Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Weighted Gene Co-Expression Network Analysis of Immune Infiltration in Nonalcoholic Fatty Liver Disease

Author(s): Zhaoxiang Wang, Yue Xia, Yi Pan, Li Zhang, Fengyan Tang, Xiawen Yu, Zhongming Yang, Dong Wang, Ling Yang, Jue Jia* and Guoyue Yuan*

Volume 23, Issue 9, 2023

Published on: 14 February, 2023

Page: [1173 - 1185] Pages: 13

DOI: 10.2174/1871530323666221208105720

Price: $65

Abstract

Background: Immune cell infiltration is an important component of nonalcoholic fatty liver disease (NAFLD) pathogenesis. This study aimed to explore novel genes associated with immune infiltration in the progression of NAFLD.

Methods: CIBERSORT was used to evaluate the abundance of immune infiltration in the human NAFLD via a high-throughput sequencing dataset. Further weighted gene co-expression network analysis (WGCNA) was performed to search for the susceptibility gene module and hub genes associated with differential immune cells. The expression of hub genes in different liver non-parenchymal cell clusters and NAFLD-associated hepatocellular carcinoma (HCC) was also explored.

Results: Four hub genes (ITGBL1, SPINT1, COL1A2, and THBS2) were ultimately identified, which may be associated with immune infiltration, fibrosis progression, and activity score. The receiver operating characteristic curve (ROC) analysis suggested that these genes had good predictive value for NASH and advanced fibrosis. A single-cell analysis showed that COL1A2 was highly expressed in hepatic stellate cells (HSCs), especially in the later stage, while SPINT1 was highly expressed in cholangiocytes (Cho). In addition, ITGBL1, COL1A2, and THBS2 might be associated with transforming from nonalcoholic steatohepatitis (NASH) to HCC. Our findings identified several novel genes that might be related to immune infiltration in NAFLD.

Conclusion: These genes may serve as potential markers for the assessment of immune infiltration as well as therapeutic targets for NAFLD. More studies are needed to elucidate the biological mechanism of these genes in the occurrence and development of NAFLD.

Graphical Abstract

[1]
Younossi, Z.M.; Blissett, D.; Blissett, R.; Henry, L.; Stepanova, M.; Younossi, Y.; Racila, A.; Hunt, S.; Beckerman, R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology, 2016, 64(5), 1577-1586.
[http://dx.doi.org/10.1002/hep.28785] [PMID: 27543837]
[2]
Younossi, Z.M. Non-alcoholic fatty liver disease – A global public health perspective. J. Hepatol., 2019, 70(3), 531-544.
[http://dx.doi.org/10.1016/j.jhep.2018.10.033] [PMID: 30414863]
[3]
Eslam, M.; Valenti, L.; Romeo, S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J. Hepatol., 2018, 68(2), 268-279.
[http://dx.doi.org/10.1016/j.jhep.2017.09.003] [PMID: 29122391]
[4]
Brunt, E.M. Pathology of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(4), 195-203.
[http://dx.doi.org/10.1038/nrgastro.2010.21] [PMID: 20195271]
[5]
Heymann, F.; Tacke, F. Immunology in the liver - from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(2), 88-110.
[http://dx.doi.org/10.1038/nrgastro.2015.200] [PMID: 26758786]
[6]
Huby, T.; Gautier, E.L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat. Rev. Immunol., 2021, 1-15.
[http://dx.doi.org/10.1038/s41577-021-00639-3] [PMID: 34741169]
[7]
Parthasarathy, G.; Revelo, X.; Malhi, H. Pathogenesis of nonalcoholic steatohepatitis: An overview. Hepatol. Commun., 2020, 4(4), 478-492.
[http://dx.doi.org/10.1002/hep4.1479] [PMID: 32258944]
[8]
Hirsova, P.; Bamidele, A.O.; Wang, H.; Povero, D.; Revelo, X.S. Emerging roles of T cells in the pathogenesis of nonalcoholic steatohepatitis and hepatocellular carcinoma. Front. Endocrinol., 2021, 12, 760860.
[http://dx.doi.org/10.3389/fendo.2021.760860] [PMID: 34777255]
[9]
Sutti, S.; Albano, E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(2), 81-92.
[http://dx.doi.org/10.1038/s41575-019-0210-2] [PMID: 31605031]
[10]
Haas, J.T.; Francque, S.; Staels, B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol., 2016, 78(1), 181-205.
[http://dx.doi.org/10.1146/annurev-physiol-021115-105331] [PMID: 26667070]
[11]
de Oliveira, S.; Houseright, R.A.; Graves, A.L.; Golenberg, N.; Korte, B.G.; Miskolci, V.; Huttenlocher, A. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J. Hepatol., 2019, 70(4), 710-721.
[http://dx.doi.org/10.1016/j.jhep.2018.11.034] [PMID: 30572006]
[12]
Kruger, A.J.; Fuchs, B.C.; Masia, R.; Holmes, J.A.; Salloum, S.; Sojoodi, M.; Ferreira, D.S.; Rutledge, S.M.; Caravan, P.; Alatrakchi, N.; Vig, P.; Lefebvre, E.; Chung, R.T. Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet‐induced mouse model of nonalcoholic steatohepatitis. Hepatol. Commun., 2018, 2(5), 529-545.
[http://dx.doi.org/10.1002/hep4.1160] [PMID: 29761169]
[13]
Lefebvre, E.; Moyle, G.; Reshef, R.; Richman, L.P.; Thompson, M.; Hong, F.; Chou, H.; Hashiguchi, T.; Plato, C.; Poulin, D.; Richards, T.; Yoneyama, H.; Jenkins, H.; Wolfgang, G.; Friedman, S.L. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal mod-els of liver and kidney fibrosis. PLoS One, 2016, 11(6), e0158156.
[http://dx.doi.org/10.1371/journal.pone.0158156] [PMID: 27347680]
[14]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res., 2012, 41(D1), D991-D995.
[http://dx.doi.org/10.1093/nar/gks1193] [PMID: 23193258]
[15]
Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[16]
Govaere, O.; Cockell, S.; Tiniakos, D.; Queen, R.; Younes, R.; Vacca, M.; Alexander, L.; Ravaioli, F.; Palmer, J.; Petta, S.; Boursier, J.; Ros-so, C.; Johnson, K.; Wonders, K.; Day, C.P.; Ekstedt, M.; Orešič, M.; Darlay, R.; Cordell, H.J.; Marra, F.; Vidal-Puig, A.; Bedossa, P.; Schattenberg, J.M.; Clément, K.; Allison, M.; Bugianesi, E.; Ratziu, V.; Daly, A.K.; Anstee, Q.M. Transcriptomic profiling across the nonal-coholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci. Transl. Med., 2020, 12(572), eaba4448.
[http://dx.doi.org/10.1126/scitranslmed.aba4448] [PMID: 33268509]
[17]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[18]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[19]
GGene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res., 2015, 43(D1), D1049-D1056.
[http://dx.doi.org/10.1093/nar/gku1179] [PMID: 25428369]
[20]
Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15(12), 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[21]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[22]
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape stringapp: Network analysis and visualization of proteomics data. J. Proteome Res., 2019, 18(2), 623-632.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[23]
Keenan, A.B.; Torre, D.; Lachmann, A.; Leong, A.K.; Wojciechowicz, M.L.; Utti, V.; Jagodnik, K.M.; Kropiwnicki, E.; Wang, Z.; Ma’ayan, A. ChEA3: Transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res., 2019, 47(W1), W212-W224.
[http://dx.doi.org/10.1093/nar/gkz446] [PMID: 31114921]
[24]
Engebretsen, S.; Bohlin, J. Statistical predictions with glmnet. Clin. Epigenetics, 2019, 11(1), 123.
[http://dx.doi.org/10.1186/s13148-019-0730-1] [PMID: 31443682]
[25]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[26]
Arendt, B.M.; Comelli, E.M.; Ma, D.W.L.; Lou, W.; Teterina, A.; Kim, T.; Fung, S.K.; Wong, D.K.H.; McGilvray, I.; Fischer, S.E.; Allard, J.P. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty ac-ids. Hepatology, 2015, 61(5), 1565-1578.
[http://dx.doi.org/10.1002/hep.27695] [PMID: 25581263]
[27]
Su, Q.; Kim, S.Y.; Adewale, F.; Zhou, Y.; Aldler, C.; Ni, M.; Wei, Y.; Burczynski, M.E.; Atwal, G.S.; Sleeman, M.W.; Murphy, A.J.; Xin, Y.; Cheng, X. Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver. iScience, 2021, 24(11), 103233.
[http://dx.doi.org/10.1016/j.isci.2021.103233] [PMID: 34755088]
[28]
Zhao, X.; Wu, S.; Fang, N.; Sun, X.; Fan, J. Evaluation of single-cell classifiers for single-cell RNA sequencing data sets. Brief. Bioinform., 2020, 21(5), 1581-1595.
[http://dx.doi.org/10.1093/bib/bbz096] [PMID: 31675098]
[29]
Pinyol, R.; Torrecilla, S.; Wang, H.; Montironi, C.; Piqué-Gili, M.; Torres-Martin, M.; Wei-Qiang, L.; Willoughby, C.E.; Ramadori, P. An-dreu-Oller, C.; Taik, P.; Lee, Y.A.; Moeini, A.; Peix, J.; Faure-Dupuy, S.; Riedl, T.; Schuehle, S.; Oliveira, C.P.; Alves, V.A.; Boffetta, P.; Lachenmayer, A.; Roessler, S.; Minguez, B.; Schirmacher, P.; Dufour, J.F.; Thung, S.N.; Reeves, H.L.; Carrilho, F.J.; Chang, C.; Uzilov, A.V.; Heikenwalder, M.; Sanyal, A.; Friedman, S.L.; Sia, D.; Llovet, J.M. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol., 2021, 75(4), 865-878.
[http://dx.doi.org/10.1016/j.jhep.2021.04.049] [PMID: 33992698]
[30]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[31]
Blum, A.; Wang, P.; Zenklusen, J.C. SnapShot: TCGA-Analyzed Tumors. Cell, 2018, 173(2), 530.
[http://dx.doi.org/10.1016/j.cell.2018.03.059] [PMID: 29625059]
[32]
Liu, Z.; Li, Y.; Yu, C. Identification of the non-alcoholic fatty liver disease molecular subtypes associated with clinical and immunological features via bioinformatics methods. Front. Immunol., 2022, 13, 857892.
[http://dx.doi.org/10.3389/fimmu.2022.857892] [PMID: 35958576]
[33]
Jiang, Z.; Zhou, Y.; Zhou, L.; Li, S.; Wang, B. Identification of key genes and immune infiltrate in nonalcoholic steatohepatitis: A bioinfor-matic analysis. BioMed Res. Int., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/7561645] [PMID: 34552988]
[34]
Song, Y.; Zhang, J.; Wang, H.; Guo, D.; Yuan, C.; Liu, B.; Zhong, H.; Li, D.; Li, Y. A novel immune-related genes signature after bariatric surgery is histologically associated with non-alcoholic fatty liver disease. Adipocyte, 2021, 10(1), 424-434.
[http://dx.doi.org/10.1080/21623945.2021.1970341] [PMID: 34506234]
[35]
Tacke, F. Targeting hepatic macrophages to treat liver diseases. J. Hepatol., 2017, 66(6), 1300-1312.
[http://dx.doi.org/10.1016/j.jhep.2017.02.026] [PMID: 28267621]
[36]
Maina, V.; Sutti, S.; Locatelli, I.; Vidali, M.; Mombello, C.; Bozzola, C.; Albano, E. Bias in macrophage activation pattern influences non-alcoholic steatohepatitis (NASH) in mice. Clin. Sci., 2012, 122(11), 545-554.
[http://dx.doi.org/10.1042/CS20110366] [PMID: 22142284]
[37]
Wolf, M.J.; Adili, A.; Piotrowitz, K.; Abdullah, Z.; Boege, Y.; Stemmer, K.; Ringelhan, M.; Simonavicius, N.; Egger, M.; Wohlleber, D.; Lo-rentzen, A.; Einer, C.; Schulz, S.; Clavel, T.; Protzer, U.; Thiele, C.; Zischka, H.; Moch, H.; Tschöp, M.; Tumanov, A.V.; Haller, D.; Unger, K.; Karin, M.; Kopf, M.; Knolle, P.; Weber, A.; Heikenwalder, M. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell, 2014, 26(4), 549-564.
[http://dx.doi.org/10.1016/j.ccell.2014.09.003] [PMID: 25314080]
[38]
Deczkowska, A.; David, E.; Ramadori, P.; Pfister, D.; Safran, M.; Li, B.; Giladi, A.; Jaitin, D.A.; Barboy, O.; Cohen, M.; Yofe, I.; Gur, C.; Shlomi-Loubaton, S.; Henri, S.; Suhail, Y.; Qiu, M.; Kam, S.; Hermon, H.; Lahat, E.; Ben Yakov, G.; Cohen-Ezra, O.; Davidov, Y.; Likhter, M.; Goitein, D.; Roth, S.; Weber, A.; Malissen, B.; Weiner, A.; Ben-Ari, Z.; Heikenwälder, M.; Elinav, E.; Amit, I. XCR1+ type 1 conven-tional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat. Med., 2021, 27(6), 1043-1054.
[http://dx.doi.org/10.1038/s41591-021-01344-3] [PMID: 34017133]
[39]
Nutt, S.L.; Hodgkin, P.D.; Tarlinton, D.M.; Corcoran, L.M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol., 2015, 15(3), 160-171.
[http://dx.doi.org/10.1038/nri3795] [PMID: 25698678]
[40]
Shalapour, S.; Lin, X.J.; Bastian, I.N.; Brain, J.; Burt, A.D.; Aksenov, A.A.; Vrbanac, A.F.; Li, W.; Perkins, A.; Matsutani, T.; Zhong, Z.; Dhar, D.; Navas-Molina, J.A.; Xu, J.; Loomba, R.; Downes, M.; Yu, R.T.; Evans, R.M.; Dorrestein, P.C.; Knight, R.; Benner, C.; Anstee, Q.M.; Karin, M. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature, 2017, 551(7680), 340-345.
[http://dx.doi.org/10.1038/nature24302] [PMID: 29144460]
[41]
McPherson, S.; Henderson, E.; Burt, A.D.; Day, C.P.; Anstee, Q.M. Serum immunoglobulin levels predict fibrosis in patients with non-alcoholic fatty liver disease. J. Hepatol., 2014, 60(5), 1055-1062.
[http://dx.doi.org/10.1016/j.jhep.2014.01.010] [PMID: 24445215]
[42]
Aghlara-Fotovat, S.; Nash, A.; Kim, B.; Krencik, R.; Veiseh, O. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Deliv. Transl. Res., 2021, 11(6), 2394-2413.
[http://dx.doi.org/10.1007/s13346-021-01018-0] [PMID: 34176099]
[43]
Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[44]
Schwabe, R.F.; Tabas, I.; Pajvani, U.B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology, 2020, 158(7), 1913-1928.
[http://dx.doi.org/10.1053/j.gastro.2019.11.311] [PMID: 32044315]
[45]
Marini, J.C.; Forlino, A.; Bächinger, H.P.; Bishop, N.J.; Byers, P.H.; Paepe, A.D.; Fassier, F.; Fratzl-Zelman, N.; Kozloff, K.M.; Krakow, D.; Montpetit, K.; Semler, O. Osteogenesis imperfecta. Nat. Rev. Dis. Primers, 2017, 3(1), 17052.
[http://dx.doi.org/10.1038/nrdp.2017.52] [PMID: 28820180]
[46]
Wang, Z.; Chen, M.; Qiu, Y.; Yang, Y.; Huang, Y.; Li, X.; Zhang, W. Identification of potential biomarkers associated with immune infiltration in the esophageal carcinoma tumor microenvironment. Biosci. Rep., 2021, 41(2), BSR20202439.
[http://dx.doi.org/10.1042/BSR20202439] [PMID: 33543230]
[47]
Zhou, Q.; Yan, X.; Zhu, H.; Xin, Z.; Zhao, J.; Shen, W.; Yin, W.; Guo, Y.; Xu, H.; Zhao, M.; Liu, W.; Jiang, X.; Ren, C. Identification of three tumor antigens and immune subtypes for mRNA vaccine development in diffuse glioma. Theranostics, 2021, 11(20), 9775-9790.
[http://dx.doi.org/10.7150/thno.61677] [PMID: 34815785]
[48]
Wang, J.; Uddin, M.N.; Akter, R.; Wu, Y. Contribution of endothelial cell-derived transcriptomes to the colon cancer based on bioinformatics analysis. Math. Biosci. Eng., 2021, 18(6), 7280-7300.
[http://dx.doi.org/10.3934/mbe.2021360] [PMID: 34814249]
[49]
Pantano, L.; Agyapong, G.; Shen, Y.; Zhuo, Z.; Fernandez-Albert, F.; Rust, W.; Knebel, D.; Hill, J.; Boustany-Kari, C.M.; Doerner, J.F.; Rippmann, J.F.; Chung, R.T.; Ho Sui, S.J.; Simon, E.; Corey, K.E. Molecular characterization and cell type composition deconvolution of fi-brosis in NAFLD. Sci. Rep., 2021, 11(1), 18045.
[http://dx.doi.org/10.1038/s41598-021-96966-5] [PMID: 34508113]
[50]
Calabro, N.E.; Barrett, A.; Chamorro-Jorganes, A.; Tam, S.; Kristofik, N.J.; Xing, H.; Loye, A.M.; Sessa, W.C.; Hansen, K.; Kyriakides, T.R. Thrombospondin-2 regulates extracellular matrix production, LOX levels, and cross-linking via downregulation of miR-29. Matrix Biol., 2019, 82, 71-85.
[http://dx.doi.org/10.1016/j.matbio.2019.03.002] [PMID: 30876926]
[51]
Kozumi, K.; Kodama, T.; Murai, H.; Sakane, S.; Govaere, O.; Cockell, S.; Motooka, D.; Kakita, N.; Yamada, Y.; Kondo, Y.; Tahata, Y.; Yamada, R.; Hikita, H.; Sakamori, R.; Kamada, Y.; Daly, A.K.; Anstee, Q.M.; Tatsumi, T.; Morii, E.; Takehara, T. Transcriptomics identify thrombospondin‐2 as a biomarker for NASH and advanced liver fibrosis. Hepatology, 2021, 74(5), 2452-2466.
[http://dx.doi.org/10.1002/hep.31995] [PMID: 34105780]
[52]
Ji, Q.; Zhou, L.; Sui, H.; Yang, L.; Wu, X.; Song, Q.; Jia, R.; Li, R.; Sun, J.; Wang, Z.; Liu, N.; Feng, Y.; Sun, X.; Cai, G.; Feng, Y.; Cai, J.; Cao, Y.; Cai, G.; Wang, Y.; Li, Q. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat. Commun., 2020, 11(1), 1211.
[http://dx.doi.org/10.1038/s41467-020-14869-x] [PMID: 32139701]
[53]
Wang, M.; Gong, Q.; Zhang, J.; Chen, L.; Zhang, Z.; Lu, L.; Yu, D.; Han, Y.; Zhang, D.; Chen, P.; Zhang, X.; Yuan, Z.; Huang, J.; Zhang, X. Characterization of gene expression profiles in HBV-related liver fibrosis patients and identification of ITGBL1 as a key regulator of fibro-genesis. Sci. Rep., 2017, 7(1), 43446.
[http://dx.doi.org/10.1038/srep43446] [PMID: 28262670]
[54]
Gómez-Abenza, E.; Ibáñez-Molero, S.; García-Moreno, D.; Fuentes, I.; Zon, L.I.; Mione, M.C.; Cayuela, M.L.; Gabellini, C.; Mulero, V. Zebrafish modeling reveals that SPINT1 regulates the aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune microenvironment. J. Exp. Clin. Cancer Res., 2019, 38(1), 405.
[http://dx.doi.org/10.1186/s13046-019-1389-3] [PMID: 31519199]
[55]
Tian, F.; Wang, P.; Lin, D.; Dai, J.; Liu, Q.; Guan, Y.; Zhan, Y.; Yang, Y.; Wang, W.; Wang, J.; Liu, J.; Zheng, L.; Zhuang, Y.; Hu, J.; Wang, J.; Kong, D.; Zhu, K. Exosome‐delivered miR‐221/222 exacerbates tumor liver metastasis by targeting SPINT1 in colorectal cancer. Cancer Sci., 2021, 112(9), 3744-3755.
[http://dx.doi.org/10.1111/cas.15028] [PMID: 34125460]
[56]
Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(4), 223-238.
[http://dx.doi.org/10.1038/s41575-020-00381-6] [PMID: 33349658]
[57]
Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(7), 411-428.
[http://dx.doi.org/10.1038/s41575-019-0145-7] [PMID: 31028350]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy