.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.104] [PMID: 17591441]
[45]
Thakur, A.; Thakur, M.; Khadikar, P. Topological modeling of benzodiazepine receptor binding. Bioorg. Med. Chem., 2003, 11(23), 5203-5207.
[http://dx.doi.org/10.1016/j.bmc.2003.08.014] [PMID: 14604684]
[46]
Mukherjee, S.; Hazra, S.; Chowdhury, S.; Sarkar, S.; Chattopadhyay, K.; Pramanik, A. A novel pyrrole fused coumarin based highly sensitive and selective fluorescence chemosensor for detection of Cu2+ ions and applications towards live cell imaging. J. Photochem. Photobiol. Chem., 2018, 364, 635-644.
[http://dx.doi.org/10.1016/j.jphotochem.2018.07.004]
[47]
Bochkov, A.Y.; Akchurin, I.O.; Dyachenko, O.A.; Traven, V.F. NIR-fluorescent coumarin-fused BODIPY dyes with large Stokes shifts. Chem. Commun. (Camb.), 2013, 49(99), 11653-11655.
[http://dx.doi.org/10.1039/c3cc46498a] [PMID: 24185046]
[48]
Paul, S.; Das, A.R. A new application of polymer supported, homogeneous and reusable catalyst PEG–SO3H in the synthesis of coumarin and uracil fused pyrrole derivatives. Catal. Sci. Technol., 2012, 2(6), 1130-1135.
[http://dx.doi.org/10.1039/c2cy20117h]
[49]
Paul, S.; Pal, G.; Das, A.R. Three-component synthesis of a polysubstituted pyrrole core containing heterocyclic scaffolds over magnetically separable nanocrystalline copper ferrite. RSC Advances, 2013, 3(23), 8637-8644.
[http://dx.doi.org/10.1039/c3ra40571k]
[50]
Padilha, G.; Iglesias, B.A.; Back, D.F.; Kaufman, T.S.; Silveira, C.C. Synthesis of Chromeno[4,3- b]pyrrol-4(1 H)-ones, from β-Nitroalkenes and 4-Phenylaminocoumarins, under Solvent-free Conditions. ChemistrySelect, 2017, 2(3), 1297-1304.
[http://dx.doi.org/10.1002/slct.201700114]
[51]
Mishra, R.; Panday, A.K.; Choudhury, L.H.; Pal, J.; Subramanian, R.; Verma, A. Multicomponent Reactions of Arylglyoxal, 4-Hydroxycoumarin, and cyclic 1,3-C,N-binucleophiles: binucleophile-directed synthesis of fused five- and six-membered n-heterocycles. Eur. J. Org. Chem., 2017, 2017(19), 2789-2800.
[http://dx.doi.org/10.1002/ejoc.201700115]
[52]
Yang, X.; Zheng, L.; Chen, Z.; Zhong, W. Catalyst-free three-component approach to efficient synthesis of chromeno[4,3- b]pyrrol-4(1 H)-one derivatives. Synth. Commun., 2018, 48(8), 929-935.
[http://dx.doi.org/10.1080/00397911.2018.1430237]
[53]
Yahyavi, H.; Heravi, M.M.; Mahdavi, M.; Foroumadi, A. Iodine-catalyzed tandem oxidative coupling reaction: A one-pot strategy for the synthesis of new coumarin-fused pyrroles. Tetrahedron Lett., 2018, 59(2), 94-98.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.055]
[54]
Yadav, A.; Gudimella, S.K.; Samanta, S. An expedient Lewis-acid-catalyzed microwave-assisted domino approach to coumarin-fused pyrroles and related heterocycles under neat conditions. ChemistrySelect, 2019, 4(43), 12768-12773.
[http://dx.doi.org/10.1002/slct.201903711]
[55]
Pradhan, K.; Paul, S.; Das, A.R. Synthesis of indeno and acenaphtho cores containing dihydroxy indolone, pyrrole, coumarin and uracil fused heterocyclic motifs under sustainable conditions exploring the catalytic role of the SnO 2 quantum dot. RSC Advances, 2015, 5(16), 12062-12070.
[http://dx.doi.org/10.1039/C4RA12618A]
[56]
Chen, Z.W.; Hou, J.B.; Dai, Z.R.; Yang, X.F. A regioselective synthesis of pentacyclic compounds containing coumarin, pyrrole, indene without catalysts under microwave irradiation. Chin. Chem. Lett., 2016, 27(10), 1622-1625.
[http://dx.doi.org/10.1016/j.cclet.2016.04.009]
[57]
Chen, Z.; Yang, X.; Su, W. An efficient protocol for multicomponent synthesis of functionalized chromeno[4,3-b]pyrrol-4(1H)-one derivatives. Tetrahedron Lett., 2015, 56(19), 2476-2479.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.095]
[58]
Saha, M.; Pradhan, K.; Das, A.R. Facile and eco-friendly synthesis of chromeno[4,3-b]pyrrol-4(1H)-one derivatives applying magnetically recoverable nano crystalline CuFe 2 O 4 involving a domino three-component reaction in aqueous media. RSC Advances, 2016, 6(60), 55033-55038.
[http://dx.doi.org/10.1039/C6RA06979G]
[59]
Yang, X.; Jing, L.; Chen, Z. An efficient method for one-pot synthesis of 3-alkoxy-substituted chromeno[4,3-b]pyrrol-4(1H)-one derivatives. Chem. Heterocycl. Compd., 2018, 54(11), 1065-1069.
[http://dx.doi.org/10.1007/s10593-018-2393-9]
[60]
Chen, Z.; Ye, S.; Zhang, X. Brønsted acid-promoted multicomponent reaction for the construction of pyrrolocoumarin derivatives. Heterocycles, 2018, 96(3), 501-508.
[http://dx.doi.org/10.3987/COM-18-13867]
[61]
Mukherjee, S.; Sarkar, S.; Pramanik, A. A sustainable synthesis of functionalized pyrrole fused coumarins under solvent-free conditions using magnetic nanocatalyst and a new route to polyaromatic indolocoumarins. ChemistrySelect, 2018, 3(5), 1537-1544.
[http://dx.doi.org/10.1002/slct.201703146]
[62]
Karami, M.; Hasaninejad, A.; Mahdavi, H.; Iraji, A.; Mojtabavi, S.; Faramarzi, M.A.; Mahdavi, M. One-pot multi-component synthesis of novel chromeno[4,3-b]pyrrol-3-yl derivatives as alpha-glucosidase inhibitors. Mol. Divers., 2022, 26(5), 2393-2405.
[http://dx.doi.org/10.1007/s11030-021-10337-w] [PMID: 34697701]
[63]
Peng, S.; Wang, L.; Huang, J.; Sun, S.; Guo, H.; Wang, J. Palladium-catalyzed oxidative annulation via C-H/N-H functionalization: access to substituted pyrroles. Adv. Synth. Catal., 2013, 355(13), 2550-2557.
[http://dx.doi.org/10.1002/adsc.201300512]
[64]
Alberola, Á.; Álvaro, R.; Andrés, J.M.; Calvo, B.; González, A. Synthesis of [1]Benzopyrano[4,3- b]pyrrol-4(1 H)-ones from 4-Chlorocoumarin. Synthesis, 1994, 1994(3), 279-281.
[http://dx.doi.org/10.1055/s-1994-25459]
[65]
Alberola, A.; Álvaro, R.; Ortega, A.G.; Sádaba, M.L.; Carmen Sañudo, M. Synthesis of [1]benzopyrano[4,3-b]pyrrol-4(1H)-ones from N(α)-(2-oxo-2H-1-benzopyran-4-yl)weinreb α-aminoamides. Tetrahedron, 1999, 55(46), 13211-13224.
[http://dx.doi.org/10.1016/S0040-4020(99)00802-9]
[66]
Alberola, A.; Calvo, L.; González-Ortega, A.; Encabo, A.P.; Sañudo, M.C. Synthesis of [1]Benzopyrano[4,3-b]pyrrol-4(1H)-ones from 4-Chloro-3-formylcoumarin. Synthesis, 2001, 2001(13), 1941-1948.
[http://dx.doi.org/10.1055/s-2001-17696]
[67]
Lin, C.H.; Yang, D.Y. Synthesis of coumarin/pyrrole-fused heterocycles and their photochemical and redox-switching properties. Org. Lett., 2013, 15(11), 2802-2805.
[http://dx.doi.org/10.1021/ol401138q] [PMID: 23713968]
[68]
Majumdar, K.C.; Samanta, S.K. Synthesis of bioactive heterocycles: tandem reaction of 4-N-(4′-aryloxybut-2′-ynyl),N-methylaminocoumarin with 3-chloroperoxybenzoic acid. Tetrahedron Lett., 2002, 43(11), 2119-2121.
[http://dx.doi.org/10.1016/S0040-4039(02)00198-3]
[69]
Stadlbauer, W.; Kappe, T. Synthesis of indoles and isoquinolones from phenylmalonate heterocycles. Monatsh. Chem., 1984, 115(4), 467-475.
[http://dx.doi.org/10.1007/BF00810008]
[70]
Chang, C.P.; Pradiuldi, S.V.; Hong, F.E. Synthesis of coumarin derivatives by palladium complex catalyzed intramolecular Heck reaction: Preparation of a 1,2-cyclobutadiene-substituted CpCoCb diphosphine chelated palladium complex. Inorg. Chem. Commun., 2009, 12(7), 596-598.
[http://dx.doi.org/10.1016/j.inoche.2009.04.031]
[71]
Cheng, C.; Chen, W.W.; Xu, B.; Xu, M.H. Intramolecular cross dehydrogenative coupling of 4-substituted coumarins: rapid and efficient access to coumestans and indole[3,2-c]coumarins. Org. Chem. Front., 2016, 3(9), 1111-1115.
[http://dx.doi.org/10.1039/C6QO00270F]
[72]
Cheng, C.; Chen, W.W.; Xu, B.; Xu, M.H. Access to indole-fused polyheterocycles via pd-catalyzed base-free intramolecular cross dehydrogenative coupling. J. Org. Chem., 2016, 81(22), 11501-11507.
[http://dx.doi.org/10.1021/acs.joc.6b02160] [PMID: 27766860]
[73]
Balalas, T.; Abdul-Sada, A.; Hadjipavlou-Litina, D.; Litinas, K. Pd-Catalyzed efficient synthesis of azacoumestans via intramolecular cross coupling of 4-(arylamino)coumarins in the presence of copper acetate under microwaves. Synthesis, 2017, 49(11), 2575-2583.
[http://dx.doi.org/10.1055/s-0036-1588955]
[74]
Dey, A.; Ali, M.A.; Jana, S.; Samanta, S.; Hajra, A. Palladium-catalyzed synthesis of indole fused coumarins via cross-dehydrogenative coupling. Tetrahedron Lett., 2017, 58(4), 313-316.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.010]
[75]
Balalas, T.D.; Theologis, A.K.; Mazaraki, K.; Gabriel, C.; Pontiki, E.; Hadjipavlou-Litina, D.J.; Litinas, K.E. Efficient synthesis of 2-substituted 1-phenylchromen[3,4-d]imidazol-4(1H)-ones with possible anti-inflammatory activity. ARKIVOC, 2020, 2020(6), 126-138.
[http://dx.doi.org/10.24820/ark.5550190.p011.180]
[76]
Han, X.; Luo, J.; Wu, F.; Hou, X.; Yan, G.; Zhou, M.; Zhang, M.; Pu, C.; Li, R. Synthesis and biological evaluation of novel 2,3-dihydrochromeno[3,4-d]imidazol-4(1H)-one derivatives as potent anticancer cell proliferation and migration agents. Eur. J. Med. Chem., 2016, 114, 232-243.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.035] [PMID: 26994691]
[77]
Mishra, R.K.; Alokam, R.; Singhal, S.M.; Srivathsav, G.; Sriram, D.; Kaushik-Basu, N.; Manvar, D.; Yogeeswari, P. Design of novel rho kinase inhibitors using energy based pharmacophore modeling, shape-based screening, in silico virtual screening, and biological evaluation. J. Chem. Inf. Model., 2014, 54(10), 2876-2886.
[http://dx.doi.org/10.1021/ci5004703] [PMID: 25254429]
[78]
Dolšak, A.; Švajger, U.; Lešnik, S.; Konc, J.; Gobec, S.; Sova, M. Selective Toll-like receptor 7 agonists with novel chromeno[3,4-d]imidazol-4(1H)-one and 2-(trifluoromethyl)quinoline/quinazoline-4-amine scaffolds. Eur. J. Med. Chem., 2019, 179, 109-122.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.030] [PMID: 31247373]
[79]
Švajger, U.; Horvat, Ž.; Knez, D.; Rožman, P.; Turk, S.; Gobec, S. New antagonists of toll-like receptor 7 discovered through 3D ligand-based virtual screening. Med. Chem. Res., 2015, 24(1), 362-371.
[http://dx.doi.org/10.1007/s00044-014-1127-5]
[80]
Trkovnik, M.; Kalaj, V.; Kitan, D. Synthesis of new heterocyclocoumarins from 3,4-diamino- and 4-chloro-3-nitrocoumarins. Org. Prep. Proced. Int., 1987, 19(6), 450-455.
[http://dx.doi.org/10.1080/00304948709356209]
[81]
Beccalli, E.M.; Contini, A.; Trimarco, P. 3-Nitrocoumarin amidines: a new synthetic strategy for substituted [1]benzopyrano[3,4-d]imidazol-4(3h)-ones. Eur. J. Org. Chem., 2003, 2003(20), 3976-3984.
[http://dx.doi.org/10.1002/ejoc.200300109]
[82]
Colotta, V.; Catarzi, D.; Varano, F.; Cecchi, L.; Filacchioni, G.; Martini, C.; Giusti, L.; Lucacchini, A. Tricyclic heteroaromatic systems. Synthesis and benzodiazepine receptor affinity of 2-substituted-1-benzopyrano[3,4-d]oxazol-4-ones, -thiazol-4-ones, and -imidazol-4-ones. Farmaco, 1998, 53(5), 375-381.
[http://dx.doi.org/10.1016/S0014-827X(98)00028-7]
[83]
Ramiro, J.L.; Neo, A.G.; Marcos, C.F. Synthesis of imidazolocoumarins by the amide-directed oxidative cyclisation of enol-Ugi derivatives. Org. Biomol. Chem., 2022, 20(26), 5293-5307.
[http://dx.doi.org/10.1039/D2OB00518B] [PMID: 35722807]
[84]
Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem., 2014, 57(7), 2832-2842.
[http://dx.doi.org/10.1021/jm401375q] [PMID: 24102067]
[85]
Li, G.; Yan, Q.; Gong, X.; Dou, X.; Yang, D. Photocatalyst-free regioselective C–H Thiocyanation of 4-Anilinocoumarins under Visible Light. ACS Sustain. Chem.& Eng., 2019, 7(16), 14009-14015.
[http://dx.doi.org/10.1021/acssuschemeng.9b02511]
[86]
Kelly, T.R.; Kim, M.H. Synthesis of schumanniophytine and isoschumanniophytine. J. Org. Chem., 1992, 57(5), 1593-1597.
[http://dx.doi.org/10.1021/jo00031a049]
[87]
Valencia, E.; Patra, A.; Freyer, A.J.; Shamma, M.; Fajardo, V. Santiagonamine: A new aporphinoid alkaloid incorporating a phenanthridine skeleton. Tetrahedron Lett., 1984, 25(30), 3163-3166.
[http://dx.doi.org/10.1016/S0040-4039(01)90998-0]
[88]
Levrier, C.; Balastrier, M.; Beattie, K.D.; Carroll, A.R.; Martin, F.; Choomuenwai, V.; Davis, R.A. Pyridocoumarin, aristolactam and aporphine alkaloids from the Australian rainforest plant Goniothalamus australis. Phytochemistry, 2013, 86, 121-126.
[http://dx.doi.org/10.1016/j.phytochem.2012.09.019] [PMID: 23158725]
[89]
Lu, Z-M.; Zhang, Q-J.; Chen, R-Y.; Yu, D-Q. Four new alkaloids from Polyalthia nemoralis (Annonaceae). J. Asian Nat. Prod. Res., 2008, 10(7-8), 663-671.
[PMID: 18636379]
[90]
Dawane, B.S.; Konda, S.G.; Bodade, R.G.; Bhosale, R.B. An efficient one-pot synthesis of some new 2,4-diaryl pyrido[3,2-c]coumarins as potent antimicrobial agents. J. Heterocycl. Chem., 2010, 47, 237-241.
[91]
Patel, A.A.; Lad, H.B.; Pandya, K.R.; Patel, C.V.; Brahmbhatt, D.I. Synthesis of a new series of 2-(2-oxo-2H-chromen-3-yl)-5H-chromeno[4,3-b]pyridin-5-ones by two facile methods and evaluation of their antimicrobial activity. Med. Chem. Res., 2013, 22(10), 4745-4754.
[http://dx.doi.org/10.1007/s00044-013-0489-4]
[92]
Patel, M.A.; Bhila, V.G.; Patel, N.H.; Patel, A.K.; Brahmbhatt, D.I. Synthesis, characterization and biological evaluation of some pyridine and quinoline fused chromenone derivatives. Med. Chem. Res., 2012, 21(12), 4381-4388.
[http://dx.doi.org/10.1007/s00044-012-9978-0]
[93]
Jadhav, G.R.; Deshmukh, D.G.; Medhane, V.J.; Gaikwad, V.B.; Bholay, A.D. 2,5-Disubstituted 1,3,4-oxadiazole derivatives of chromeno[4,3- b]pyridine: synthesis and study of antimicrobial potency. Heterocycl. Commun., 2016, 22(3), 123-130.
[http://dx.doi.org/10.1515/hc-2015-0215]
[94]
Jadhav, G.R.; Medhane, V.J.; Gaikwad, V.B.; Deshmukh, D.G.; Gaikwad, S.S.; Bholay, A.D. Synthesis and antimicrobial study of triazolo[3,4-b][1,3,4]thiadiazole and triazolo-[3,4-b][1,3,4]thiadiazine derivatives of chromeno [4,3-b]pyridin-5-one moiety. J. Chem. Pharm. Res., 2016, 8, 854-859.
[95]
Jaggavarapu, S.R.; Kamalakaran, A.S.; Jalli, V.P.; Gangisetty, S.K.; Ganesh, M.R.; Gaddamanugu, G. Facile eco-friendly synthesis of novel chromeno[4,3-b]pyridine-2,5-diones and evaluation of their antimicrobial and antioxidant properties. J. Chem. Sci., 2014, 126(1), 187-195.
[http://dx.doi.org/10.1007/s12039-013-0565-9]
[96]
Miri, R.; Motamedi, R.; Rezaei, M.R.; Firuzi, O.; Javidnia, A.; Shafiee, A. Design, synthesis and evaluation of cytotoxicity of novel chromeno[4,3-b]quinoline derivatives. Arch. Pharm. (Weinheim), 2011, 344(2), 111-118.
[http://dx.doi.org/10.1002/ardp.201000196] [PMID: 21290427]
[97]
Wang, D.L.; Wang, D.; Shi, X.C.; Qian, J.H. A facile one-pot synthesis of chromeno[4,3-b][1,5]-naphthyridines. Heterocycles, 2016, 92(12), 2141-2144.
[http://dx.doi.org/10.3987/COM-16-13590]
[98]
Chen, Z.; Bi, J.; Su, W. Synthesis and antitumor activity of novel coumarin derivatives via a three-component reaction in water. Chin. J. Chem., 2013, 31(4), 507-514.
[http://dx.doi.org/10.1002/cjoc.201201130]
[99]
Hamama, W.S.; Ibrahim, M.E.; Metwalli, A.E.; Zoorob, H.H. New synthetic approach to coumarino[4,3-b]pyridine systems and potential cytotoxic evaluation. Med. Chem. Res., 2014, 23(5), 2615-2621.
[http://dx.doi.org/10.1007/s00044-013-0859-y]
[100]
Halawa, A.H.; Abd El-Gilil, S.M.; Bedair, A.H.; Eliwa, E.M.; Frese, M.; Sewald, N.; Shaaban, M.; El-Agrody, A.M. Synthesis of diverse amide linked bis-indoles and indole derivatives bearing coumarin-based moiety: cytotoxicity and molecular docking investigations. Med. Chem. Res., 2018, 27(3), 796-806.
[http://dx.doi.org/10.1007/s00044-017-2103-7]
[101]
Goswami, L.; Gogoi, S.; Gogoi, J.; Boruah, R.K.; Boruah, R.C.; Gogoi, P. Facile diversity-oriented synthesis of polycyclic pyridines and their cytotoxicity effects in human cancer cell lines. ACS Comb. Sci., 2016, 18(5), 253-261.
[http://dx.doi.org/10.1021/acscombsci.5b00192] [PMID: 26975927]
[102]
Mulakayala, N.; Rambabu, D.; Raja, M.R. M, C.; Kumar, C.S.; Kalle, A.M.; Rama Krishna, G.; Malla Reddy, C.; Basaveswara Rao, M.V.; Pal, M. Ultrasound mediated catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones leading to novel quinoline derivatives: Their evaluation as potential anti-cancer agents. Bioorg. Med. Chem., 2012, 20(2), 759-768.
[http://dx.doi.org/10.1016/j.bmc.2011.12.001] [PMID: 22202437]
[103]
Li, T.L.; Guo, H.F.; Li, F.J.; Sun, Z.G.; Zhang, H.C. Synthesis and biological evaluation of 6H-1-benzopyrano[4,3-b]quinolin-6-one derivatives as inhibitors of colon cancer cell growth. Bangladesh J. Pharmacol., 2015, 10(3), 660-671.
[http://dx.doi.org/10.3329/bjp.v10i3.23645]
[104]
Martín-Encinas, E.; Rubiales, G.; Knudssen, B.R.; Palacios, F.; Alonso, C. Straightforward synthesis and biological evaluation as topoisomerase I inhibitors and antiproliferative agents of hybrid Chromeno[4,3-b][1,5]Naphthyridines and Chromeno[4,3-b][1,5]Naphthyridin-6-ones. Eur. J. Med. Chem., 2019, 178, 752-766.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.032] [PMID: 31229877]
[105]
Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mohammadi-Khanaposhtani, M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents. New J. Chem., 2018, 42(21), 17268-17278.
[http://dx.doi.org/10.1039/C8NJ02495B]
[106]
Khan, E.; Biswas, S.; Mishra, S.K.; Mishra, R.; Samanta, S.; Mishra, A.; Tawani, A.; Kumar, A. Rationally designed small molecules targeting toxic CAG repeat RNA that causes Huntington’s disease (HD) and spinocerebellar ataxia (SCAs). Biochimie, 2019, 163, 21-32.
[http://dx.doi.org/10.1016/j.biochi.2019.05.001] [PMID: 31075282]
[107]
Miliutina, M.; Janke, J.; Chirkina, E.; Hassan, S.; Ejaz, S.A.; Khan, S.U.; Iqbal, J.; Friedrich, A.; Lochbrunner, S.; Ivanov, A.; Villinger, A.; Lecka, J.; Sévigny, J.; Langer, P. Domino reactions of chromone-3-carboxylic acids with aminoheterocycles: synthesis of heteroannulated pyrido[2,3-c]coumarins and their optical and biological activity. Eur. J. Org. Chem., 2017, 2017(47), 7148-7159.
[http://dx.doi.org/10.1002/ejoc.201701276]
[108]
Paul, S.; Lee, Y.R. Eco-friendly construction of highly functionalized chromenopyridinones by an organocatalyzed solid-state melt reaction and their optical properties. Green Chem., 2016, 18(6), 1488-1494.
[http://dx.doi.org/10.1039/C5GC02658J]
[109]
Hua, C.; Zhang, K.; Xin, M.; Ying, T.; Gao, J.; Jia, J.; Li, Y. High quantum yield and pH sensitive fluorescence dyes based on coumarin derivatives: fluorescence characteristics and theoretical study. RSC Advances, 2016, 6(54), 49221-49227.
[http://dx.doi.org/10.1039/C6RA05996A]
[110]
Patra, P. A Concise Review on pyridocoumarin/azacoumarin derivatives: synthesis and biological activity. ChemistrySelect, 2019, 4(7), 2024-2043.
[http://dx.doi.org/10.1002/slct.201803596]
[111]
Abdou, M.M.; El-Saeed, R.A.; Bondock, S. Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions. Arab. J. Chem., 2019, 12(1), 88-121.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.012]
[112]
Patra, P.; Kar, G.K. The synthesis, biological evaluation and fluorescence study of chromeno[4,3- b]pyridin/quinolin-one derivatives, the backbone of natural product polyneomarline C scaffolds: a brief review. New J. Chem., 2021, 45(6), 2879-2934.
[http://dx.doi.org/10.1039/D0NJ04761A]
[113]
Motamedi, R. Solvent-free synthesis of novel 5-oxo-5H-chromeno[4,3-b]pyridine derivatives. Chem. Heterocycl. Compd., 2013, 48(12), 1839-1843.
[http://dx.doi.org/10.1007/s10593-013-1217-1]
[114]
Bhattacharyya, P.; Paul, S.; Das, A.R. Facile synthesis of pyridopyrimidine and coumarin fused pyridine libraries over a Lewis base-surfactant-combined catalyst TEOA in aqueous medium. RSC Advances, 2013, 3(10), 3203-3208.
[http://dx.doi.org/10.1039/c3ra23254a]
[115]
Abdolmohammadi, S.; Mirza, B.; Vessally, E. Immobilized TiO 2 nanoparticles on carbon nanotubes: an efficient heterogeneous catalyst for the synthesis of chromeno[ b]pyridine derivatives under ultrasonic irradiation. RSC Advances, 2019, 9(71), 41868-41876.
[http://dx.doi.org/10.1039/C9RA09031B] [PMID: 35557875]
[116]
Nikookar, H.; Moghimi, S.; Sayahi, M.H.; Mahdavi, M.; Ranjbar, P.R.; Firoozpour, L.; Foroumadi, A. A Convenient method for the synthesis of chromeno[4,3-b]pyridines via three-component reaction. Comb. Chem. High Throughput Screen., 2018, 21(5), 344-348.
[http://dx.doi.org/10.2174/1386207321666180524110635] [PMID: 29792140]
[117]
Yadav, A.; Biswas, S.; Mobin, S.M.; Samanta, S. Efficient Cu(OTf) 2 -catalyzed and microwave-assisted rapid synthesis of 3,4-fused chromenopyridinones under neat conditions. Tetrahedron Lett., 2017, 58(37), 3634-3639.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.006]
[118]
Chaghari-Farahani, F.; Abdolmohammadi, S.; Kia-Kojoori, R.A. PANI-Fe 3 O 4 @ZnO nanocomposite: a magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[ d]pyrimidine derivatives. RSC Advances, 2020, 10(26), 15614-15621.
[http://dx.doi.org/10.1039/D0RA01978J] [PMID: 35495442]
[119]
Pave, G.; Chalard, P.; Viaud-Massuard, M-C.; Troin, Y.; Guillaumet, G. New efficient synthesis of pyrido[2,3-c] and pyrido[3,2-c]coumarin derivatives. Synlett, 2003, 7, 987-990.
[120]
Ghani, G.E.A.E.; Elmorsy, M.A.; Ibrahim, M.E. Docking studies on some synthesized 5H-chromeno[4,3-b]pyridin-5-one derivatives for breast cancer. Polycycl. Aromat. Compd., 2022, 42, 2038216.
[http://dx.doi.org/10.1080/10406638.2022.2038216]
[121]
Siddiqui, Z.N.; Khan, K. Friedlander synthesis of novel benzopyranopyridines in the presence of chitosan as heterogeneous, efficient and biodegradable catalyst under solvent-free conditions. New J. Chem., 2013, 37(5), 1595-1602.
[http://dx.doi.org/10.1039/c3nj00069a]
[122]
Jadhav, G.; Medhane, V.; Deshmukh, D.; Gaikwad, S. New synthetic strategy for Friedlander condensation of 4‐AMINO‐2‐OXO‐2 H ‐chromene‐3‐carbaldehyde by heterogeneous catalysis. J. Heterocycl. Chem., 2021, 58(9), 1775-1783.
[http://dx.doi.org/10.1002/jhet.4308]
[123]
Belal, M.; Khan, A.T. 2O-Catalyzed reaction of 3-aminocoumarins and phenylacetaldehydes: a route to access various pyrido(2,3-c)coumarin derivatives. ChemistrySelect, 2017, 2(32), 10501-10504.
[http://dx.doi.org/10.1002/slct.201702300]
[124]
Cheng, D.; Deng, Z.; Yan, X.; Wang, M.; Xu, X.; Yan, J. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated tandem oxidative coupling/intramolecular annulation/dehydro-aromatization for the synthesis of polysubstituted and fused pyridines. Adv. Synth. Catal., 2019, 361(21), 5025-5029.
[http://dx.doi.org/10.1002/adsc.201900956]
[125]
Osipov, D.V.; Artyomenko, A.A.; Osyanin, V.A.; Klimochkin, Y.N. The reaction of 4-aminocoumarin with β-carbonyl-substituted 4H-chromenes: synthesis of 5H-chromeno[4,3-b]pyridin-5-one derivatives. Chem. Heterocycl. Compd., 2019, 55(3), 261-265.
[http://dx.doi.org/10.1007/s10593-019-02451-3]
[126]
Yoon, J.A.; Han, Y.T. Efficient synthesis of pyrido[3,2-c]coumarins via silver nitrate catalyzed cycloisomerization and application to the first synthesis of polyneomarline C. Synthesis, 2019, 51(24), 4611-4618.
[http://dx.doi.org/10.1055/s-0037-1610730]
[127]
Ataee-Kachouei, T.; Nasr-Esfahani, M.; Mohammadpoor-Baltork, I.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Notash, B. Ce(IV) immobilized on halloysite nanotube–functionalized dendrimer (Ce(IV)–G2): A novel and efficient dendritic catalyst for the synthesis of pyrido[3,2‐ c]coumarin derivatives. Appl. Organomet. Chem., 2020, 34(11), e5948.
[http://dx.doi.org/10.1002/aoc.5948]
[128]
Rosa, W.C.; Rocha, I.O.; Schmitz, B.F.; Martins, M.A.P.; Zanatta, N.; Tisoco, I.; Iglesias, B.A.; Bonacorso, H.G. 4-(Trifluoromethyl) coumarin-fused pyridines: Regioselective synthesis and photophysics, electrochemical, and antioxidative activity. J. Fluor. Chem., 2021, 248, 109822.
[http://dx.doi.org/10.1016/j.jfluchem.2021.109822]
[129]
Majumdar, K.C.; Sarkar, S. Regioselective Synthesis of Chromeno[4,3‐ c] isoquinolin‐11‐ones by Radical Cyclization. Synth. Commun., 2004, 34(16), 2873-2883.
[http://dx.doi.org/10.1081/SCC-200026621]
[130]
Paul, S.; Das, A.R. An efficient green protocol for the synthesis of coumarin fused highly decorated indenodihydropyridyl and dihydropyridyl derivatives. Tetrahedron Lett., 2012, 53(17), 2206-2210.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.077]
[131]
Yetra, S.R.; Roy, T.; Bhunia, A.; Porwal, D.; Biju, A.T. Synthesis of functionalized coumarins and quinolinones by NHC-catalyzed annulation of modified enals with heterocyclic C-H acids. J. Org. Chem., 2014, 79(9), 4245-4251.
[http://dx.doi.org/10.1021/jo500693h] [PMID: 24716576]
[132]
Chithanna, S.; Roy, A.; Yang, D.Y. Acid-catalyzed, regioselective [3 + 3] annulation of enaminones and α-substituted cinnamic acids: access to 3,4-dihydropyridones and 2-piperidinones. Org. Biomol. Chem., 2021, 19(45), 9897-9905.
[http://dx.doi.org/10.1039/D1OB01115D] [PMID: 34734617]
[133]
Chidurala, P.; Jetti, V.; Pagadala, R.; Meshram, J.S.; Jonnalagadda, S. Eco‐efficient synthesis of new pyrido [2,3‐c] coumarin scaffolds under sonochemical method. J. Heterocycl. Chem., 2016, 53(2), 467-472.
[http://dx.doi.org/10.1002/jhet.2319]
[134]
Rao, Y.; Liu, M.; Wu, L.; Yin, G. Catalyst-free one-pot domino reactions for selective synthesis of functionalized 2,8-oxazabicyclo[3.3.1]-nonanes and 5H-indeno[1,2-b]pyridin-5-ones. RSC Advances, 2014, 4(110), 64551-64558.
[http://dx.doi.org/10.1039/C4RA13166E]
[135]
Yaghoubi Kalurazi, S.; Rad-Moghadam, K.; Moradi, S. Efficient catalytic application of a binary ionic liquid mixture in the synthesis of novel spiro.[4H-pyridine-oxindoles] New J. Chem., 2017, 41(18), 10291-10298.
[http://dx.doi.org/10.1039/C7NJ01858D]
[136]
Najafizadeh, F.; Rad-Moghadam, K.; Yaghoubi Kalurazi, S. A derivatization-directed three-component synthesis of fluorescent spiro [dihydropyridine-4,3ʹ-indoline]s. J. Chem. Res., 2020, 44(9-10), 527-531.
[http://dx.doi.org/10.1177/1747519820909374]
[137]
Nandi, S.; Gupta, A.; Pal, A.K. A New MCR strategy generating a collection of skeletally diverse simple molecules combinatorially. Lett. Org. Chem., 2017, 14(4), 291-299.
[http://dx.doi.org/10.2174/1570178614666170221125300]
[138]
Firoozpour, L.; Nikookar, H.; Moghimi, S.; Mahdavi, M.; Asadipour, A.; Ranjbar, P.R.; Foroumadi, A. An efficient approach to the synthesis of coumarin-fused dihydropyridinones. Heterocycl. Commun., 2017, 23(4), 305-308.
[http://dx.doi.org/10.1515/hc-2017-0013]
[139]
Olyaei, A.; Ebrahimi, R.M.; Adl, A.; Sadeghpour, M. Green synthetic approach toward new chromeno[4,3-b]quinoline and chromeno[4,3-b]pyridine derivatives. Chem. Heterocycl. Compd., 2019, 55(11), 1104-1110.
[http://dx.doi.org/10.1007/s10593-019-02585-4]
[140]
Sayahi, M.H.; Afrouzandeh, Z.; Bahadorikhalili, S. Cu(OAc)2 Catalyzed synthesis of novel chromeno[4,3-b]pyrano[3,4-e]pyridine-6,8-dione derivatives via a one-pot multicomponent reaction in water under mild reaction conditions. Polycycl. Aromat. Compd., 2020, 40, 1866037.
[http://dx.doi.org/10.1080/10406638.2020.1866037]
[141]
Saffarian, H.; Karimi, F.; Yarie, M.; Zolfigol, M.A. Fe3O4@SiO2@(CH2)3-urea-quinoline sulfonic acid chloride: A novel catalyst for the synthesis of coumarin containing 1,4 dihydropyridines. J. Mol. Struct., 2021, 1224, 129294.
[http://dx.doi.org/10.1016/j.molstruc.2020.129294]
[142]
Oshiro, P.B.; Bregadiolli, B.A.; Silva-Filho, L.C. A facile one‐step synthesis of chromeno[4,3‐ b]pyridine derivatives promoted by niobium pentachloride. J. Heterocycl. Chem., 2020, 57(7), 2795-2800.
[http://dx.doi.org/10.1002/jhet.3988]
[143]
Kumar, A.; Mahiya, K.; Prasad, A.K.; Singh, S.K.; Singh, S.K. Multicomponent synthesis of 4-aryl-1,4-dihydro-oxochromeno[3,2-b] oxoindeno[6,5-e]pyridine. Polycycl. Aromat. Compd., 2022, 42(5), 2555-2567.
[http://dx.doi.org/10.1080/10406638.2020.1852269]
[144]
Buu-Hoï, N.P.; Mangane, M.; Jacquignon, P. Carcinogenic nitrogen compounds. Part XLIX. Analogues of benzacridines and benzocarbazoles having an α-pyrone ring. J. Chem. Soc. C, 1966, 50-52.
[http://dx.doi.org/10.1039/J39660000050]
[145]
Ton, N.N.H.; Dang, H.V.; Phan, N.T.S.; Nguyen, T.T. Aerobic, metal-free synthesis of 6 H -chromeno[4,3- b]quinolin-6-ones. RSC Advances, 2019, 9(28), 16215-16222.
[http://dx.doi.org/10.1039/C9RA02267H] [PMID: 35521415]
[146]
Kumari, S.; Shakoor, S.M.A.; Markad, D.; Mandal, S.K.; Sakhuja, R. NH4OAc-Promoted cascade approach towards aberrant synthesis of chromene-fused quinolinones. Eur. J. Org. Chem., 2019, 2019(4), 705-714.
[http://dx.doi.org/10.1002/ejoc.201801292]
[147]
Weng, Y.; Zhou, H.; Sun, C.; Xie, Y.; Su, W. Copper-catalyzed cyclization for access to 6H-chromeno[4,3-b]quinolin-6-ones employing dmf as the carbon source. J. Org. Chem., 2017, 82(17), 9047-9053.
[http://dx.doi.org/10.1021/acs.joc.7b01515] [PMID: 28787167]
[148]
Tabaković, K.; Tabaković, I.; Ajdini, N.; Leci, O. A novel transformation of 4-arylaminocoumarins to 6H-1-benzopyrano[4,3-b]quinolin-6-ones under Vilsmeier-Haack conditions. Synthesis, 1987, 1987(3), 308-310.
[http://dx.doi.org/10.1055/s-1987-27930]
[149]
Bhat, A.R. Biological activity of pyrimidine derivativies: a review. Org. Med. Chem. Int. J., 2017, 2, 1-4.
[150]
Wu, W.B.; Chen, S.H.; Hou, J.Q.; Tan, J.H.; Ou, T.M.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Disubstituted 2-phenyl-benzopyranopyrimidine derivatives as a new type of highly selective ligands for telomeric G-quadruplex DNA. Org. Biomol. Chem., 2011, 9(8), 2975-2986.
[http://dx.doi.org/10.1039/c0ob00921k] [PMID: 21373680]
[151]
Sherif, M.H.; Yossef, A.M. Synthesis and anticancer evaluation of some fused coumarino-[4,3-d]-pyrimidine derivatives. Res. Chem. Intermed., 2015, 41(1), 383-390.
[http://dx.doi.org/10.1007/s11164-013-1199-8]
[152]
Bruno, O.; Brullo, C.; Schenone, S.; Bondavalli, F.; Ranise, A.; Tognolini, M.; Impicciatore, M.; Ballabeni, V.; Barocelli, E. Synthesis, antiplatelet and antithrombotic activities of new 2-substituted benzopyrano[4,3-d]pyrimidin-4-cycloamines and 4-amino/cycloamino-benzopyrano[4,3-d]pyrimidin-5-ones. Bioorg. Med. Chem., 2006, 14(1), 121-130.
[http://dx.doi.org/10.1016/j.bmc.2005.07.066] [PMID: 16154749]
[153]
Radulović, N.; Stojanović, G.; Vukićević, R.; Dekić, V.; Dekić, B.; Palić, R. New 3,4-annelated coumarin derivatives: synthesis, antimicrobial activity, antioxidant capacity, and molecular modeling. Monatsh. Chem., 2006, 137(11), 1477-1486.
[http://dx.doi.org/10.1007/s00706-006-0537-6]
[154]
Chen, J.; Ouyang, C.H.; Xiao, T.; Jiang, H.; Li, J.S. Metal-free synthesis of coumarin-fused pyrimidines from 4-aminocoumarins via pseudo four-component reaction. ChemistrySelect, 2019, 4(24), 7327-7330.
[http://dx.doi.org/10.1002/slct.201901803]
[155]
Khalaj, M.; Taherkhani, M.; Kalhor, M. Preparation of some chromeno[4,3- d]pyrido[1,2- a]pyrimidine derivatives by ultrasonic irradiation using NiFe2O4 @SiO2 grafted di(3-propylsulfonic acid) nanoparticles. New J. Chem., 2021, 45(24), 10718-10724.
[http://dx.doi.org/10.1039/D1NJ01676H]
[156]
Alizadeh, A.; Rostampoor, A. Efficient one pot and chemoselective synthesis of polysubstituted dihydro-6H-chromeno[4,3-d]pyrazolo[1,5-a]pyrimidin-6-ones via a four-component reaction. ChemistrySelect, 2022, 7(26), e202200299.
[http://dx.doi.org/10.1002/slct.202200299]
[157]
Gaonkar, S.L.; Nagaraj, V.U.; Nayak, S. A review on current synthetic strategies of oxazines. Mini Rev. Org. Chem., 2018, 16(1), 43-58.
[http://dx.doi.org/10.2174/1570193X15666180531092843]
[158]
Dilelio, M.C.; Brites, N.P.; Vieira, L.A.; Iglesias, B.A.; Kaufman, T.S.; Silveira, C.C. Synthesis and photophysical properties of 1,4-dihydro-2H,5H-chromeno[4,3-d][1,3]oxazin-5-ones, and derivatives containing tethered 1,2,3-triazoles, from 4-aminocoumarins. Synthesis, 2019, 51(15), 2965-2976.
[http://dx.doi.org/10.1055/s-0037-1612428]
[159]
Peng, F.; Li, L.; Liu, J.; Chen, Z. Copper-catalyzed oxidative cross-coupling/C-C bond cleavage/cyclization of aryl methyl ketones with 4-aminocoumarins: domino synthesis of dicoumarin-fused [1,5]-diazocines. Asian J. Org. Chem., 2018, 7(8), 1667-1673.
[http://dx.doi.org/10.1002/ajoc.201800306]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy