Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

A Temporin Derived Peptide Showing Antibacterial and Antibiofilm Activities against Staphylococcus aureus

Author(s): Meidi An, Ran Guo, Shenghong Xie, Jialu Wang, Yanting Song, Rong Wang, Wenying Jiang, Shuangshuang Wei* and Yingxia Zhang*

Volume 30, Issue 2, 2023

Published on: 28 December, 2022

Page: [183 - 192] Pages: 10

DOI: 10.2174/0929866530666221202123011

Price: $65

Abstract

Background: Temporin is one family of the shortest antimicrobial peptides found in Ranidae frogs. Staphylococcus aureus is one of the main pathogens of suppurative diseases and food contamination, causing severe local or systemic infections in humans. Temporin-GHa (GHa) was previously obtained from Hylarana guentheri, showing weak antibacterial activity against S. aureus. Most temporin peptides are positively charged by arginine and lysine; however, GHa contains histidine.

Objective: In order to investigate the impact of positively charged amino acid on its antibacterial and antibiofilm activity, GHa4R was designed and synthesized by replacing histidine with arginine in GHa.

Methods: The antibacterial activity and efficacy against S. aureus were detected by minimum inhibitory concentration, minimum bactericidal concentration, and time-killing kinetics assays. The action mechanism was determined by propidium iodide uptake and scanning electron microscopy assays. The antibiofilm activity was measured by the MTT method. Eradication of biofilm was observed by fluorescence microscope.

Results: Compared to GHa, GHa4R had stronger antibacterial activity and bactericidal efficacy against S. aureus. Impressively, GHa4R presented antibacterial activity against methicillin-resistant S. aureus (MRSA). It was barely affected by temperature, pH, and storage period, showing high stability. Furthermore, it increased the permeability of the cell membrane and damaged the membrane integrity, leading to cell death. In addition, GHa4R did not induce antibiotic resistance in S. aureus in 30 days, but the MIC of vancomycin was doubled. It not only inhibited S. aureus biofilm formation but also eradicated 24 h-biofilms.

Conclusion: The above-mentioned characteristics make GHa4R a promising candidate for the treatment of S. aureus infections.

« Previous
Graphical Abstract

[1]
Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov., 2013, 12(5), 371-387.
[http://dx.doi.org/10.1038/nrd3975] [PMID: 23629505]
[2]
Steinstraesser, L.; Kraneburg, U.; Jacobsen, F.; Al-Benna, S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology, 2011, 216(3), 322-333.
[http://dx.doi.org/10.1016/j.imbio.2010.07.003] [PMID: 20828865]
[3]
Alba, A.; López-Abarrategui, C.; Otero-González, A.J. Host defense peptides: An alternative as antiinfective and immunomodulatory therapeutics. Biopolymers, 2012, 98(4), 251-267.
[http://dx.doi.org/10.1002/bip.22076] [PMID: 23193590]
[4]
Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 2012, 37(2), 207-215.
[http://dx.doi.org/10.1016/j.peptides.2012.07.001] [PMID: 22800692]
[5]
Pen, G.; Yang, N.; Teng, D.; Mao, R.; Hao, Y.; Wang, J. A review on the use of antimicrobial peptides to combat porcine viruses. Antibiotics, 2020, 9(11), 801.
[http://dx.doi.org/10.3390/antibiotics9110801] [PMID: 33198242]
[6]
Spänig, S.; Heider, D. Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Min., 2019, 12(1), 7.
[http://dx.doi.org/10.1186/s13040-019-0196-x] [PMID: 30867681]
[7]
Iwase, T.; Uehara, Y.; Shinji, H.; Tajima, A.; Seo, H.; Takada, K.; Agata, T.; Mizunoe, Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 2010, 465(7296), 346-349.
[http://dx.doi.org/10.1038/nature09074] [PMID: 20485435]
[8]
Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol., 2004, 2(2), 95-108.
[http://dx.doi.org/10.1038/nrmicro821] [PMID: 15040259]
[9]
Dong, Z.; Luo, W.; Zhong, H.; Wang, M.; Song, Y.; Deng, S.; Zhang, Y. Molecular cloning and characterization of antimicrobial peptides from skin of Hylarana guentheri. Acta Biochim. Biophys. Sin., 2017, 49(5), 450-457.
[http://dx.doi.org/10.1093/abbs/gmx023] [PMID: 28338958]
[10]
Xie, Z.; Wei, H.; Meng, J.; Cheng, T.; Song, Y.; Wang, M.; Zhang, Y. The analogs of temporin-GHa exhibit a broader spectrum of antimicrobial activity and a stronger antibiofilm potential against Staphylococcus aureus. Molecules, 2019, 24(22), 4173.
[http://dx.doi.org/10.3390/molecules24224173]
[11]
Yuan, Y.; Zai, Y.; Xi, X.; Ma, C.; Wang, L.; Zhou, M.; Shaw, C.; Chen, T. A novel membrane-disruptive antimicrobial peptide from frog skin secretion against cystic fibrosis isolates and evaluation of anti-MRSA effect using Galleria mellonella model. Biochim. Biophys. Acta, 2019, 1863(5), 849-856.
[http://dx.doi.org/10.1016/j.bbagen.2019.02.013] [PMID: 30802593]
[12]
Grassi, L.; Maisetta, G.; Maccari, G.; Esin, S.; Batoni, G. Analogs of the frog-skin antimicrobial peptide temporin 1Tb exhibit a wider spectrum of activity and a stronger antibiofilm potential as compared to the parental peptide. Front Chem., 2017, 5, 24.
[http://dx.doi.org/10.3389/fchem.2017.00024] [PMID: 28443279]
[13]
Saporito, P.; Vang Mouritzen, M.; Løbner-Olesen, A.; Jenssen, H. LL-37 fragments have antimicrobial activity against Staphylococcus epidermidis biofilms and wound healing potential in HaCaT cell line. J. Pept. Sci., 2018, 24(7), e3080.
[http://dx.doi.org/10.1002/psc.3080] [PMID: 29737589]
[14]
Zhong, H.; Xie, Z.; Wei, H.; Zhang, S.; Song, Y.; Wang, M.; Zhang, Y. Antibacterial and antibiofilm activity of temporin-GHc and temporin-GHd against cariogenic bacteria, Streptococcus mutans. Front. Microbiol., 2019, 10, 2854.
[http://dx.doi.org/10.3389/fmicb.2019.02854] [PMID: 31921036]
[15]
Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res., 2016, 44(D1), D1094-D1097.
[http://dx.doi.org/10.1093/nar/gkv1051] [PMID: 26467475]
[16]
Bacalum, M.; Janosi, L.; Zorila, F.; Tepes, A.M.; Ionescu, C.; Bogdan, E.; Hadade, N.; Craciun, L.; Grosu, I.; Turcu, I.; Radu, M. Modulating short tryptophan- and arginine-rich peptides activity by substitution with histidine. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(7), 1844-1854.
[http://dx.doi.org/10.1016/j.bbagen.2017.03.024] [PMID: 28372989]
[17]
Gopal, R.; Park, J.S.; Seo, C.H.; Park, Y. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int. J. Mol. Sci., 2012, 13(3), 3229-3244.
[http://dx.doi.org/10.3390/ijms13033229] [PMID: 22489150]
[18]
Hollmann, A.; Martínez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffía, P.C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids Surf. B Biointerfaces, 2016, 141, 528-536.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.003] [PMID: 26896660]
[19]
Dougherty, D.A. Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science, 1996, 271(5246), 163-168.
[http://dx.doi.org/10.1126/science.271.5246.163] [PMID: 8539615]
[20]
Mangoni, M.L. Temporins, anti-infective peptides with expanding properties. Cell. Mol. Life Sci., 2006, 63(9), 1060-1069.
[http://dx.doi.org/10.1007/s00018-005-5536-y] [PMID: 16572270]
[21]
Omardien, S.; Brul, S.; Zaat, S.A.J. Antimicrobial activity of cationic antimicrobial peptides against gram-positives: Current progress made in understanding the mode of action and the response of bacteria. Front. Cell Dev. Biol., 2016, 4, 111.
[http://dx.doi.org/10.3389/fcell.2016.00111] [PMID: 27790614]
[22]
Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4), 1398-1406.
[http://dx.doi.org/10.1128/AAC.00925-06] [PMID: 17158938]
[23]
Hoffman, L.R.; D’Argenio, D.A.; MacCoss, M.J.; Zhang, Z.; Jones, R.A.; Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 2005, 436(7054), 1171-1175.
[http://dx.doi.org/10.1038/nature03912] [PMID: 16121184]
[24]
Linares, J.F.; Gustafsson, I.; Baquero, F.; Martinez, J.L. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci., 2006, 103(51), 19484-19489.
[http://dx.doi.org/10.1073/pnas.0608949103] [PMID: 17148599]
[25]
Rollema, H.S.; Kuipers, O.P.; Both, P.; de Vos, W.M.; Siezen, R.J. Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl. Environ. Microbiol., 1995, 61(8), 2873-2878.
[http://dx.doi.org/10.1128/aem.61.8.2873-2878.1995] [PMID: 7487019]
[26]
Jiao, K.; Gao, J.; Zhou, T.; Yu, J.; Song, H.; Wei, Y.; Gao, X. Isolation and purification of a novel antimicrobial peptide from Porphyra yezoensis. J. Food Biochem., 2019, 43(7), e12864.
[http://dx.doi.org/10.1111/jfbc.12864] [PMID: 31353731]
[27]
Rajasekaran, G.; Dinesh Kumar, S.; Nam, J.; Jeon, D.; Kim, Y.; Lee, C.W.; Park, I.S.; Shin, S.Y. Antimicrobial and anti-inflammatory activities of chemokine CXCL14-derived antimicrobial peptide and its analogs. Biochim. Biophys. Acta Biomembr., 2019, 1861(1), 256-267.
[http://dx.doi.org/10.1016/j.bbamem.2018.06.016] [PMID: 29959905]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy