Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Gene Expression Network and Circ_0008012 Promote Progression in MLL/AF4 Positive Acute Lymphoblastic Leukemia

Author(s): Yan-Lai Tang*, Jia-Yin Su*, Jie-Si Luo*, Li-Dan Zhang, Li-Min Zheng, Cong Liang, Li-Na Wang, Yu Li, Zhong Fan, Dan-Ping Huang, Panpan Sun, Zhenhua Luo, Ning Hao Qi, Jing-Jing Lan, Xiao-Li Zhang, Li-Bin Huang and Xue-Qun Luo

Volume 18, Issue 4, 2023

Published on: 06 January, 2023

Page: [538 - 548] Pages: 11

DOI: 10.2174/1574892818666221207115016

Price: $65

Abstract

Background: Acute lymphoblastic leukemia with MLL/AF4 rearrangement remains a major hurdle to improving outcomes. Gene network and circRNAs have been found to participate in tumorigenesis, while their roles in leukemia still need to be explored. Recent patents have shown that circRNAs exhibit the markers for the children ALL, although the target and related mechanism remain to be elucidated.

Objective: This study aims to explore the possible targets and mechanisms of ALL with MLLAF4 rearrangement.

Methods: We first generated a gene network focusing on MLL-AF4 rearrangement. Cell viability was determined with Cell Counting Kit-8 assay. The cell apoptosis was tested by the Annexin V/PI assay. The RNA-protein complexes were analyzed by qRT-PCR, and the pathway proteins were analyzed by western blot.

Results: This gene network was associated with biological processes, such as nucleic acid metabolism and immunity, indicating its key role in inflammation. We found that circ_0008012 was upregulated in MLL/AF4 ALL cells and regulated cell proliferation and apoptosis. Further computed simulation and RIP showed that IKKβ was the strongest protein in the NF-κB pathway binding with circ_0008012. As a result, possible regulation of circ_0008012 is suggested by binding IKKβ in the IKKα:IKKβ:IKKγ compound, which then phosphorylates IκB and activates NF- κB:p65:p300 compound in cell nucleus, thereby leading to leukemia.

Conclusion: We identified a gene network for MLL/AF4 ALL. Moreover, circ_0008012 may be a therapeutic target for this subtype of ALL.

[1]
Yang MH, Wan WQ, Luo JS, et al. Multicenter randomized trial of arsenic trioxide and Realgar- Indigo naturalis formula in pediatric patients with acute promyelocytic leukemia: Interim results of the SCCLG-APL clinical study. Am J Hematol 2018; 93(12): 1467-73.
[http://dx.doi.org/10.1002/ajh.25271]] [PMID: 30160789]
[2]
Sun YN, Hu YX, Gao L, et al. The therapeutic efficacy of pediatric ALL patients with MLL gene rearrangement treated with CCLG-ALL2008 protocol. Eur Rev Med Pharmacol Sci 2018; 22(18): 6020-9.
[PMID: 30280786]
[3]
Brown P, Pieters R, Biondi A. How I treat infant leukemia. Blood 2019; 133(3): 205-14.
[http://dx.doi.org/10.1182/blood-2018-04-785980] [PMID: 30459160]
[4]
Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007; 447(7146): 799-816.
[http://dx.doi.org/10.1038/nature05874] [PMID: 17571346]
[5]
Lin KY, Ye H, Han BW, et al. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma. Oncogene 2016; 35(26): 3376-86.
[http://dx.doi.org/10.1038/onc.2015.396] [PMID: 26455324]
[6]
Wang WT, Ye H, Wei PP, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol 2016; 9(1): 117.
[http://dx.doi.org/10.1186/s13045-016-0348-0] [PMID: 27809873]
[7]
Wallace JA, Kagele DA, Eiring AM, et al. miR-155 promotes FLT3-ITD-induced myeloproliferative disease through inhibition of the interferon response. Blood 2017; 129(23): 3074-86.
[http://dx.doi.org/10.1182/blood-2016-09-740209] [PMID: 28432220]
[8]
Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 2016; 17(4): 205-11.
[http://dx.doi.org/10.1038/nrm.2015.32] [PMID: 26908011]
[9]
Dong Y, He D, Peng Z, et al. Circular RNAs in cancer: An emerging key player. J Hematol Oncol 2017; 10(1): 2.
[http://dx.doi.org/10.1186/s13045-016-0370-2] [PMID: 28049499]
[10]
Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 2016; 7(1): 11215.
[http://dx.doi.org/10.1038/ncomms11215] [PMID: 27050392]
[11]
Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 2010; 6(12): e1001233.
[http://dx.doi.org/10.1371/journal.pgen.1001233] [PMID: 21151960]
[12]
Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 2016; 7(1): 12429.
[http://dx.doi.org/10.1038/ncomms12429] [PMID: 27539542]
[13]
Zeng Y, Du WW, Wu Y, et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 2017; 7(16): 3842-55.
[http://dx.doi.org/10.7150/thno.19764] [PMID: 29109781]
[14]
Huang S, Li X, Zheng H, et al. Loss of super-enhancer-regulated circrna nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 2019; 139(25): 2857-76.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038361] [PMID: 30947518]
[15]
Shi Y, Guo Z, Fang N, et al. hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother 2019; 117: 109151.
[http://dx.doi.org/10.1016/j.biopha.2019.109151] [PMID: 31229921]
[16]
Sun YM, Wang WT, Zeng ZC, et al. circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood 2019; 134(18): 1533-46.
[http://dx.doi.org/10.1182/blood.2019000802] [PMID: 31387917]
[17]
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016; 44(6): 2846-58.
[http://dx.doi.org/10.1093/nar/gkw027] [PMID: 26861625]
[18]
Du WW, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 2017; 24(2): 357-70.
[http://dx.doi.org/10.1038/cdd.2016.133] [PMID: 27886165]
[19]
Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2017; 38(18): 1402-12.
[PMID: 26873092]
[20]
Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 2016; 166(4): 1055-6.
[http://dx.doi.org/10.1016/j.cell.2016.07.035] [PMID: 2751856]
[21]
Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med 2015; 373(16): 1541-52.
[http://dx.doi.org/10.1056/NEJMra1400972] [PMID: 26465987]
[22]
Li Y, Han J, Zhang Y, et al. Structural basis for activity regulation of MLL family methyltransferases. Nature 2016; 530(7591): 447-52.
[http://dx.doi.org/10.1038/nature16952] [PMID: 26886794]
[23]
Winters AC, Bernt KM. MLL-rearranged leukemias-an update on science and clinical approaches. Front Pediatr 2017; 5: 4.
[http://dx.doi.org/10.3389/fped.2017.00004] [PMID: 28232907]
[24]
Liang K, Volk AG, Haug JS, et al. Therapeutic targeting of MLL degradation pathways in MLL-rearranged leukemia. Cell 2017; 168(1-2): 59-72.e13.
[http://dx.doi.org/10.1016/j.cell.2016.12.011] [PMID: 28065413]
[25]
Gomes A, Nolasco S, Soares H. Non-coding RNAs: Multi-tasking molecules in the cell. Int J Mol Sci 2013; 14(8): 16010-39.
[http://dx.doi.org/10.3390/ijms140816010] [PMID: 23912238]
[26]
Yoshimoto R, Mayeda A, Yoshida M, Nakagawa S. MALAT1 long non-coding RNA in cancer. Biochim Biophys Acta Gene Regul Mech 2016; 1859(1): 192-9.
[http://dx.doi.org/10.1016/j.bbagrm.2015.09.012] [PMID: 26434412]
[27]
Hale V, Hale GA, Brown PA, Amankwah EK. A review of DNA methylation and microRNA expression in recurrent pediatric acute leukemia. Oncology 2017; 92(2): 61-7.
[http://dx.doi.org/10.1159/000452091] [PMID: 27802447]
[28]
Greene J, Baird AM, Brady L, et al. Circular RNAs: Biogenesis, function and role in human diseases. Front Mol Biosci 2017; 4: 38.
[http://dx.doi.org/10.3389/fmolb.2017.00038] [PMID: 28634583]
[29]
Ping L, Jian-Jun C, Chu-Shu L, Guang-Hua L, Ming Z. Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a-5p. Blood Cells Mol Dis 2019; 75: 41-7.
[http://dx.doi.org/10.1016/j.bcmd.2018.12.006] [PMID: 30612066]
[30]
Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol 2019; 70: 42-54.e3.
[http://dx.doi.org/10.1016/j.exphem.2018.10.011] [PMID: 30395908]
[31]
Li S, Ma Y, Tan Y, et al. Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis 2018; 9(6): 651.
[http://dx.doi.org/10.1038/s41419-018-0699-2] [PMID: 29844435]
[32]
Imbert V, Peyron JF. NF-κB in hematological malignancies. Biomedicines 2017; 5(2): 27.
[http://dx.doi.org/10.3390/biomedicines5020027] [PMID: 28561798]
[33]
Tang YL, Sun X, Huang LB, et al. Melatonin inhibits MLL-rearranged leukemia via RBFOX3/hTERT and NF-κB/COX-2 signaling pathways. Cancer Lett 2019; 443: 167-78.
[http://dx.doi.org/10.1016/j.canlet.2018.11.037] [PMID: 30550850]
[34]
Hariri F, Arguello M, Volpon L, et al. The eukaryotic translation initiation factor eIF4E is a direct transcriptional target of NF-κB and is aberrantly regulated in acute myeloid leukemia. Leukemia 2013; 27(10): 2047-55.
[http://dx.doi.org/10.1038/leu.2013.73] [PMID: 23467026]
[35]
Yadav V, Safari R. Recent patent-based perspective on diagnostic and therapeutic interventions in malignant mesothelioma: Is drug repositioning knocking on the door? Recent Patents Anticancer Drug Discov. 2021; 16(2): 187-203.
[http://dx.doi.org/10.2174/1574892816666210712113739] [PMID: 34254929]
[36]
Pandolfi PP, Guarnerio J. Novel Fusion-CircRNAs and uses there of United States. Patent US20170298347, 2017. Available from: https://www.freepatentsonline.com/y2017/0298347.html
[37]
Jin H, Sun H, Wu Z, et al. CircRNA marker for diagnosis and prognosis evaluation of chronic lymphocytic leukemia Patent CN109055564, 2018.
[38]
He J, Li Y, Han Z. CircRNA marker for early diagnosis of leukemia and application thereof Patent CN109593859, 2019.
[39]
Ma D, Ji C, Han F, Li W. Application of CricRNA gene in preparing reagent for diagnosing chronic myeloid leukemia Patent CN107988370, 2018.
[40]
Fang Y, Xue Y, Kang M, Wang Y, Rong L. Group of circular RNA (circRNA) markers for diagnosis of childhood acute lymphoblastic leukemia (ALL) and application of group of circRNA markers for diagnosis of childhood ALL. Patent CN107937522, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy