Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Editorial

Is Induction of Hypomethylation with Ivosidenib and 5-Azacitidine Curative Regimen against IDH1-Mutated Acute Myeloid Leukemia?

Author(s): Katsuhiko Takahashi*

Volume 23, Issue 8, 2023

Published on: 26 December, 2022

Page: [864 - 866] Pages: 3

DOI: 10.2174/1871520623666221208141620

Price: $65

[1]
Ren, J.; Singh, B.N.; Huang, Q.; Li, Z.; Gao, Y.; Mishra, P.; Hwa, Y.L.; Li, J.; Dowdy, S.C.; Jiang, S.W. DNA hypermethylation as a chemotherapy target. Cell. Signal., 2011, 23(7), 1082-1093.
[http://dx.doi.org/10.1016/j.cellsig.2011.02.003] [PMID: 21345368]
[2]
Bender, C.M.; Zingg, J.M.; Jones, P.A. DNA methylation as a target for drug design. Pharm. Res., 1998, 15(2), 175-187.
[http://dx.doi.org/10.1023/A:1011946030404] [PMID: 9523301]
[3]
Ghoshal, K.; Datta, J.; Majumder, S.; Bai, S.; Kutay, H.; Motiwala, T.; Jacob, S.T. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol. Cell. Biol., 2005, 25(11), 4727-4741.
[http://dx.doi.org/10.1128/MCB.25.11.4727-4741.2005] [PMID: 15899874]
[4]
Palii, S.S.; Van Emburgh, B.O.; Sankpal, U.T.; Brown, K.D.; Robertson, K.D. DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol. Cell. Biol., 2008, 28(2), 752-771.
[http://dx.doi.org/10.1128/MCB.01799-07] [PMID: 17991895]
[5]
Li, H.; Chiappinelli, K.B.; Guzzetta, A.A.; Easwaran, H.; Yen, R.W.C.; Vatapalli, R.; Topper, M.J.; Luo, J.; Connolly, R.M.; Azad, N.S.; Stearns, V.; Pardoll, D.M.; Davidson, N.; Jones, P.A.; Slamon, D.J.; Baylin, S.B.; Zahnow, C.A.; Ahuja, N. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget, 2014, 5(3), 587-598.
[http://dx.doi.org/10.18632/oncotarget.1782] [PMID: 24583822]
[6]
Liu, Y.C.; Kwon, J.; Fabiani, E.; Xiao, Z.; Liu, Y.V.; Follo, M.Y.; Liu, J.; Huang, H.; Gao, C.; Liu, J.; Falconi, G.; Valentini, L.; Gurnari, C.; Finelli, C.; Cocco, L.; Liu, J.H.; Jones, A.I.; Yang, J.; Yang, H.; Thoms, J.A.I.; Unnikrishnan, A.; Pimanda, J.E.; Pan, R.; Bassal, M.A.; Voso, M.T.; Tenen, D.G.; Chai, L. Demethylation and up-regulation of an oncogene after hypomethylating therapy. N. Engl. J. Med., 2022, 386(21), 1998-2010.
[http://dx.doi.org/10.1056/NEJMoa2119771] [PMID: 35613022]
[7]
Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; Marks, K.M.; Prins, R.M.; Ward, P.S.; Yen, K.E.; Liau, L.M.; Rabinowitz, J.D.; Cantley, L.C.; Thompson, C.B.; Vander Heiden, M.G.; Su, S.M. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009, 462(7274), 739-744.
[http://dx.doi.org/10.1038/nature08617] [PMID: 19935646]
[8]
Rendina, A.R.; Pietrak, B.; Smallwood, A.; Zhao, H.; Qi, H.; Quinn, C.; Adams, N.D.; Concha, N.; Duraiswami, C.; Thrall, S.H.; Sweitzer, S.; Schwartz, B. Mutant IDH1 enhances the production of 2-hydroxyglutarate due to its kinetic mechanism. Biochemistry, 2013, 52(26), 4563-4577.
[http://dx.doi.org/10.1021/bi400514k] [PMID: 23731180]
[9]
Xu, Q.; Wang, K.; Wang, L.; Zhu, Y.; Zhou, G.; Xie, D.; Yang, Q. IDH1/2 mutants inhibit TET-promoted oxidation of RNA 5 mC to 5 hmC. PLoS One, 2016, 11(8)e0161261
[http://dx.doi.org/10.1371/journal.pone.0161261] [PMID: 27548812]
[10]
Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.T.; Liu, L.; Jiang, W.; Liu, J.; Zhang, J.; Wang, B.; Frye, S.; Zhang, Y.; Xu, Y.; Lei, Q.; Guan, K.L.; Zhao, S.; Xiong, Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011, 19(1), 17-30.
[http://dx.doi.org/10.1016/j.ccr.2010.12.014] [PMID: 21251613]
[11]
Wen, J. Association between multiple gene promoter hypermethylation and the risk of gastric cancer: A systematic review and meta-analysis. Dig. Liver Dis., 2022.
[http://dx.doi.org/10.1016/j.dld.2022.03.009]
[12]
Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med., 2015, 373(12), 1136-1152.
[http://dx.doi.org/10.1056/NEJMra1406184] [PMID: 26376137]
[13]
Sargas, C.; Ayala, R.; Chillón, M.C.; Larráyoz, M.J.; Carrillo-Cruz, E.; Bilbao, C.; Yébenes-Ramírez, M.; Llop, M.; Rapado, I.; García-Sanz, R.; Vázquez, I.; Soria, E.; Florido-Ortega, Y.; Janusz, K.; Botella, C.; Serrano, J.; Martínez-Cuadrón, D.; Bergua, J.; Amigo, M.L.; Martínez-Sánchez, P.; Tormo, M.; Bernal, T.; Herrera-Puente, P.; García, R.; Algarra, L.; Sayas, M.J.; Costilla-Barriga, L.; Pérez-Santolalla, E.; Marchante, I.; Lavilla-Rubira, E.; Noriega, V.; Alonso-Domínguez, J.M.; Sanz, M.Á.; Sánchez-Garcia, J.; Gómez-Casares, M.T.; Pérez-Simón, J.A.; Calasanz, M.J.; González-Díaz, M.; Martínez-López, J.; Barragán, E.; Montesinos, P. Networking for advanced molecular diagnosis in acute myeloid leukemia patients is possible: The PETHEMA NGS-AML project. Haematologica, 2020, 106(12), 3079-3089.
[http://dx.doi.org/10.3324/haematol.2020.263806] [PMID: 33179471]
[14]
DiNardo, C.D.; Stein, A.S.; Stein, E.M.; Fathi, A.T.; Frankfurt, O.; Schuh, A.C.; Döhner, H.; Martinelli, G.; Patel, P.A.; Raffoux, E.; Tan, P.; Zeidan, A.M.; de Botton, S.; Kantarjian, H.M.; Stone, R.M.; Frattini, M.G.; Lersch, F.; Gong, J.; Gianolio, D.A.; Zhang, V.; Franovic, A.; Fan, B.; Goldwasser, M.; Daigle, S.; Choe, S.; Wu, B.; Winkler, T.; Vyas, P. Mutant isocitrate dehydrogenase 1 inhibitor ivosidenib in combination with azacitidine for newly diagnosed acute myeloid leukemia. J. Clin. Oncol., 2021, 39(1), 57-65.
[http://dx.doi.org/10.1200/JCO.20.01632] [PMID: 33119479]
[15]
DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; Donnellan, W.; Fathi, A.T.; Pigneux, A.; Erba, H.P.; Prince, G.T.; Stein, A.S.; Uy, G.L.; Foran, J.M.; Traer, E.; Stuart, R.K.; Arellano, M.L.; Slack, J.L.; Sekeres, M.A.; Willekens, C.; Choe, S.; Wang, H.; Zhang, V.; Yen, K.E.; Kapsalis, S.M.; Yang, H.; Dai, D.; Fan, B.; Goldwasser, M.; Liu, H.; Agresta, S.; Wu, B.; Attar, E.C.; Tallman, M.S.; Stone, R.M.; Kantarjian, H.M. Durable remissions with ivosidenib in IDH1 -mutated relapsed or refractory AML. N. Engl. J. Med., 2018, 378(25), 2386-2398.
[http://dx.doi.org/10.1056/NEJMoa1716984] [PMID: 29860938]
[16]
Abou-Alfa, G.K.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.; Borad, M.J.; Bridgewater, J.; Harris, W.P.; Murphy, A.G.; Oh, D.Y.; Whisenant, J.; Lowery, M.A.; Goyal, L.; Shroff, R.T.; El-Khoueiry, A.B.; Fan, B.; Wu, B.; Chamberlain, C.X.; Jiang, L.; Gliser, C.; Pandya, S.S.; Valle, J.W.; Zhu, A.X. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): A multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol., 2020, 21(6), 796-807.
[http://dx.doi.org/10.1016/S1470-2045(20)30157-1] [PMID: 32416072]
[17]
Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.P.; Daigle, S.R.; Hui, J.; Pandya, S.S.; Gianolio, D.A.; de Botton, S.; Döhner, H. Ivosidenib and azacitidine in IDH1 -mutated acute myeloid leukemia. N. Engl. J. Med., 2022, 386(16), 1519-1531.
[http://dx.doi.org/10.1056/NEJMoa2117344] [PMID: 35443108]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy