Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Cellular Functional, Protective or Damaging Responses Associated with Different Redox Imbalance Intensities: A Comprehensive Review

Author(s): Andrea del Campo, Rodrigo Valenzuela*, Luis Alberto Videla* and Jessica Zúñiga-Hernandez

Volume 30, Issue 34, 2023

Published on: 20 January, 2023

Page: [3927 - 3939] Pages: 13

DOI: 10.2174/0929867330666221209093343

Price: $65

Abstract

Reactive species (RS) are produced in aerobic and anaerobic cells at different concentrations and exposure times, which may trigger diverse responses depending on the cellular antioxidant potential and defensive devices. Study searches were carried out using the PubMed database of the National Library of Medicine-National Institutes of Health. Cellular RS include reactive oxygen (ROS), nitrogen (RNS), lipid (RLS) and electrophilic species that determine either cell homeostasis or dysfunctional biomolecules. The complexity of redox signalling is associated with the variety of RS produced, the reactivity of the target biomolecules with RS, the multiplicity of the counteracting processes available, and the exposure time. The continuous distortion in the prooxidant/ antioxidant balance favoring the former is defined as oxidative stress, whose intensity determines (i) the basal not harmful unbalance (oxidative eustress) at RS levels in the pM to nM range that supports physiological processes (e.g., immune function, thyroid function, insulin action) and beneficial responses to external interventions via redox signalling; or (ii) the excessive, toxic distortion (oxidative distress) at RS levels exceeding those in the oxidative eustress zone, leading to the unspecific oxidation of biomolecules and loss of their functions causing cell death with associated pathological states. The cellular redox imbalance is a complex phenomenon whose underlying mechanisms are beginning to be understood, although how RS initiates cell signalling is a matter of debate. Knowledge of this aspect will provide a better understanding of how RS triggers the pathogenesis and progression of the disease and uncover future therapeutic measures.

« Previous
[1]
Smith, R.L.; Soeters, M.R.; Wüst, R.C.I.; Houtkooper, R.H. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev., 2018, 39(4), 489-517.
[http://dx.doi.org/10.1210/er.2017-00211] [PMID: 29697773]
[2]
Carstens, M.T.; Goedecke, J.H.; Dugas, L.; Evans, J.; Kroff, J.; Levitt, N.S.; Lambert, E.V. Fasting substrate oxidation in relation to habitual dietary fat intake and insulin resistance in non-diabetic women: A case for metabolic flexibility? Nutr. Metab., 2013, 10(1), 8.
[http://dx.doi.org/10.1186/1743-7075-10-8] [PMID: 23317295]
[3]
Galgani, J.E.; Moro, C.; Ravussin, E. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2008, 295(5), E1009-E1017.
[http://dx.doi.org/10.1152/ajpendo.90558.2008] [PMID: 18765680]
[4]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(2), 335-344.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[5]
Radi, R.; Cassina, A.; Hodara, R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol. Chem., 2002, 383(3-4), 401-409.
[http://dx.doi.org/10.1515/BC.2002.044] [PMID: 12033431]
[6]
Gebhart, V.; Reiß, K.; Kollau, A.; Mayer, B.; Gorren, A.C.F. Site and mechanism of uncoupling of nitric-oxide synthase: Uncoupling by monomerization and other misconceptions. Nitric Oxide, 2019, 89, 14-21.
[http://dx.doi.org/10.1016/j.niox.2019.04.007] [PMID: 31022534]
[7]
Pérez-Sala, D.; Domingues, R. Lipoxidation targets: From basic mechanisms to pathophysiology. Redox Biol., 2019, 23, 101208.
[http://dx.doi.org/10.1016/j.redox.2019.101208] [PMID: 31129033]
[8]
Teschke, R. Alcoholic liver disease: Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines, 2018, 6(4), 106.
[http://dx.doi.org/10.3390/biomedicines6040106] [PMID: 30424581]
[9]
Weber, L.W.D.; Boll, M.; Stampfl, A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol., 2003, 33(2), 105-136.
[http://dx.doi.org/10.1080/713611034] [PMID: 12708612]
[10]
Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21, 363-383.
[http://dx.doi.org/10.1038/s41580-020-0230-3]
[11]
Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry, 2010, 49(5), 835-842.
[http://dx.doi.org/10.1021/bi9020378] [PMID: 20050630]
[12]
Sies, H. Role of metabolic H2O2 generation: Redox signaling and oxidative stress. J. Biol. Chem., 2014, 289(13), 8735-8741.
[http://dx.doi.org/10.1074/jbc.R113.544635] [PMID: 24515117]
[13]
Higdon, A.; Diers, A.R.; Oh, J.Y.; Landar, A.; Darley-Usmar, V.M. Cell signalling by reactive lipid species: New concepts and molecular mechanisms. Biochem. J., 2012, 442(3), 453-464.
[http://dx.doi.org/10.1042/BJ20111752] [PMID: 22364280]
[14]
Zhang, H.; Forman, H.J. Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. Arch. Biochem. Biophys., 2017, 617, 145-154.
[http://dx.doi.org/10.1016/j.abb.2016.11.003] [PMID: 27840096]
[15]
Oh, J.Y.; Giles, N.; Landar, A.; Darley-Usmar, V. Accumulation of 15-deoxy-Δ12,14-prostaglandin J2 adduct formation with Keap1 over time: Effects on potency for intracellular antioxidant defence induction. Biochem. J., 2008, 411(2), 297-306.
[http://dx.doi.org/10.1042/BJ20071189] [PMID: 18237271]
[16]
Bartesaghi, S.; Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol., 2018, 14, 618-625.
[http://dx.doi.org/10.1016/j.redox.2017.09.009] [PMID: 29154193]
[17]
Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical biology of H2S signaling through persulfidation. Chem. Rev., 2018, 118(3), 1253-1337.
[http://dx.doi.org/10.1021/acs.chemrev.7b00205] [PMID: 29112440]
[18]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86(1), 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[19]
Gao, C.; Tian, Y.; Zhang, R.; Jing, J.; Zhang, X. Endoplasmic reticulum-directed ratiometric fluorescent probe for quantitive detection of basal H2O2. Anal. Chem., 2017, 89(23), 12945-12950.
[http://dx.doi.org/10.1021/acs.analchem.7b03809] [PMID: 29129057]
[20]
Lim, J.B.; Huang, B.K.; Deen, W.M.; Sikes, H.D. Analysis of the lifetime and spatial localization of hydrogen peroxide generated in the cytosol using a reduced kinetic model. Free Radic. Biol. Med., 2015, 89, 47-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.07.009] [PMID: 26169725]
[21]
Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol., 2017, 11, 613-619.
[http://dx.doi.org/10.1016/j.redox.2016.12.035] [PMID: 28110218]
[22]
El-Benna, J.; Dang, P.M.C.; Gougerot-Pocidalo, M.A.; Marie, J.C.; Braut-Boucher, F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: Structure, phosphorylation and implication in diseases. Exp. Mol. Med., 2009, 41(4), 217-225.
[http://dx.doi.org/10.3858/emm.2009.41.4.058] [PMID: 19372727]
[23]
DeCoursey, T.E.; Ligeti, E. Regulation and termination of NADPH oxidase activity. Cell. Mol. Life Sci., 2005, 62(19-20), 2173-2193.
[http://dx.doi.org/10.1007/s00018-005-5177-1] [PMID: 16132232]
[24]
Kannengiesser, C.; Gérard, B.; El Benna, J.; Henri, D.; Kroviarski, Y.; Chollet-Martin, S.; Gougerot-Pocidalo, M.A.; Elbim, C.; Grandchamp, B. Molecular epidemiology of chronic granulomatous disease in a series of 80 kindreds: Identification of 31 novel mutations. Hum. Mutat., 2008, 29(9), E132-E149.
[http://dx.doi.org/10.1002/humu.20820] [PMID: 18546332]
[25]
Ashtiwi, N.M.; Sarr, D.; Rada, B. DUOX1 in mammalian disease pathophysiology. J. Mol. Med., 2021, 99(6), 743-754.
[http://dx.doi.org/10.1007/s00109-021-02058-2] [PMID: 33704512]
[26]
Ohye, H.; Sugawara, M. Dual oxidase, hydrogen peroxide and thyroid diseases. Exp. Biol. Med., 2010, 235(4), 424-433.
[http://dx.doi.org/10.1258/ebm.2009.009241] [PMID: 20407074]
[27]
Evans, J.L.; Maddux, B.A.; Goldfine, I.D. The molecular basis for oxidative stress-induced insulin resistance. Antioxid. Redox Signal., 2005, 7(7-8), 1040-1052.
[http://dx.doi.org/10.1089/ars.2005.7.1040] [PMID: 15998259]
[28]
Dröge, W. Oxidative enhancement of insulin receptor signaling: Experimental findings and clinical implications. Antioxid. Redox Signal., 2005, 7(7-8), 1071-1077.
[http://dx.doi.org/10.1089/ars.2005.7.1071] [PMID: 15998262]
[29]
May, J.M.; de Haën, C. Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J. Biol. Chem., 1979, 254(7), 2214-2220.
[http://dx.doi.org/10.1016/S0021-9258(17)30209-0] [PMID: 429281]
[30]
Mukherjee, S.P.; Lynn, W.S. Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin. Possible role in the hormone’s effects on adenylate cyclase and the hexose monophosphate shunt. Arch. Biochem. Biophys., 1977, 184, 69-76.
[http://dx.doi.org/10.1016/0003-9861(77)90327-7]
[31]
van Montfort, R.L.M.; Congreve, M.; Tisi, D.; Carr, R.; Jhoti, H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature, 2003, 423(6941), 773-777.
[http://dx.doi.org/10.1038/nature01681] [PMID: 12802339]
[32]
Videla, L.A. Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms. World J. Hepatol., 2009, 1(1), 72-78.
[http://dx.doi.org/10.4254/wjh.v1.i1.72] [PMID: 21160968]
[33]
Bahde, R.; Spiegel, H-U. Hepatic ischaemia–reperfusion injury from bench to bedside. Br. J. Surg., 2010, 97(10), 1461-1475.
[http://dx.doi.org/10.1002/bjs.7176] [PMID: 20645395]
[34]
Casillas-Ramírez, A.; Mosbah, I.B.; Ramalho, F.; Roselló-Catafau, J.; Peralta, C. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci., 2006, 79(20), 1881-1894.
[http://dx.doi.org/10.1016/j.lfs.2006.06.024] [PMID: 16828807]
[35]
Fernández, V.; Castillo, I.; Tapia, G.; Romanque, P.; Uribe-Echevarría, S.; Uribe, M.; Cartier-Ugarte, D.; Santander, G.; Vial, M.T.; Videla, L.A. Thyroid hormone preconditioning: Protection against ischemia-reperfusion liver injury in the rat. Hepatology, 2007, 45(1), 170-177.
[http://dx.doi.org/10.1002/hep.21476] [PMID: 17187421]
[36]
Singh, B.K.; Sinha, R.A.; Yen, P.M. Novel transcriptional mechanisms for regulating metabolism by thyroid hormone. Int. J. Mol. Sci., 2018, 19(10), 3284.
[http://dx.doi.org/10.3390/ijms19103284] [PMID: 30360449]
[37]
Arnold, S.; Goglia, F.; Kadenbach, B. 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur. J. Biochem., 1998, 252(2), 325-330.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2520325.x] [PMID: 9523704]
[38]
Videla, L.A. Combined docosahexaenoic acid and thyroid hormone supplementation as a protocol supporting energy supply to precondition and afford protection against metabolic stress situations. IUBMB Life, 2019, 71(9), 1211-1220.
[http://dx.doi.org/10.1002/iub.2067] [PMID: 31091354]
[39]
Videla, L.A.; Fernández, V.; Cornejo, P.; Vargas, R.; Carrasco, J.; Fernández, J.; Varela, N. Causal role of oxidative stress in unfolded protein response development in the hyperthyroid state. Free Radic. Biol. Med., 2015, 89, 401-408.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.004]
[40]
Fernández, V.; Tapia, G.; Varela, P.; Gaete, L.; Vera, G.; Mora, C.; Vial, M.T.; Videla, L.A. Causal role of oxidative stress in liver preconditioning by thyroid hormone in rats. Free Radic. Biol. Med., 2008, 44(9), 1724-1731.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.010] [PMID: 18291118]
[41]
Vargas, R.; Videla, L.A. Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: Role of AMP-activated protein kinase. Immunol. Lett., 2017, 184, 92-97.
[http://dx.doi.org/10.1016/j.imlet.2017.01.007] [PMID: 28109981]
[42]
Sinha, R.A.; You, S.H.; Zhou, J.; Siddique, M.M.; Bay, B.H.; Zhu, X.; Privalsky, M.L.; Cheng, S.Y.; Stevens, R.D.; Summers, S.A.; Newgard, C.B.; Lazar, M.A.; Yen, P.M. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest., 2012, 122(7), 2428-2438.
[http://dx.doi.org/10.1172/JCI60580] [PMID: 22684107]
[43]
Vargas, R.; Riquelme, B.; Fernández, J.; Álvarez, D.; Pérez, I.F.; Cornejo, P.; Fernández, V.; Videla, L.A. Docosahexaenoic acid-thyroid hormone combined protocol as a novel approach to metabolic stress disorders: Relation to mitochondrial adaptation via liver PGC-1α and sirtuin1 activation. Biofactors, 2019, 45(2), 271-278.
[http://dx.doi.org/10.1002/biof.1483] [PMID: 30578580]
[44]
Mourouzis, I.; Politi, E.; Pantos, C. Thyroid hormone and tissue repair: New tricks for an old hormone? J. Thyroid Res., 2013, 2013, 312104.
[http://dx.doi.org/10.1155/2013/312104] [PMID: 23533950]
[45]
Novitzky, D.; Mi, Z.; Videla, L.A.; Collins, J.F.; Cooper, D.K.C. Thyroid hormone therapy and procurement of livers from brain-dead donors. Endocr. Res., 2016, 41(3), 270-273.
[http://dx.doi.org/10.3109/07435800.2015.1111902] [PMID: 26853445]
[46]
Guerra, J.V.S.; Dias, M.M.G.; Brilhante, A.J.V.C.; Terra, M.F.; García-Arévalo, M.; Figueira, A.C.M. Multifactorial basis and therapeutic strategies in metabolism-related diseases. Nutrients, 2021, 13(8), 2830.
[http://dx.doi.org/10.3390/nu13082830] [PMID: 34444990]
[47]
Mantovani, A.; Dalbeni, A. Treatments for NAFLD: State of art. Int. J. Mol. Sci., 2021, 22(5), 2350.
[http://dx.doi.org/10.3390/ijms22052350] [PMID: 33652942]
[48]
Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M.Á.; Ortiz, M.; Hernández-Rodas, M.C.; Valenzuela, A.; Videla, L.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct., 2017, 8(4), 1526-1537.
[http://dx.doi.org/10.1039/C7FO00090A] [PMID: 28386616]
[49]
Echeverría, F.; Ortiz, M.; Valenzuela, R.; Videla, L. Hydroxytyrosol and cytoprotection: A projection for clinical interventions. Int. J. Mol. Sci., 2017, 18(5), 930.
[http://dx.doi.org/10.3390/ijms18050930] [PMID: 28452954]
[50]
Soto-Alarcón, S.A.; Ortiz, M.; Orellana, P.; Echeverría, F.; Bustamante, A.; Espinosa, A.; Illesca, P.; Gonzalez-Mañán, D.; Valenzuela, R.; Videla, L.A. Docosahexaenoic acid and hydroxytyrosol co-administration fully prevents liver steatosis and related parameters in mice subjected to high-fat diet: A molecular approach. Biofactors, 2019, 45(6), 930-943.
[http://dx.doi.org/10.1002/biof.1556] [PMID: 31454114]
[51]
Valenzuela, R.; Echeverría, F.; Ortiz, M.; Rincón-Cervera, M.Á.; Espinosa, A.; Hernández-Rodas, M.C.; Illesca, P.; Valenzuela, A.; Videla, L.A. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice. Lipids Health Dis., 2017, 16(1), 64.
[http://dx.doi.org/10.1186/s12944-017-0450-5] [PMID: 28395666]
[52]
Panigrahy, D.; Gilligan, M.M.; Serhan, C.N.; Kashfi, K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol. Ther., 2021, 227, 107879.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107879] [PMID: 33915177]
[53]
Jaeschke, H.; Murray, F.J.; Monnot, A.D.; Jacobson-Kram, D.; Cohen, S.M.; Hardisty, J.F.; Atillasoy, E.; Hermanowski-Vosatka, A.; Kuffner, E.; Wikoff, D.; Chappell, G.A.; Bandara, S.B.; Deore, M.; Pitchaiyan, S.K.; Eichenbaum, G. Assessment of the biochemical pathways for acetaminophen toxicity: Implications for its carcinogenic hazard potential. Regul. Toxicol. Pharmacol., 2021, 120, 104859.
[http://dx.doi.org/10.1016/j.yrtph.2020.104859] [PMID: 33388367]
[54]
Knight, T.R.; Ho, Y.S.; Farhood, A.; Jaeschke, H. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: Protection by glutathione. J. Pharmacol. Exp. Ther., 2002, 303(2), 468-475.
[http://dx.doi.org/10.1124/jpet.102.038968] [PMID: 12388625]
[55]
Win, S.; Than, T.A.; Min, R.W.M.; Aghajan, M.; Kaplowitz, N. c-Jun N-terminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src. Hepatology, 2016, 63(6), 1987-2003.
[http://dx.doi.org/10.1002/hep.28486] [PMID: 26845758]
[56]
McGill, M.R.; Hinson, J.A. The development and hepatotoxicity of acetaminophen: Reviewing over a century of progress. Drug Metab. Rev., 2020, 52(4), 472-500.
[http://dx.doi.org/10.1080/03602532.2020.1832112] [PMID: 33103516]
[57]
Masubuchi, Y.; Suda, C.; Horie, T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J. Hepatol., 2005, 42(1), 110-116.
[http://dx.doi.org/10.1016/j.jhep.2004.09.015] [PMID: 15629515]
[58]
Nemoto, S.; Fergusson, M.M.; Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem., 2005, 280(16), 16456-16460.
[http://dx.doi.org/10.1074/jbc.M501485200] [PMID: 15716268]
[59]
Rada, P.; Pardo, V.; Mobasher, M.A.; García-Martínez, I.; Ruiz, L.; González-Rodríguez, Á.; Sanchez-Ramos, C.; Muntané, J.; Alemany, S.; James, L.P.; Simpson, K.J.; Monsalve, M.; Valdecantos, M.P.; Valverde, Á.M. SIRT1 controls acetaminophen hepatotoxicity by modulating inflammation and oxidative stress. Antioxid. Redox Signal., 2018, 28(13), 1187-1208.
[http://dx.doi.org/10.1089/ars.2017.7373] [PMID: 29084443]
[60]
Ramachandran, A.; Umbaugh, D.S.; Jaeschke, H. Mitochondrial dynamics in drug-induced liver injury. Livers, 2021, 1(3), 102-115.
[http://dx.doi.org/10.3390/livers1030010] [PMID: 34485975]
[61]
Wang, J.; Jiang, W.; Xin, J.; Xue, W.; Shi, C.; Wen, J.; Huang, Y.; Hu, C. Caveolin-1 alleviates acetaminophen-induced fat accumulation in non-alcoholic fatty liver disease by enhancing hepatic antioxidant ability via activating AMPK pathway. Front. Pharmacol., 2021, 12, 717276.
[http://dx.doi.org/10.3389/fphar.2021.717276] [PMID: 34305621]
[62]
Muriel, P.; López-Sánchez, P.; Ramos-Tovar, E. Fructose and the Liver. Int. J. Mol. Sci., 2021, 22(13), 6969.
[http://dx.doi.org/10.3390/ijms22136969] [PMID: 34203484]
[63]
Barone, S.; Fussell, S.L.; Singh, A.K.; Lucas, F.; Xu, J.; Kim, C.; Wu, X.; Yu, Y.; Amlal, H.; Seidler, U.; Zuo, J.; Soleimani, M. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J. Biol. Chem., 2009, 284(8), 5056-5066.
[http://dx.doi.org/10.1074/jbc.M808128200] [PMID: 19091748]
[64]
Valenzuela, R.; Ortiz, M.; Hernández-Rodas, M.C.; Echeverría, F.; Videla, L.A. Targeting n-3 polyunsaturated fatty acids in non-alcoholic fatty liver disease. Curr. Med. Chem., 2020, 27(31), 5250-5272.
[http://dx.doi.org/10.2174/0929867326666190410121716] [PMID: 30968772]
[65]
Ouyang, X.; Cirillo, P.; Sautin, Y.; McCall, S.; Bruchette, J.L.; Diehl, A.M.; Johnson, R.J.; Abdelmalek, M.F. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol., 2008, 48(6), 993-999.
[http://dx.doi.org/10.1016/j.jhep.2008.02.011] [PMID: 18395287]
[66]
Federico, A.; Rosato, V.; Masarone, M.; Torre, P.; Dallio, M.; Romeo, M.; Persico, M. The role of fructose in non-alcoholic steatohepatitis: Old relationship and new insights. Nutrients, 2021, 13(4), 1314.
[http://dx.doi.org/10.3390/nu13041314] [PMID: 33923525]
[67]
Siddiqui, R.A.; Xu, Z.; Harvey, K.A.; Pavlina, T.M.; Becker, M.J.; Zaloga, G.P. Comparative study of the modulation of fructose/sucrose-induced hepatic steatosis by mixed lipid formulations varying in unsaturated fatty acid content. Nutr. Metab., 2015, 12(1), 41.
[http://dx.doi.org/10.1186/s12986-015-0038-x] [PMID: 26583036]
[68]
de Castro, G.S.; Deminice, R.; Simões-Ambrosio, L.M.; Calder, P.C.; Jordão, A.A.; Vannucchi, H. Dietary docosahexaenoic acid and eicosapentaenoic acid influence liver triacylglycerol and insulin resistance in rats fed a high-fructose diet. Mar. Drugs, 2015, 13(4), 1864-1881.
[http://dx.doi.org/10.3390/md13041864] [PMID: 25837985]
[69]
Zhang, C.; Chen, X.; Zhu, R.M.; Zhang, Y.; Yu, T.; Wang, H.; Zhao, H.; Zhao, M.; Ji, Y.L.; Chen, Y.H.; Meng, X.H.; Wei, W.; Xu, D.X. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicol. Lett., 2012, 212(3), 229-240.
[http://dx.doi.org/10.1016/j.toxlet.2012.06.002] [PMID: 22698815]
[70]
Madlala, H.P.; Maarman, G.J.; Ojuka, E. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle. Nutr. Rev., 2016, 74(4), 259-266.
[http://dx.doi.org/10.1093/nutrit/nuv111] [PMID: 26946251]
[71]
Chang, T.; Wu, L. Methylglyoxal, oxidative stress, and hypertension. Can. J. Physiol. Pharmacol., 2006, 84(12), 1229-1238.
[http://dx.doi.org/10.1139/y06-077] [PMID: 17487230]
[72]
Mehta, R.; Sonavane, M.; Migaud, M.E.; Gassman, N.R. Exogenous exposure to dihydroxyacetone mimics high fructose induced oxidative stress and mitochondrial dysfunction. Environ. Mol. Mutagen., 2021, 62(3), 185-202.
[http://dx.doi.org/10.1002/em.22425] [PMID: 33496975]
[73]
Kelany, M.E.; Hakami, T.M.; Omar, A.H. Curcumin improves the metabolic syndrome in high-fructose-diet-fed rats: Role of TNF-α, NF-κB, and oxidative stress. Can. J. Physiol. Pharmacol., 2017, 95(2), 140-150.
[http://dx.doi.org/10.1139/cjpp-2016-0152] [PMID: 27901349]
[74]
Zhang, X.; Zhang, J.H.; Chen, X.Y.; Hu, Q.H.; Wang, M.X.; Jin, R.; Zhang, Q.Y.; Wang, W.; Wang, R.; Kang, L.L.; Li, J.S.; Li, M.; Pan, Y.; Huang, J.J.; Kong, L.D. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid. Redox Signal., 2015, 22(10), 848-870.
[http://dx.doi.org/10.1089/ars.2014.5868] [PMID: 25602171]
[75]
Garcia, A.A.; Koperniku, A.; Ferreira, J.C.B.; Mochly-Rosen, D. Treatment strategies for glucose-6-phosphate dehydrogenase deficiency: Past and future perspectives. Trends Pharmacol. Sci., 2021, 42(10), 829-844.
[http://dx.doi.org/10.1016/j.tips.2021.07.002] [PMID: 34389161]
[76]
Luzzatto, L.; Ally, M.; Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood, 2020, 136(11), 1225-1240.
[http://dx.doi.org/10.1182/blood.2019000944] [PMID: 32702756]
[77]
Low, F.M.; Hampton, M.B.; Winterbourn, C.C. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte. Antioxid. Redox Signal., 2008, 10(9), 1621-1630.
[http://dx.doi.org/10.1089/ars.2008.2081] [PMID: 18479207]
[78]
Gwozdzinski, K.; Pieniazek, A.; Gwozdzinski, L. Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid. Med. Cell. Longev., 2021, 2021, 6639199.
[http://dx.doi.org/10.1155/2021/6639199] [PMID: 33708334]
[79]
Al-Omran, A.; Al-Abdi, S.; Al-Salam, Z. Readmission for neonatal hyperbilirubinemia in an area with a high prevalence of glucose-6-phosphate dehydrogenase deficiency: A hospital-based retrospective study. J. Neonatal Perinatal Med., 2017, 10(2), 181-189.
[http://dx.doi.org/10.3233/NPM-171696] [PMID: 28409762]
[80]
Wang, M.; Hu, J.; Yan, L.; Yang, Y.; He, M.; Wu, M.; Li, Q.; Gong, W.; Yang, Y.; Wang, Y.; Handy, D.E.; Lu, B.; Hao, C.; Wang, Q.; Li, Y.; Hu, R.; Stanton, R.C.; Zhang, Z. High glucose–induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J., 2019, 33(5), 6296-6310.
[http://dx.doi.org/10.1096/fj.201801921R] [PMID: 30785802]
[81]
Spolarics, Z.; Siddiqi, M.; Siegel, J.H.; Garcia, Z.C.; Stein, D.S.; Ong, H.; Livingston, D.H.; Denny, T.; Deitch, E.A. Increased incidence of sepsis and altered monocyte functions in severely injured type A− glucose-6-phosphate dehydrogenase-deficient African American trauma patients. Crit. Care Med., 2001, 29(4), 728-736.
[http://dx.doi.org/10.1097/00003246-200104000-00005] [PMID: 11373456]
[82]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[83]
Brieger, K.; Schiavone, S.; Miller, J., Jr; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly., 2012, 142, w13659.
[http://dx.doi.org/10.4414/smw.2012.13659] [PMID: 22903797]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy