Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Nanoformulation-based Drug Delivery System for Viral Diseases

Author(s): Manisha Bharti, Md. Aftab Alam*, Gudhanti Siva Nago Koteswara Rao, Pramod Kumar Sharma and Sandesh Varshney

Volume 11, Issue 2, 2023

Published on: 17 January, 2023

Page: [105 - 126] Pages: 22

DOI: 10.2174/2211738511666221201154154

Price: $65

Abstract

Viral diseases are one of the major causes of mortality worldwide. The emergence of pandemics because of the COVID virus creates a dire need for an efficient mechanism to combat the disease. Viruses differ from other pathogenic infections; they render the host immune system vulnerable. One of the major challenges for developing antivirals is the resistance developed by the overuse of drugs, which is inevitable as most viral diseases require a large number of doses. Viral infection detection, prevention, and treatment have significantly benefitted from developing several innovative technologies in recent years. Nanotechnology has emerged as one of the most promising technologies because of its capacity to deal with viral infections efficiently and eradicate the lagging of conventional antiviral drugs. This review briefly presents an overview of the application of nanotechnology for viral therapy.

Next »
Graphical Abstract

[1]
Maravajhala V, Papishetty S, Bandlapalli S. Nanotechnology in development of drug delivery system. Int J Pharm 2012; 3(1): 84.
[PMID: 21550387]
[2]
Ravichandran R. Nanotechnology-based drug delivery systems. NanoBiotechnology 2009; 5(1-4): 17-33.
[http://dx.doi.org/10.1007/s12030-009-9028-2]
[3]
Junk A, Riess F. From an idea to a vision: There’s plenty of room at the bottom. Am J Phys 2006; 74(9): 825-30.
[http://dx.doi.org/10.1119/1.2213634]
[4]
Ramsden J. Applied Nanotechnology: The conversion of research results to products. William Andrew 2013; pp. 165-78.
[5]
Helmus MN. How to commercialize nanotechnology. Nat nanotech 2006; 1(3): 157-8.
[http://dx.doi.org/10.1038/nnano.2006.156]
[6]
Roco MC, Bainbridge WS, Eds. Nanotechnology: societal implications: maximizing benefits for humanity. Dordrecht, The Netherlands: Springer 2007.
[http://dx.doi.org/10.1007/978-1-4020-5432-7]
[7]
Damodharan J. Nanomaterials in medicine-An overview. Mater Today Proc 2021; 37: 383-5.
[http://dx.doi.org/10.1016/j.matpr.2020.05.380]
[8]
Taheri Qazvini N, Zinatloo S. Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 2011; 22(1): 63-9.
[http://dx.doi.org/10.1007/s10856-010-4178-2] [PMID: 21052793]
[9]
Zinatloo AS, Taheri QN. Inverse miniemulsion method for synthesis of gelatin nanoparticles in presence of CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 2014; 4(3): 267-75.
[10]
Ajabshir Z, Zinatloo-Ajabshir S. Preparation and characterization of curcumin niosomal nanoparticles via a simple and eco-friendly route. J Nanostruct 2019; 9(4): 784-90.
[11]
Zinatloo-Ajabshir S, Ghasemian N, Mousavi-Kamazani M, Salavati-Niasari M. Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason Sonochem 2021; 71(71): 105376.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105376] [PMID: 33142222]
[12]
Canle M, Fernández MI, Santaballa JA. Applications of Nanomaterials in Environmental Remediation. In: Nanomaterials for Environmental Applications. London; CRC Press; pp.1-22.
[http://dx.doi.org/10.1201/9781003129042-1]
[13]
Zinatloo-Ajabshir S, Heidari-Asil SA, Salavati-Niasari M. Rapid and green combustion synthesis of nanocomposites based on Zn-Co-O nanostructures as photocatalysts for enhanced degradation of acid brown 14 contaminant under sunlight. Separ Purif Tech 2022; 280(280): 119841.
[http://dx.doi.org/10.1016/j.seppur.2021.119841]
[14]
Yang D. Application of nanotechnology in the COVID-19 pandemic. Int J Nanomedicine 2021; 16: 623-49.
[http://dx.doi.org/10.2147/IJN.S296383] [PMID: 33531805]
[15]
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020; 20(5): 533-4.
[http://dx.doi.org/10.1016/S1473-3099(20)30120-1] [PMID: 32087114]
[16]
Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 2021; 11(3): 748-87.
[http://dx.doi.org/10.1007/s13346-020-00818-0] [PMID: 32748035]
[17]
Ranjha MM, Shafique B, Rehman A, et al. Biocompatible nanomaterials in food science, technology and nutrient drug delivery: Recent developments and applications. Front Nutr 2021; 1: 1141.
[PMID: 35127783]
[18]
Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Deliv 2018; 15(1): 93-114.
[http://dx.doi.org/10.1080/17425247.2017.1360863] [PMID: 28749739]
[19]
Gagliardi M. Biomimetic and bioinspired nanoparticles for targeted drug delivery. Ther Deliv 2017; 8(5): 289-99.
[http://dx.doi.org/10.4155/tde-2017-0013] [PMID: 28361608]
[20]
McNeil SE. Unique benefits of nanotechnology to drug delivery and diagnostics. In: Characterization of nanoparticles intended for drug delivery. Totowa, New Jersey: Humana Press 2011; pp. 3-8.
[http://dx.doi.org/10.1007/978-1-60327-198-1_1]
[21]
Johnson J, Chiu W. Structures of virus and virus-like particles. Curr Opin Struct Biol 2000; 10(2): 229-35.
[http://dx.doi.org/10.1016/S0959-440X(00)00073-7] [PMID: 10753814]
[22]
Payne S. Viruses: From understanding to investigation. Academic Press 2017; pp. 232-45.
[23]
Manjarrez-Zavala ME, Rosete-Olvera DP, Gutiérrez-González LH, Ocadiz-Delgado R, Cabello-Gutiérrez C. Pathogenesis of viral respiratory infection. In: Bassam H, Ed. In: Respiratory Disease and Infection: A New Insight. London: IntechOpen 2013; pp. 33-77.
[24]
Mendes PM. Cellular nanotechnology: making biological interfaces smarter. Chem Soc Rev 2013; 42(24): 9207-18.
[http://dx.doi.org/10.1039/c3cs60198f] [PMID: 24097313]
[25]
Villanueva-Flores F, Castro-Lugo A, Ramírez OT, Palomares LA. Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nanotech 2020; 31(13): 132002.
[http://dx.doi.org/10.1088/1361-6528/ab5bc8]
[26]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[27]
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. Nano Today 2021; 36(36): 101031.
[http://dx.doi.org/10.1016/j.nantod.2020.101031] [PMID: 33519948]
[28]
Oshikoya KA. Ogunleye, Lawal, Senbanjo S, Oreagba. Clinically significant interactions between antiretroviral and co-prescribed drugs for HIV-infected children: profiling and comparison of two drug databases. Ther Clin Risk Manag 2013; 9: 215-21.
[http://dx.doi.org/10.2147/TCRM.S44205] [PMID: 23700368]
[29]
Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. IDC 2010; 24(3): 809-33.
[30]
Merk A, Subramaniam S. HIV-1 envelope glycoprotein structure. Curr Opin Struct Biol 2013; 23(2): 268-76.
[31]
Nishanth AN, Nivedh K, Syed NH. Hepatitis B-surface antigen (HBsAg) vaccine fabricated chitosan-polyethylene glycol nanocomposite (HBsAg-CS-PEG-NC) preparation, immunogenicity, controlled release pattern, biocompatibility or non-target toxicity. Int J Biol Macromol 2020; (144): 978-94.
[32]
Shukla D, Spear PG. Herpesviruses and heparan sulfate: An intimate relationship in aid of viral entry. J Clin Invest 2001; 108(4): 503-10.
[http://dx.doi.org/10.1172/JCI200113799] [PMID: 11518721]
[33]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[34]
Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 2002; 22(2): 129-50.
[http://dx.doi.org/10.1023/A:1020178304031] [PMID: 12428898]
[35]
Hua S, Cabot PJ. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain conditions. Pain Physician 2013; 16(3): 199-216.
[36]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[37]
Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A. Nanomaterials history, classification, unique properties, production and market Emerging applications of nanoparticles and architecture nanostructures. Amsterdam: Elsevier 2018; pp. 341-84.
[http://dx.doi.org/10.1016/B978-0-323-51254-1.00012-9]
[38]
Amarnath CA, Nanda SS, Papaefthymiou GC, Yi DK, Paik U. Nanohybridization of low-dimensional nanomaterials: synthesis, classification, and application. Crit Rev Solid State Mater Sci 2013; 38(1): 1-56.
[http://dx.doi.org/10.1080/10408436.2012.732545]
[39]
Ramyadevi D, Sandhya P. Dual sustained release delivery system for multiple route therapy of an antiviral drug. Drug Deliv 2014; 21(4): 276-92.
[http://dx.doi.org/10.3109/10717544.2013.839368]
[40]
Hendricks GL, Velazquez L, Pham S, et al. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses. Antiviral Res 2015; 116(116): 34-44.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.008] [PMID: 25637710]
[41]
Rao L, Tian R, Chen X. Cell-membrane-mimicking nano decoys against infectious diseases. ACS Nano 2020; 14(3): 2569-74.
[http://dx.doi.org/10.1021/acsnano.0c01665] [PMID: 32129977]
[42]
Jackman JA, Lee J, Cho NJ. Nanomedicine for infectious disease applications: innovation towards broad-spectrum treatment of viral infections. Small 2016; 12(9): 1133-9.
[http://dx.doi.org/10.1002/smll.201500854] [PMID: 26551316]
[43]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[44]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[45]
Pant K, Neuber C, Zarschler K, et al. Active targeting of dendritic polyglycerols for diagnostic cancer imaging. Small 2020; 16(7): 1905013.
[http://dx.doi.org/10.1002/smll.201905013] [PMID: 31880080]
[46]
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020; 25(9): 2193.
[http://dx.doi.org/10.3390/molecules25092193] [PMID: 32397080]
[47]
Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence 2011; 2(5): 395-401.
[http://dx.doi.org/10.4161/viru.2.5.17035] [PMID: 21921677]
[48]
Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 381-91.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[49]
Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharmaceutica Acta Helvetiae 1995; 70(2): 95-111.
[http://dx.doi.org/10.1016/0031-6865(95)00010-7]
[50]
Gomezhens A, Fernandezromero J. Analytical methods for the control of liposomal delivery systems. Trends Analyt Chem 2006; 25(2): 167-78.
[http://dx.doi.org/10.1016/j.trac.2005.07.006]
[51]
Amoabediny G, Haghiralsadat F, Naderinezhad S, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int J Polym Mater 2018; 67(6): 383-400.
[52]
Baselga J, Metselaar JM. Monoclonal antibodies: clinical applications: monoclonal antibodies directed against growth factor receptors. Principl Pract Biol Ther Cancer 2000; pp. 475-89.
[53]
Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. Int J Pharm 1997; 154(2): 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[54]
Kalepu S, Sunilkumar KT, Betha S, Mohanvarma M. Liposomal drug delivery system-a comprehensive review. Int J Drug Dev Res 2013; 5(4): 62-75.
[55]
Mastrangelo E, Mazzitelli S, Fabbri J, et al. Delivery of suramin as an antiviral agent through liposomal systems. ChemMedChem 2014; 9(5): 933-9.
[http://dx.doi.org/10.1002/cmdc.201300563] [PMID: 24616282]
[56]
Ho RJ, Burke RL, Merigan TC. Antigen-presenting liposomes are effective in treatment of recurrent herpes simplex virus genitalis in guinea pigs. J Virol 1989; 63(7): 2951-8.
[http://dx.doi.org/10.1128/jvi.63.7.2951-2958.1989] [PMID: 2542605]
[57]
Fattal E, Couvreur P, Dubernet C. “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliv Rev 2004; 56(7): 931-46.
[http://dx.doi.org/10.1016/j.addr.2003.10.037] [PMID: 15066753]
[58]
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30(3): 179-94.
[http://dx.doi.org/10.1080/13543776.2020.1720649]
[59]
Sathali AH, Ekambaram P, Priyanka K. Solid lipid nanoparticles: A review. Sci Rev Chem Commun 2012; 2(1): 80-102.
[60]
Yadav N, Khatak S, Sara US. Solid lipid nanoparticles-a review. Int J Appl Pharm 2013; 5(2): 8-18.
[61]
Guimarães KL, Ré MI. Lipid nanoparticles as carriers for cosmetic ingredients: The first (SLN) and the second generation (NLC). In: Nanocosmetics and nanomedicines. 2011; pp. 101-22.
[62]
Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 2009; 366(1-2): 170-84.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[63]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[64]
Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 2012; 9(5): 497-508.
[http://dx.doi.org/10.1517/17425247.2012.673278] [PMID: 22439808]
[65]
Helgason T, Awad TS, Kristbergsson K, McClements DJ, Weiss J. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Colloid Interface Sci 2009; 334(1): 75-81.
[http://dx.doi.org/10.1016/j.jcis.2009.03.012] [PMID: 19380149]
[66]
Gohla SH, Dingler A. Scaling up feasibility of the production of solid lipid nanoparticles (SLN). Pharmazie 2001; 56(1): 61-3.
[PMID: 11210672]
[67]
Souto EB, Müller RH. Lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers) for cosmetic, dermal, and transdermal applications. In. Nanoparticulate drug delivery systems. Boca Raton: CRC Press 2007; pp. 213-33.
[68]
Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. Brain uptake of thiamine-coated nanoparticles. JCR 2003; 93(3): 271-82.
[http://dx.doi.org/10.1016/j.jconrel.2003.08.006]
[69]
Mehnert W, Mäder K. Solid lipid nanoparticles. Adv Drug Deliv Rev 2012; 64(64): 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[70]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[71]
Garud A, Singh D, Garud N. Solid lipid nanoparticles (SLN): Method, characterization and applications. Int Curr Pharm J 2012; 1(11): 384-93.
[http://dx.doi.org/10.3329/icpj.v1i11.12065]
[72]
Duan Y, Dhar A, Patel C, et al. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances 2020; 10(45): 26777-91.
[http://dx.doi.org/10.1039/D0RA03491F] [PMID: 35515778]
[73]
Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: A review. J Nanosci Nanotechnol 2017; (1): 67-72.
[74]
Yoon G, Park JW, Yoon IS. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): Recent advances in drug delivery. J Pharm Investig 2013; 43(5): 353-62.
[http://dx.doi.org/10.1007/s40005-013-0087-y]
[75]
Rajabi MA, Mousa S. Lipid nanoparticle and their application in nanomedicine. Curr Pharm Biotechnol 2016; 17(8): 662-72.
[http://dx.doi.org/10.2174/1389201017666160415155457]
[76]
Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 2007; 59(6): 522-30.
[77]
Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci 2018; 112: 159-67.
[http://dx.doi.org/10.1016/j.ejps.2017.11.023] [PMID: 29183800]
[78]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[79]
Müller RH, Alexiev U, Sinambela P, Keck CM. Nanostructured lipid carriers (NLC): the second generation of solid lipid nanoparticles. In: Percutaneous penetration enhancers chemical methods in penetration enhancement. Berlin Heidelbery: Springer 2016; pp. 161-85.
[http://dx.doi.org/10.1007/978-3-662-47862-2_11]
[80]
Cavalli R, Caputo O, Marengo E, Pattarino F, Gasco MR. The effect of the components of microemulsions on both size and crystalline structure of solid lipid nanoparticles (SLN) containing a series of model molecules. Pharmazie 1998; 53(6): 392-6.
[81]
Lason E, Ogonowski J. Solid Lipid Nanoparticles–characteristics, application and obtaining. Chemik 2011; 65(10): 960-7.
[82]
Mishra V, Bansal K, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[83]
Gasco MR. Solid Lipid Nanospheres from Warm Micro-Emulsions: Improvements in SLN production for more efficient drug delivery. Pharm Technol Eur 1997; 9: 52-8.
[84]
Boltri L, Canal T, Esposito PA, Carli F. Lipid nanoparticles: evaluation of some critical formulation parameters. Proc Int Symp Control Release Bioact Mater 1993; 20: 346-7.
[85]
Cavalli R, Marengo E, Rodriguez L, Gasco MR. Effects of some experimental factors on the production process of solid lipid nanoparticles. Eur J Pharm Biopharm 1996; 42(2): 110-5.
[86]
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[87]
Souto EB, Müller RH. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie 2006; 61(5): 431-7.
[PMID: 16724541]
[88]
Cortesi R, Esposito E, Luca G, Nastruzzi C. Production of lipospheres as carriers for bioactive compounds. Biomaterials 2002; 23(11): 2283-94.
[http://dx.doi.org/10.1016/S0142-9612(01)00362-3]
[89]
Hayes ME, Drummond DC, Kirpotin DB, et al. Genospheres: self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery. Gene Ther 2006; 13(7): 646-51.
[http://dx.doi.org/10.1038/sj.gt.3302699] [PMID: 16341056]
[90]
Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm 2015; 495(1): 439-46.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.014] [PMID: 26367780]
[91]
Su L, Zhou F, Yu M, et al. Solid lipid nanoparticles enhance the resistance of oat-derived peptides that inhibit dipeptidyl peptidase IV in simulated gastrointestinal fluids. J Funct Foods 2020; 65: 103773.
[http://dx.doi.org/10.1016/j.jff.2019.103773]
[92]
Guo D, Zhou T, Araínga M, et al. Creation of a long-acting nanoformulated 2′, 3′-dideoxy-3′-thiacytidine. J Acquir Immune Defic Syndr 74(3): e75.
[93]
Kuo YC, Chung JF. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf B Biointerfaces 2011; 83(2): 299-306.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.037] [PMID: 21194902]
[94]
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in antiviral material development. ChemPlusChem 2020; 85(9): 2105-28.
[http://dx.doi.org/10.1002/cplu.202000460] [PMID: 32881384]
[95]
Kanwar R, Rathee J, Salunke DB, Mehta SK. Green nanotechnology-driven drug delivery assemblies. ACS Omega 4(5): 8804-15.
[http://dx.doi.org/10.1021/acsomega.9b00304]
[96]
Demisli S, Mitsou E, Pletsa V, Xenakis A, Papadimitriou V. Development and study of nanoemulsions and nanoemulsion-based hydrogels for the encapsulation of lipophilic compounds. Nanomaterials (Basel) 2020; 10(12): 2464.
[http://dx.doi.org/10.3390/nano10122464] [PMID: 33317080]
[97]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[98]
Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 2006; 18(41): R635-66.
[http://dx.doi.org/10.1088/0953-8984/18/41/R01]
[99]
Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter 2016; 12(11): 2826-41.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[100]
Komaiko J, McClements DJ. Food-grade nanoemulsion filled hydrogels formed by spontaneous emulsification and gelation: Optical properties, rheology, and stability. Food Hydrocoll 2015; 46: 67-75.
[http://dx.doi.org/10.1016/j.foodhyd.2014.12.031]
[101]
Jones TA, Clark DE, Quintero L. inventors Baker Hughes Inc, assignee Microemulsions to convert OBM filter cakes to WBM filter cakes having filtration control United States patent US 7,709,421 2010.
[102]
Gasco MR, Gallarate M, Pattarino F. In vitro permeation of azelaic acid from viscosized microemulsions. Int J Pharm 1991; 69(3): 193-6.
[http://dx.doi.org/10.1016/0378-5173(91)90361-Q]
[103]
Sharma SN, Jain NK. A text book of professional pharmacy. India: Vallabh Prakashan 1985; p. 201.
[104]
Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm 2004; 280(1-2): 241-51.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.016] [PMID: 15265563]
[105]
Patel RP, Joshi JR. An overview on nanoemulsion: A novel approach. Int J Pharm 2012; 3(12): 4640.
[106]
Shakeel F, Baboota S, Ahuja A, Ali J, Faisal MS, Shafiq S. Stability evaluation of celecoxib nanoemulsion containing Tween 80. Thaiphesatchasan 2008; 32: 4-9.
[107]
Bernstein DI, Cardin RD, Bravo FJ, et al. Intranasal nanoemulsion-adjuvanted HSV-2 subunit vaccine is effective as a prophylactic and therapeutic vaccine using the guinea pig model of genital herpes. Vaccine 2019; 37(43): 6470-7.
[http://dx.doi.org/10.1016/j.vaccine.2019.08.077] [PMID: 31515143]
[108]
Jadhav RP, Koli VW, Kamble AB, Bhutkar MA. A Review on Nanoemulsion. Asian J Pharm 2020; 10(2): 103-8.
[109]
Tabatabaeinejad SM, Zinatloo-Ajabshir S, Amiri O, Salavati-Niasari M. Magnetic Lu 2 Cu 2 O 5 -based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. RSC Advances 2021; 11(63): 40100-11.
[http://dx.doi.org/10.1039/D1RA06101A] [PMID: 35494113]
[110]
Zinatloo-Ajabshir S, Baladi M, Salavati-Niasari M. Sono-synthesis of MnWO4 ceramic nanomaterials as highly efficient photocatalysts for the decomposition of toxic pollutants. Ceram Int 2021; 47(21): 30178-87.
[http://dx.doi.org/10.1016/j.ceramint.2021.07.197]
[111]
Shah J, Nair AB, Jacob S, et al. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics 2019; 11(5): 230.
[http://dx.doi.org/10.3390/pharmaceutics11050230] [PMID: 31083593]
[112]
Bhosale RR, Osmani RA, Ghodake PP, Shaikh SM, Chavan SR. Nanoemulsion: A review on novel profusion in advanced drug delivery. Indian J Pharm Biol Res 2014; 2(01): 122-7.
[113]
Leong KH, Ng JJ, Sim LC, Saravanan P, Dai C, Tan B. Biogenic synthesis of nanoparticulate materials for antiviral applications. Viral Antiviral Nanomat 2022; pp. 63-76.
[114]
Mu Q, Yu J, McConnachie LA, et al. Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 2018; 26(5-6): 435-47.
[http://dx.doi.org/10.1080/1061186X.2017.1419363] [PMID: 29285948]
[115]
Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 1996; 21(2): 107-16.
[http://dx.doi.org/10.1016/S0169-409X(96)00401-2]
[116]
Bader H, Ringsdorf H, Schmidt B. Watersoluble polymers in medicine. Angew Makromol Chem 1984; 123(1): 457-85.
[http://dx.doi.org/10.1002/apmc.1984.051230121]
[117]
Yokoyama M. Polymeric micelles as drug carriers: Their lights and shadows. J Drug Target 2014; 22(7): 576-83.
[http://dx.doi.org/10.3109/1061186X.2014.934688] [PMID: 25012065]
[118]
Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym 2011; 71(3): 227-34.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2010.10.009]
[119]
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Deliv Rev 2012; 64: 37-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.013] [PMID: 11251249]
[120]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[121]
Harada A, Kataoka K. Polyion complex micelle formation from double-hydrophilic block copolymers composed of charged and non-charged segments in aqueous media. Polym J 2018; 50(1): 95-100.
[http://dx.doi.org/10.1038/pj.2017.67]
[122]
Mourya VK, Inamdar N, Nawale RB, Kulthe SS. Polymeric micelles: general considerations and their applications. Indian J Pharm Educ Res 2011; 45(2): 128-38.
[123]
Nazila K, Yameen B, Wu J, Farokhzad OC. Nanoparticles: Mechanisms of controlling drug release nazila. Chem Rev 2016; 116: 2602-63.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346]
[124]
Jones MC, Leroux JC. Polymeric micelles-A new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999; 48(2): 101-11.
[http://dx.doi.org/10.1016/S0939-6411(99)00039-9] [PMID: 10469928]
[125]
Lembo D, Cavalli R. Nanoparticulate delivery systems for antiviral drugs. Antivir Chem Chemother 2010; 21(2): 53-70.
[http://dx.doi.org/10.3851/IMP1684] [PMID: 21107015]
[126]
Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S. Nanocapsules: the weapons for novel drug delivery systems. Bioimpacts 2012; 2(2): 71-81.
[PMID: 23678444]
[127]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[128]
Birnbaum DT, Brannon-Peppas L. Microparticle Drug Delivery Systems. In: Brown DM, Ed. Drug Delivery Systems in Cancer Therapy Cancer Drug Discovery and Development. Humana Press: Totowa, NJ 2004; Vol. 2: pp. 155-81.
[129]
Shen Y, Jin E, Zhang B, et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc 2010; 132(12): 4259-65.
[http://dx.doi.org/10.1021/ja909475m] [PMID: 20218672]
[130]
Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-A review. J Control Release 2008; 128(3): 185-99.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.007] [PMID: 18374443]
[131]
Novak BM. Hybrid nanocomposite materials between inorganic glasses and organic polymers. Adv Mater 1993; 5(6): 422-33.
[http://dx.doi.org/10.1002/adma.19930050603]
[132]
Fonseca LS, Silveira RP, Deboni AM, et al. Nanocapsule@xerogel microparticles containing sodium diclofenac: A new strategy to control the release of drugs. Int J Pharm 2008; 358(1-2): 292-5.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.005] [PMID: 18358650]
[133]
Kim D, Kim E, Lee J, et al. Direct synthesis of polymer nanocapsules: self-assembly of polymer hollow spheres through irreversible covalent bond formation. J Am Chem Soc 2010; 132(28): 9908-19.
[http://dx.doi.org/10.1021/ja1039242] [PMID: 20572658]
[134]
Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 2002; 19(6): 875-80.
[http://dx.doi.org/10.1023/A:1016121319668] [PMID: 12134960]
[135]
Chola M, Kumar R, Kumar R, Vyas M, et al. Recent pharmaceutical interventions in the treatment of HIV/AIDS. Think India Jour 2019; 22(30): 1028-39.
[136]
Sanchis J, Canal F, Lucas R, Vicent MJ. Polymer–drug conjugates for novel molecular targets. Nanomedicine (Lond) 2010; 5(6): 915-35.
[http://dx.doi.org/10.2217/nnm.10.71] [PMID: 20735226]
[137]
Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 2019; 18(4): 273-94.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[138]
Lv S, Tang Z, Zhang D, et al. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. J Control Release 2014; 194: 220-7.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.009] [PMID: 25220162]
[139]
Yurkovetskiy AV, Fram RJ. XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. Adv Drug Deliv Rev 2009; 61(13): 1193-202.
[140]
Brumlik MJ, Daniel BJ, Waehler R, Curiel DT, Giles FJ, Curiel TJ. Trends in immunoconjugate and ligand-receptor based targeting development for cancer therapy. Expert Opin Drug Deliv 2008; 5(1): 87-103.
[http://dx.doi.org/10.1517/17425247.5.1.87] [PMID: 18095930]
[141]
Li J, Yu F, Chen Y, Oupický D. Polymeric drugs: Advances in the development of pharmacologically active polymers. J Control Release 2015; 219: 369-82.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.043] [PMID: 26410809]
[142]
Kjellén L, Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem 1991; 60(1): 443-75.
[http://dx.doi.org/10.1146/annurev.bi.60.070191.002303] [PMID: 1883201]
[143]
Smith AAA, Kryger MBL, Wohl BM, et al. Macromolecular (pro)drugs in antiviral research. Polym Chem 2014; 5(22): 6407-25.
[http://dx.doi.org/10.1039/C4PY00624K]
[144]
Mateu MG. Mechanical properties of viruses analyzed by atomic force microscopy: A virological perspective. Virus Res 2012; 168(1-2): 1-22.
[http://dx.doi.org/10.1016/j.virusres.2012.06.008] [PMID: 22705418]
[145]
Thi EP, Lee AC, Geisbert JB, et al. Rescue of non-human primates from advanced Sudan ebolavirus infection with lipid encapsulated siRNA. Nature microb 2016; 1(10): 1-0.
[http://dx.doi.org/10.1038/nmicrobiol.2016.142]
[146]
Cheung R, Ng T, Wong J, Chan W. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 2015; 13(8): 5156-86.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[147]
Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotech 2010; 8(1): 1.
[148]
Sun L, Singh AK, Vig K, Pillai SR, Singh SR. Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol 2008; 4(2): 149-58.
[http://dx.doi.org/10.1166/jbn.2008.012]
[149]
Nayak D, Boxi A, Ashe S, Thathapudi NC, Nayak B. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation. Mater Sci Eng C 2017; 73: 406-16.
[http://dx.doi.org/10.1016/j.msec.2016.12.073] [PMID: 28183626]
[150]
Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 2008; 347(1-2): 93-101.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.016] [PMID: 17651927]
[151]
Prabhakar K, Afzal SM, Surender G, Kishan V. Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharm Sin B 2013; 3(5): 345-53.
[http://dx.doi.org/10.1016/j.apsb.2013.08.001]
[152]
Feng M, Cai Q, Huang H, Zhou P. Liver targeting and anti-HBV activity of reconstituted HDL–acyclovir palmitate complex. Eur J Pharm Biopharm 2008; 68(3): 688-93.
[http://dx.doi.org/10.1016/j.ejpb.2007.07.005] [PMID: 17890068]
[153]
Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103: 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[154]
Chiappetta DA, Hocht C, Taira C, Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability. Nanomedicine (Lond) 2010; 5(1): 11-23.
[http://dx.doi.org/10.2217/nnm.09.90] [PMID: 20025460]
[155]
Sawdon AJ, Peng CA. Polymeric micelles for acyclovir drug delivery. Colloids Surf B Biointerfaces 2014; 122: 738-45.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.011] [PMID: 25193154]
[156]
Li Q, Du YZ, Yuan H, et al. Synthesis of Lamivudine stearate and antiviral activity of stearic acid-g-chitosan oligosaccharide polymeric micelles delivery system. Eur J Pharm Sci 2010; 41(3-4): 498-507.
[http://dx.doi.org/10.1016/j.ejps.2010.08.004] [PMID: 20728535]
[157]
Hassan H, Adam SK, Othman F, Shamsuddin AF, Basir R. Antiviral nanodelivery systems: current trends in acyclovir administration. J Nanomater 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/4591634]
[158]
Yang XX, Li CM, Li YF, Wang J, Huang CZ. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 2017; 9(41): 16086-92.
[http://dx.doi.org/10.1039/C7NR06520E] [PMID: 29034936]
[159]
lannazzo D, Pistone A, Galvagno S, Ferro S, De Luca L, Maria A. Synthesis and anti-HIV activity of carboxylated and drug-conjugated multi-walled carbon nanotubes. Carbon 2014; 82: 548-61.
[160]
Gogola JL, Martins G, Gevaerd A, et al. Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Anal Chim Acta 2021; 1166: 338548.
[http://dx.doi.org/10.1016/j.aca.2021.338548] [PMID: 34022998]
[161]
Lin Z, Li Y, Guo M, et al. Inhibition of H1N1 influenza virus by selenium nanoparticles loaded with zanamivir through p38 and JNK signaling pathways. RSC Advances 2017; 7(56): 35290-6.
[http://dx.doi.org/10.1039/C7RA06477B]
[162]
Nabila N, Suada NK, Denis D, et al. Antiviral action of curcumin encapsulated in nanoemulsion against four serotypes of dengue virus. Pharma nanotech 2020; 8(1): 54-62.
[http://dx.doi.org/10.2174/2211738507666191210163408]
[163]
Borker S, Patole M, Moghe A, Pokharkar V. Engineering of pectin-reduced gold nanoparticles for targeted delivery of an antiviral drug to macrophages: in vitro and in vivo assessment. Gold Bull 2017; 50(3): 235-46.
[http://dx.doi.org/10.1007/s13404-017-0213-0]
[164]
Joshy KS, Snigdha S, Kalarikkal N, Pothen LA, Thomas S. Gelatin modified lipid nanoparticles for anti retroviral drug delivery. Chem Phys Lipids 2017.
[165]
Joshy KS, George A, Jose J, Kalarikkal N, Pothen LA, Thomas S. Novel dendritic structure of alginate hybrid nanoparticles for effective anti-viral drug delivery. Int J Biol Macromol 2017; 103: 1265-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.094] [PMID: 28559185]
[166]
Joshy KS, George A, Snigdha S, et al. Novel core-shell dextran hybrid nanosystem for anti-viral drug delivery. Mater Sci Eng C 2018; 93: 864-72.
[http://dx.doi.org/10.1016/j.msec.2018.08.015] [PMID: 30274122]
[167]
Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci (Camb) 2020; 11(26): 6606-22.
[http://dx.doi.org/10.1039/D0SC02658A] [PMID: 33033592]
[168]
Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur J Pharm Biopharm 2013; 85(3): 427-43.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.002] [PMID: 23872180]
[169]
Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 2019; 160: 130-42.
[http://dx.doi.org/10.1016/j.mimet.2019.03.017] [PMID: 30898602]
[170]
Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release 2018; 271: 60-73.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.016] [PMID: 29273320]
[171]
Malviya R, Tyagi V, Singh D. Techniques of mucilage and gum modification and their effect on hydrophilicity and drug release. Recent Pat Drug Deliv Formul 2021; 14(3): 214-22.
[http://dx.doi.org/10.2174/1872211314666201204160641] [PMID: 33280600]
[172]
Zhou G, Li R, Vasen T, Qi M, et al. Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180 μA/μm at V DS= 0.5 V. In. International Electron Devices Meeting. 2012: Dec 10-13, Sam Francisco, Ca, USA. IEEE 2013; pp. 32-6.
[173]
Schampaert E, Serruys P, Kappetein AP, et al. TCT-181 outcomes of left main PCI vs. CABG according the number of diseased coronary arteries: The EXCEL trial. J Am Coll Cardiol 2017; 70(18): B77.
[http://dx.doi.org/10.1016/j.jacc.2017.09.249]
[174]
Li Y, Lin Z, Guo M, et al. Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. Int J Nanomedicine 2017; 12: 5733-43.
[http://dx.doi.org/10.2147/IJN.S140939] [PMID: 28848350]
[175]
Manyarara TE, Khoza S, Dube A, Maponga CC. Formulation and characterization of a paediatric nanoemulsion dosage form with modified oral drug delivery system for improved dissolution rate of nevirapine. MRS Adv 2018; 3(37): 2203-19.
[http://dx.doi.org/10.1557/adv.2018.320]
[176]
Shao J, Kraft JC, Li B, et al. Nanodrug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS. Nanomedicine (Lond) 2016; 11(5): 545-64.
[http://dx.doi.org/10.2217/nnm.16.1] [PMID: 26892323]
[177]
Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus 2020; 12(3): e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[178]
Wang C, Wang Z, Wang G, Lau JYN, Zhang K, Li W. COVID-19 in early 2021: current status and looking forward. Signal Transduct Target Ther 2021; 6(1): 114.
[http://dx.doi.org/10.1038/s41392-021-00527-1] [PMID: 33686059]
[179]
Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020; 19(5): 305-6.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[180]
Jannat K, Paul AK, Bondhon TA, et al. Nanotechnology applications of flavonoids for viral diseases. Pharmaceutics 2021; 13(11): 1895.
[http://dx.doi.org/10.3390/pharmaceutics13111895] [PMID: 34834309]
[181]
Jamalipour Soufi G, Iravani S. Nanomaterials against pathogenic viruses: greener and sustainable approaches Inorg Nano-Met Chem 2020; 1851(11): 1598-614.
[182]
Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine 2019; 14: 1937.
[183]
Badwaik HR, Al Hoque A, Kumari L, Sakure K, Baghel M, Giri TK. Moringa gum and its modified form as a potential green polymer used in biomedical field Carbo Poly 2020; 10: 116893.
[184]
Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017; 4(4): 105-31.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[185]
Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. Could nanotechnology help to end the fight against COVID-19? Review of current findings, challenges and future perspectives. Int J Nanomedicine 2021; 16: 5713-43.
[http://dx.doi.org/10.2147/IJN.S327334] [PMID: 34465991]
[186]
Ertas YN, Mahmoodi M, Shahabipour F, et al. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). Emergent mater 2021; 4(1): 35-55.
[187]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-49.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[188]
Sagadevan S, Periasamy M. A review on role of nanostructures in drug delivery system. Rev Adv Mater Sci 2014; 36: 112-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy