Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Perspective

Microwave-Assisted Flow Chemistry for Green Synthesis and Other Applications

Author(s): Tara Mooney, Maysa Ilamanova and Béla Török*

Volume 9, Issue 2, 2022

Published on: 09 January, 2023

Page: [65 - 69] Pages: 5

DOI: 10.2174/2213335610666221208163107

Price: $65

conference banner
Abstract

Using combined microwave-assisted flow chemistry approaches is one of the most active areas of microwave chemistry and green synthesis. Microwave-assisted organic synthesis (MAOS) has contributed significantly to developing green synthetic methods, while flow chemistry applications are quite popular in industrial chemistry. The combination of the two has farreaching advantages. In early studies, the flow chemistry concept was applied in domestic microwave ovens already indicating strong potential for future applications. The relatively small diameter of the flow reactors can address the limited penetration depth of microwaves, which is a major impediment in large-scale batch reactors. With the commercial availability of dedicated microwave synthesizers with tunable frequencies and better temperature control, the possibilities to apply flow synthesis grew even broader. The developments focus on several issues; the two major ones are the design and application of reactors and catalysts. Common reactor types include microwave- absorbing, such as silicon carbide, and microwave-transparent materials, such as borosilicate glass, quartz, or Teflon, with the catalyst or solvent adjusted accordingly. Several heterogeneous catalysts are considered strong microwave absorbers that can heat the reaction from inside the reactor. Such materials include clays, zeolites, or supported metal catalysts. Here, the major advances in design and applications and the benefits gained will be illustrated by synthesizing fine chemicals, from organic compounds to nanoparticles and new materials.

[1]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[2]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27(41), 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[3]
Green Chemistry: An Inclusive Approach; Török, B.; Dransfield, T., Eds.; Elsevier: Amsterdam, Oxford, Cambridge, MA, 2018.
[4]
Das, A.; Banik, B. Microwaves in Chemistry Applications: Fundamentals, Methods and Future Trends; Elsevier: Amsterdam, Cambridge, MA, Oxford, 2021.
[5]
Non-traditional Activation Methods in Green and Sustainable Applications: Microwaves, Ultrasounds, Photo, Electro and Mechanochemistry and High Hydrostatic Pressure; Török, B.; Schäfer, C., Eds.; Elsevier: Amsterdam, Cambridge, MA, Oxford, 2021.
[6]
Microwave Heating as a Tool for Sustainable Chemistry; Leadbeater, N., Ed.; CRC Press: Boca Raton, 2010.
[http://dx.doi.org/10.1201/9781439812709]
[7]
Baig, R.B.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[8]
Microwaves in Organic Synthesis, 3rd ed.; d Hoz, A.; Loupy, A., Eds.; Wiley-VCH: Weinheim, 2012.
[9]
Kappe, C.O.; Stadler, A.; Dallinger, D. Microwaves in Organic and Medicinal Chemistry, 2nd ed; Wiley-VCH: Weinheim, 2012.
[http://dx.doi.org/10.1002/9783527647828]
[10]
Kokel, A.; Schäfer, C.; Török, B. Microwave-assisted reactions in green chemistry. In: Encyclopedia of Sustainable Science and Technology; Meyers, R.A., Ed.; Springer-Nature, 2018.
[http://dx.doi.org/10.1007/978-1-4939-2493-6_1008-1]
[11]
Microwaves in Catalysis: Methodology and Applications; Horikoshi, S.; Serpone, N., Eds.; Wiley-VCH: Weinheim, 2016.
[12]
Török, B.; Schäfer, C.; Kokel, A. Heterogeneous Catalysis in Sustainable Synthesis; Elsevier: Cambridge, Oxford, 2021.
[13]
Kokel, A.; Schäfer, C.; Török, B. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chem., 2017, 19(16), 3729-3751.
[http://dx.doi.org/10.1039/C7GC01393K]
[14]
Mooney, T.; Török, B. Microwave-assisted flow systems in the green production of fine chemicals. In: Nontraditional activation methods in green and sustainable applications: Microwaves; Ultrasounds; Photo-, Electro- and Mechanochemistry and High Hydrostatic Pressure; Török, B.; Schäfer, C., Eds.; Elsevier: Oxford, 2021; pp. 101-136.
[http://dx.doi.org/10.1016/B978-0-12-819009-8.00015-3]
[15]
Porta, R.; Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev., 2016, 20(1), 2-25.
[http://dx.doi.org/10.1021/acs.oprd.5b00325]
[16]
Matsuzawa, M.; Togashi, S. Pilot plant for continuous flow microwave-assisted chemical reactions. In: Microwaves in Catalysis: Methodology and Applications; Horikoshi, S.; Serpone, N., Eds.; Wiley-VCH: Weinheim, 2016; p. 141.
[17]
Cablewski, T.; Faux, A.F.; Strauss, C.R. Development and application of a continuous microwave reactor for organic synthesis. J. Org. Chem., 1994, 59(12), 3408-3412.
[http://dx.doi.org/10.1021/jo00091a033]
[18]
Barham, J.P.; Koyama, E.; Norikane, Y.; Ohneda, N.; Yoshimura, T. Microwave flow: A perspective on reactor and microwave configurations and the emergence of tunable single-mode heating toward large-scale applications. Chem. Rec., 2019, 19(1), 188-203.
[http://dx.doi.org/10.1002/tcr.201800104] [PMID: 30457695]
[19]
Chandrasekaran, E.; Ramanathan, S.; Basak, T. Microwave material processing - a review. AIChE J., 2011, 25, 330-363.
[20]
Jerby, E.; Schwartz, E.; Gerling, J. F.; Werner, K.; Durnan, G.; Yakovlev, V. V.; Achkasov, K.; Meir, Y.; Metaxas, A.C. Special issue on solid-state microwave heating. Ampere Newsletter, 2016, (89), 1-38.
[21]
SAIDA FDS Inc. Microwave Technology Devices., Available from: https://www.saidagroup.jp/fds_en/microwave/product (Accessed on: 03.03.2022).
[22]
SAIREM SAS. Minilabotron Information Sheet., Available from: https://www.sairem.com/wp-content/uploads/2020/05/SAIREM-MINILABOTRON-2000-MK192-EN.pdf (Accessed on: 03.03.2022).
[23]
SAIREM SAS. Labotron ES Information Sheet., Available from: https://www.sairem.com/wp-content/uploads/2020/04/SAIREM-LABOTRON-6000-MK175-EN.pdf (Accessed on: 03.03.2022).
[24]
CEM Corporation. Discover 2.0. Available from: https://cem.com/en/discover-2 (Accessed on: 03.03.2022).
[25]
Estel, L.; Poux, M.; Benamara, N.; Polaert, I. Continuous flow-microwave reactor: Where are we? Chem. Eng. Process., 2017, 113, 56-64.
[http://dx.doi.org/10.1016/j.cep.2016.09.022]
[26]
Stankiewicz, A.; Sarabi, F.E.; Baubaid, A.; Yan, P.; Nigar, H. Perspectives of microwaves-enhanced heterogeneous catalytic gas-phase processes in flow systems. Chem. Rec., 2019, 19(1), 40-50.
[http://dx.doi.org/10.1002/tcr.201800070] [PMID: 30106499]
[27]
Kremsner, J.M.; Kappe, C.O. Silicon carbide passive heating elements in microwave-assisted organic synthesis. J. Org. Chem., 2006, 71(12), 4651-4658.
[http://dx.doi.org/10.1021/jo060692v] [PMID: 16749800]
[28]
Metaxas, A.C.; Meredith, R.J. Industrial microwave heating; Peter Peregrinus Ltd.: London, 1983.
[29]
Vidrasa, S.A. Physical and Chemical Properties of Boroscilicate Glass., Available from: http://www.vidrasa.com/eng/products/duran/duran_pf.html (Accessed on: 03.03.2022).
[30]
Skillinghaug, B.; Rydfjord, J.; Sävmarker, J.; Larhed, M. Microwave heated continuous flow palladium(II)-catalyzed desulfitative synthesis of aryl ketones. Org. Process Res. Dev., 2016, 20(11), 2005-2011.
[http://dx.doi.org/10.1021/acs.oprd.6b00306]
[31]
Engen, K.; Sävmarker, J.; Rosenström, U.; Wannberg, J.; Lundbäck, T.; Jenmalm-Jensen, A.; Larhed, M. Microwave heated flow synthesis of spiro-oxindole dihydroquinazolinone based IRAP inhibitors. Org. Process Res. Dev., 2014, 18(11), 1582-1588.
[http://dx.doi.org/10.1021/op500237k]
[32]
Goodfellow Corporation. Electrical and thermal properties of PTFE., Available from: https://www.goodfellow.com/us/en-us/displayitem-details/p/fp30-tb-000107/polytetrafluoroethylene-tube (Accessed on: 03.03.2022).
[33]
Mercadante, M.A.; Leadbeater, N.E. Development of methodologies for reactions involving gases as reagents: Microwave heating and conventionally-heated continuous-flow processing as examples. Green Process. Synth., 2012, 1(6), 499-507.
[http://dx.doi.org/10.1515/gps-2011-0016]
[34]
Azo materials. Properties and applications of fused silica/quartz glass. Available from: https://www.azom.com/article.aspx?ArticleID=4766 (Accessed on: 03.03.2022).
[35]
Priecel, P.; Lopez-Sanchez, J.A. Advantages and limitations of microwave reactors: From chemical synthesis to the catalytic valorization of biobased chemicals. ACS Sustain. Chem. Eng., 2019, 7(1), 3-21.
[http://dx.doi.org/10.1021/acssuschemeng.8b03286]
[36]
CoorsTek. Properties of porcelain., Available from: https://www.coorstek.com/english/materials/technical-ceramics/sili-cates/porcelain/ (Accessed on: 03.03.22).
[37]
Son, B.J.; Han, S. H. Heat generating ceramic vessel for microwave oven and method for manufacturing the heat generating ceramic vessel. Patent WO2009139552A2, 2009.
[38]
The A.F. Ioffe Physical-Technical Institute. Physical properties of silicon carbide., Available from: http://www.ioffe.ru/SVA/NSM/Semicond/SiC/index.html (Accessed on: 03.03.22).
[39]
Horikoshi, S.; Serpone, N. Microwave flow chemistry as a methodology in organic syntheses, enzymatic reactions, and nanoparticle syntheses. Chem. Rec., 2019, 19(1), 118-139.
[http://dx.doi.org/10.1002/tcr.201800062] [PMID: 30277645]
[40]
Vámosi, P.; Matsuo, K.; Masuda, T.; Sato, K.; Narumi, T.; Takeda, K.; Mase, N. Rapid optimization of reaction conditions based on comprehensive reaction analysis using a continuous flow microwave reactor. Chem. Rec., 2019, 19(1), 77-84.
[http://dx.doi.org/10.1002/tcr.201800048] [PMID: 29969189]
[41]
Garino, N.; Limongi, T.; Dumontel, B.; Canta, M.; Racca, L.; Laurenti, M.; Castellino, M.; Casu, A.; Falqui, A.; Cauda, V. A microwave-assisted synthesis of zinc oxide nanocrystals finely tuned for biological applications. Nanomaterials, 2019, 9(2), 212.
[http://dx.doi.org/10.3390/nano9020212] [PMID: 30736299]
[42]
Nikam, A.V.; Dadwal, A.H. Scalable microwave-assisted continuous flow synthesis of CuO nanoparticles and their thermal conductivity applications as nanofluids. Adv. Powder Technol., 2019, 30(1), 13-17.
[http://dx.doi.org/10.1016/j.apt.2018.10.001]
[43]
Dzido, G.; Markowski, P.; Małachowska-Jutsz, A.; Prusik, K.; Jarzębski, A.B. Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: From mechanistic study to optimal fabrication strategy. J. Nanopart. Res., 2015, 17(1), 27.
[http://dx.doi.org/10.1007/s11051-014-2843-y] [PMID: 25620882]
[44]
Sharma, R.K.; Yadav, S.; Dutta, S.; Kale, H.B.; Warkad, I.R.; Zbořil, R.; Varma, R.S.; Gawande, M.B. Silver nanomaterials: Synthesis and (electro/photo) catalytic applications. Chem. Soc. Rev., 2021, 50(20), 11293-11380.
[http://dx.doi.org/10.1039/D0CS00912A] [PMID: 34661205]
[45]
Tajti, Á.; Tóth, N.; Rávai, B.; Csontos, I.; Szabó, P.T.; Bálint, E. Study on the microwave-assisted batch and continuous flow synthesis of N-alkyl-isoindolin-1-one-3-phosphonates by a special kabachnik–fields condensation. Molecules, 2020, 25(14), 3307.
[http://dx.doi.org/10.3390/molecules25143307] [PMID: 32708227]
[46]
He, W.; Fang, Z.; Zhang, K.; Tu, T.; Lv, N.; Qiu, C.; Guo, K. A novel micro-flow system under microwave irradiation for continuous synthesis of 1,4-dihydropyridines in the absence of solvents via Hantzsch reaction. Chem. Eng. J., 2018, 331, 161-168.
[http://dx.doi.org/10.1016/j.cej.2017.08.103]
[47]
Gutmann, B.; Cantillo, D.; Kappe, C.O. Continuous-flow technologya tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed., 2015, 54(23), 6688-6728.
[http://dx.doi.org/10.1002/anie.201409318] [PMID: 25989203]
[48]
Flow Chemistry for the Synthesis of Heterocycles; Sharma, U.K.; Van der Eycken, E.V., Eds.; Springer: Cham, Switzerland, 2015.
[49]
Zaquen, N.; Rubens, M.; Corrigan, N.; Xu, J.; Zetterlund, P.B.; Boyer, C.; Junkers, T. Polymer synthesis in continuous flow reactors. Prog. Polym. Sci., 2020, 107, 101256.
[http://dx.doi.org/10.1016/j.progpolymsci.2020.101256]
[50]
Wang, H.; Jin, Z.; Hu, X.; Jin, Q.; Tan, S.; Reza Mahdavian, A.; Zhu, N.; Guo, K. Continuous flow cationic polymerizations. Chem. Eng. J., 2022, 430(P2), 132791.
[http://dx.doi.org/10.1016/j.cej.2021.132791]
[51]
Nikam, A.V.; Kulkarni, A.A.; Prasad, B.L.V. Microwave-assisted batch and continuous flow synthesis of palladium supported on magnetic nickel nanocrystals and their evaluation as reusable catalyst. Cryst. Growth Des., 2017, 17(10), 5163-5169.
[http://dx.doi.org/10.1021/acs.cgd.7b00639]
[52]
Monguchi, Y.; Ichikawa, T.; Yamada, T.; Sawama, Y.; Sajiki, H. Continuous flow Suzuki-miyaura and mizoroki-heck reactions under microwave heating conditions. Chem. Rec., 2019, 19(1), 3-14.
[http://dx.doi.org/10.1002/tcr.201800063] [PMID: 30182484]
[53]
Egami, H.; Tamaoki, S.; Abe, M.; Ohneda, N.; Yoshimura, T.; Okamoto, T.; Odajima, H.; Mase, N.; Takeda, K.; Hamashima, Y. Scalable microwave-assisted Johnson-Claisen rearrangement with a continuous flow microwave system. Org. Process Res. Dev., 2018, 22(8), 1029-1033.
[http://dx.doi.org/10.1021/acs.oprd.8b00185]
[54]
Egami, H.; Hamashima, Y. Practical and scalable organic reactions with flow microwave apparatus. Chem. Rec., 2019, 19(1), 157-171.
[http://dx.doi.org/10.1002/tcr.201800132] [PMID: 30511806]
[55]
Bálint, E.; Tajti, Á.; Keglevich, G. Application of the microwave technique in continuous flow processing of organophosphorus chemical reactions. Materials, 2019, 12(5), 788.
[http://dx.doi.org/10.3390/ma12050788] [PMID: 30866480]
[56]
Vo, T.K.; Le, V.N.; Nguyen, V.C.; Song, M.; Kim, D.; Yoo, K.S.; Park, B.J.; Kim, J. Microwave-assisted continuous-flow synthesis of mixed-ligand UiO-66(Zr) frameworks and their application to toluene adsorption. J. Ind. Eng. Chem., 2020, 86, 178-185.
[http://dx.doi.org/10.1016/j.jiec.2020.03.001]
[57]
Vo, T.K.; Le, V.N.; Quang, D.T.; Song, M.; Kim, D.; Kim, J. Rapid defect engineering of UiO-67 (Zr) via microwave-assisted continuous-flow synthesis: Effects of modulator species and concentration on the toluene adsorption. Microporous Mesoporous Mater., 2020, 306, 110405.
[http://dx.doi.org/10.1016/j.micromeso.2020.110405]
[58]
Taddei, M.; Steitz, D.A.; van Bokhoven, J.A.; Ranocchiari, M. Continuous-flow microwave synthesis of metal-organic frameworks: A highly efficient method for large-scale production. Chemistry, 2016, 22(10), 3245-3249.
[http://dx.doi.org/10.1002/chem.201505139] [PMID: 26756401]
[59]
Le, V.N.; Kwon, H.T.; Vo, T.K.; Kim, J.H.; Kim, W.S.; Kim, J. Microwave-assisted continuous flow synthesis of mesoporous metal-organic framework MIL-100 (Fe) and its application to Cu(I)-loaded adsorbent for CO/CO2 separation. Mater. Chem. Phys., 2020, 253, 123278.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123278]
[60]
Albuquerque, G.H.; Fitzmorris, R.C.; Ahmadi, M.; Wannenmacher, N.; Thallapally, P.K.; McGrail, B.P.; Herman, G.S. Gas–liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. Cryst. Eng. Comm, 2015, 17(29), 5502-5510.
[http://dx.doi.org/10.1039/C5CE00848D]
[61]
Bayazit, M.K.; Cao, E.; Gavriilidis, A.; Tang, J. A microwave promoted continuous flow approach to self-assembled hierarchical hematite superstructures. Green Chem., 2016, 18(10), 3057-3065.
[http://dx.doi.org/10.1039/C5GC02245B]
[62]
Ching Lau, C.; Kemal Bayazit, M.; Reardon, P.J.T.; Tang, J. Microwave intensified synthesis: Batch and flow chemistry. Chem. Rec., 2019, 19(1), 172-187.
[http://dx.doi.org/10.1002/tcr.201800121] [PMID: 30525292]
[63]
Mohd Ali, M.A.; Gimbun, J.; Lau, K.L.; Cheng, C.K.; Vo, D.V.N.; Lam, S.S.; Yunus, R.M. Biodiesel synthesized from waste cooking oil in a continuous microwave assisted reactor reduced PM and NOx emissions. Environ. Res., 2020, 185, 109452.
[http://dx.doi.org/10.1016/j.envres.2020.109452] [PMID: 32259725]
[64]
Tangy, A.; Pulidindi, I.N.; Perkas, N.; Gedanken, A. Continuous flow through a microwave oven for the large-scale production of biodiesel from waste cooking oil. Bioresour. Technol., 2017, 224, 333-341.
[http://dx.doi.org/10.1016/j.biortech.2016.10.068] [PMID: 27810248]
[65]
Phromphithak, S.; Meepowpan, P.; Shimpalee, S.; Tippayawong, N. Transesterification of palm oil into biodiesel using ChOH ionic liquid in a microwave heated continuous flow reactor. Renew. Energy, 2020, 154, 925-936.
[http://dx.doi.org/10.1016/j.renene.2020.03.080]
[66]
Khedri, B.; Mostafaei, M.; Safieddin Ardebili, S.M. Flow-mode synthesis of biodiesel under simultaneous microwave–magnetic irradiation. Chin. J. Chem. Eng., 2019, 27(10), 2551-2559.
[http://dx.doi.org/10.1016/j.cjche.2019.03.010]
[67]
Manno, R.; Ranjan, P.; Sebastian, V.; Mallada, R.; Irusta, S.; Sharma, U.K.; Van der Eycken, E.V.; Santamaria, J. Continuous microwave-assisted synthesis of silver nanoclusters confined in mesoporous SBA-15: Application in alkyne cyclizations. Chem. Mater., 2020, 32(7), 2874-2883.
[http://dx.doi.org/10.1021/acs.chemmater.9b04935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy