Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

Review of Progress and Prospects in Research on Enzymatic and Non- Enzymatic Biofuel Cells; Specific Emphasis on 2D Nanomaterials

Author(s): Mithra Geetha, Kishor Kumar Sadasivuni*, Maryam Al-Ejji, Nandagopal Sivadas, Moghal Zubair Khalid Baig, Tamanna Jannat Promi, Sumayya Ali Ahmad, Sara Alabed, Dima Anwar Hijazi, Fatimatulzahraa Alsaedi and Faozia Nasser Al-Shaibah

Volume 11, Issue 3, 2022

Published on: 12 December, 2022

Page: [212 - 229] Pages: 18

DOI: 10.2174/2211550112666221201152211

Price: $65

Abstract

Energy generation from renewable sources and effective management are two critical challenges for sustainable development. Biofuel Cells (BFCs) provide an elegant solution by combining these two tasks. BFCs are defined by the catalyst used in the fuel cell and can directly generate electricity from biological substances. Various nontoxic chemical fuels, such as glucose, lactate, urate, alcohol, amines, starch, and fructose, can be used in BFCs and have specific components to oxide fuels. Widely available fuel sources and moderate operational conditions make them promise in renewable energy generation, remote device power sources, etc. Enzymatic biofuel cells (EBFCs) use enzymes as a catalyst to oxidize the fuel rather than precious metals. The shortcoming of the EBFCs system leads to integrated miniaturization issues, lower power density, poor operational stability, lower voltage output, lower energy density, inadequate durability, instability in the long-term application, and incomplete fuel oxidation. This necessitates the development of non-enzymatic biofuel cells (NEBFCs). The review paper extensively studies NEBFCs and its various synthetic strategies and catalytic characteristics. This paper reviews the use of nanocomposites as biocatalysts in biofuel cells and the principle of biofuel cells as well as their construction elements. This review briefly presents recent technologies developed to improve the biocatalytic properties, biocompatibility, biodegradability, implantability, and mechanical flexibility of BFCs.

Graphical Abstract

[1]
Carrette L, friedrich ka, stimming u. fuel cells - fundamentals and applications. Fuel Cells 2001; 1(1): 5-39.
[http://dx.doi.org/10.1002/1615-6854(200105)1:1<5:::AID-FUCE5>3.0.CO;2-G]
[2]
Windmiller JR, Wang J. Wearable electrochemical sensors and biosensors: a review. Electroanalysis 2013; 25(1): 29-46.
[3]
Katz E, MacVittie K. Implanted biofuel cells operating in vivo - methods, applications and perspectives - feature article. Energy Environ Sci 2013; 6(10): 2791-803.
[http://dx.doi.org/10.1039/c3ee42126k]
[4]
Calabrese Barton S, Gallaway J, Atanassov P. Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 2004; 104(10): 4867-86.
[http://dx.doi.org/10.1021/cr020719k] [PMID: 15669171]
[5]
Cosnier SJ, Gross A, Le Goff A, Holzinger M. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations. J Power Sources 2016; 325: 252-63.
[http://dx.doi.org/10.1016/j.jpowsour.2016.05.133]
[6]
Cosnier S, Gross AJ, Giroud F, Holzinger M. Beyond the hype surrounding biofuel cells: What’s the future of enzymatic fuel cells? Curr Opin Electrochem 2018; 12: 148-55.
[http://dx.doi.org/10.1016/j.coelec.2018.06.006]
[7]
Cracknell JA, Vincent KA, Armstrong FA. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 2008; 108(7): 2439-61.
[http://dx.doi.org/10.1021/cr0680639] [PMID: 18620369]
[8]
Kim J, Jia H, Wang P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 2006; 24(3): 296-308.
[http://dx.doi.org/10.1016/j.biotechadv.2005.11.006] [PMID: 16403612]
[9]
Rasmussen M, Abdellaoui S, Minteer SD. Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 2016; 76: 91-102.
[http://dx.doi.org/10.1016/j.bios.2015.06.029] [PMID: 26163747]
[10]
Yahiro AT, Lee SM, Kimble DO. Enzyme utilizing bio-fuel cell studies Biochimica et Biophysica Acta (BBA) Specialized Section on Biophysical Subjects. Bioelectrochemistry I 1964; 88(2): 375-83.
[11]
Agnès C, Reuillard B, Le Goff A, Holzinger M, Cosnier S. A double-walled carbon nanotube-based glucose/H2O2 biofuel cell operating under physiological conditions. Electrochem Commun 2013; 34: 105-8.
[http://dx.doi.org/10.1016/j.elecom.2013.05.018]
[12]
Suzuki A, Mano N, Tsujimura S. Lowering the potential of electroenzymatic glucose oxidation on redox hydrogel-modified porous carbon electrode. Electrochim Acta 2017; 232: 581-5.
[http://dx.doi.org/10.1016/j.electacta.2017.03.007]
[13]
Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys Chem Chem Phys 2007; 9(15): 1793-801.
[http://dx.doi.org/10.1039/b617650j] [PMID: 17415490]
[14]
Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K. High-Power formate/dioxygen biofuel cell based on mediated electron transfer type bioelectrocatalysis. ACS Catal 2017; 7(9): 5668-73.
[http://dx.doi.org/10.1021/acscatal.7b01918]
[15]
Ramanavicius A, Kausaite A, Ramanaviciene A. Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosens Bioelectron 2008; 24(4): 761-6.
[http://dx.doi.org/10.1016/j.bios.2008.06.048] [PMID: 18693008]
[16]
Kontani A, Masuda M, Matsumura H, Nakamura N, Yohda M, Ohno H. A bioanode using thermostable alcohol dehydrogenase for an ethanol biofuel cell operating at high temperatures. Electroanalysis 2014; 26(4): 682-6.
[http://dx.doi.org/10.1002/elan.201300514]
[17]
Wang X, Roger M, Clément R, et al. Electron transfer in an acidophilic bacterium: interaction between a diheme cytochrome and a cupredoxin. Chem Sci 2018; 9(21): 4879-91.
[http://dx.doi.org/10.1039/C8SC01615A] [PMID: 29910941]
[18]
Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond, B 1911; 84(571): 260-76.
[http://dx.doi.org/10.1098/rspb.1911.0073]
[19]
Srivastava RK, Boddula R, Pothu R. Microbial fuel cells: Technologically advanced devices and approach for sustainable/renewable energy development. Energy Conversion and Management: X 2022; 13: 100160.
[http://dx.doi.org/10.1016/j.ecmx.2021.100160]
[20]
Laane C, Pronk W, Franssen M, Veeger C. Use of a bioelectrochemical cell for the synthesis of (bio)chemicals. Enzyme Microb Technol 1984; 6(4): 165-8.
[http://dx.doi.org/10.1016/0141-0229(84)90025-5]
[21]
Cass AEG, Davis G, Francis GD, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 1984; 56(4): 667-71.
[http://dx.doi.org/10.1021/ac00268a018] [PMID: 6721151]
[22]
Lovley DR. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 2006; 17(3): 327-32.
[http://dx.doi.org/10.1016/j.copbio.2006.04.006] [PMID: 16679010]
[23]
Minteer SD, Liaw BY, Cooney MJ. Enzyme-based biofuel cells. Curr Opin Biotechnol 2007; 18(3): 228-34.
[http://dx.doi.org/10.1016/j.copbio.2007.03.007] [PMID: 17399977]
[24]
Yu EH, Scott K. Enzymatic biofuel cells-fabrication of enzyme electrodes. Energies 2010; 3(1): 23-42.
[http://dx.doi.org/10.3390/en3010023]
[25]
Habermann W, Pommer EH. Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 1991; 35(1): 128-33.
[http://dx.doi.org/10.1007/BF00180650]
[26]
Logan B, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 2007; 41(9): 3341-6.
[http://dx.doi.org/10.1021/es062644y] [PMID: 17539547]
[27]
Barua E, Hossain MS, Shaha M, et al. Generation of electricity using Microbial Fuel Cell (MFC) from Sludge. Bangladesh J Microbiol 2019; 35(1): 23-6.
[http://dx.doi.org/10.3329/bjm.v35i1.39800]
[28]
Zhang Y, Min B, Huang L, Angelidaki I. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl Environ Microbiol 2009; 75(11): 3389-95.
[http://dx.doi.org/10.1128/AEM.02240-08] [PMID: 19376925]
[29]
Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. J Power Sources 2017; 356: 225-44.
[http://dx.doi.org/10.1016/j.jpowsour.2017.03.109] [PMID: 28717261]
[30]
Pant D, Van Bogaert G, Diels L, Vanbroekhoven K. A review of the substrates used in Microbial Fuel Cells (MFCs) for sustainable energy production. Bioresour Technol 2010; 101(6): 1533-43.
[http://dx.doi.org/10.1016/j.biortech.2009.10.017] [PMID: 19892549]
[31]
Zhang Q, Hu J, Lee DJ. Microbial fuel cells as pollutant treatment units: Research updates. Bioresour Technol 2016; 217: 121-8.
[http://dx.doi.org/10.1016/j.biortech.2016.02.006] [PMID: 26906446]
[32]
Mishra A, Bhatt R, Bajpai J, Bajpai AK. Nanomaterials based biofuel cells: A review. Int J Hydrogen Energy 2021; 46(36): 19085-105.
[http://dx.doi.org/10.1016/j.ijhydene.2021.03.024]
[33]
Jang JK, Pham TH, Chang IS, et al. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem 2004; 39(8): 1007-12.
[http://dx.doi.org/10.1016/S0032-9592(03)00203-6]
[34]
Oon YL, Ong SA, Ho LN, et al. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresour Technol 2015; 186: 270-5.
[http://dx.doi.org/10.1016/j.biortech.2015.03.014] [PMID: 25836035]
[35]
Prathiba S, Kumar PS, Vo DN. Recent advancements in microbial fuel cells A review on its electron transfer mechanisms, microbial community, types of substrates and design forbio-electrochemicaltreatment. Chemosphere 2022; 286: 131856.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131856]
[36]
Kim B, Mohan SV, Fapyane D, Chang IS. Controlling voltage reversal in microbial fuel cells. Trends Biotechnol 2020; 38(6): 667-78.
[http://dx.doi.org/10.1016/j.tibtech.2019.12.007] [PMID: 31980302]
[37]
Wang H, Wang G, Ling Y, et al. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 2013; 5(21): 10283-90.
[http://dx.doi.org/10.1039/c3nr03487a] [PMID: 24057049]
[38]
Di Lorenzo M, Thomson AR, Schneider K, Cameron PJ, Ieropoulos I. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens Bioelectron 2014; 62: 182-8.
[http://dx.doi.org/10.1016/j.bios.2014.06.050] [PMID: 25005554]
[39]
Chouler J, Padgett GA, Cameron PJ, et al. Towards effective small scale microbial fuel cells for energy generation from urine. Electrochim Acta 2016; 192: 89-98.
[http://dx.doi.org/10.1016/j.electacta.2016.01.112]
[40]
Yang Y, Ye D, Li J, Zhu X, Liao Q, Zhang B. Microfluidic microbial fuel cells: from membrane to membrane free. J Power Sources 2016; 324: 113-25.
[http://dx.doi.org/10.1016/j.jpowsour.2016.05.078]
[41]
Li XM, Cheng KY, Wong JWC. Bioelectricity production from food waste leachate using microbial fuel cells: Effect of NaCl and pH. Bioresour Technol 2013; 149: 452-8.
[http://dx.doi.org/10.1016/j.biortech.2013.09.037] [PMID: 24140849]
[42]
Qian F, Morse DE. Miniaturizing microbial fuel cells. Trends Biotechnol 2011; 29(2): 62-9.
[http://dx.doi.org/10.1016/j.tibtech.2010.10.003] [PMID: 21075467]
[43]
Mink JE, Qaisi RM, Logan BE, Hussain MM. Energy harvesting from organic liquids in micro-sized microbial fuel cells. NPG Asia Mater 2014; 6(3): e89-9.
[http://dx.doi.org/10.1038/am.2014.1]
[44]
Al-Asheh S, Al-Assaf Y, Aidan A. Single-chamber microbial fuel cells’ behavior at different operational scenarios. Energies 2020; 13(20): 5458.
[http://dx.doi.org/10.3390/en13205458]
[45]
Flimban SG, Kim T, Ismail IM, Oh I. Overview of microbial fuel cell (MFC) recent advancement from fundamentals to applications: MFC designs, major elements, and scalability. Preprints 2018; 2018; 100763.
[http://dx.doi.org/10.20944/preprints201810.0763.v1]
[46]
Logroño W, Pérez M, Urquizo G, et al. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere 2017; 176: 378-88.
[http://dx.doi.org/10.1016/j.chemosphere.2017.02.099]
[47]
Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 2004; 38(14): 4040-6.
[http://dx.doi.org/10.1021/es0499344] [PMID: 15298217]
[48]
Jiang D, Curtis M, Troop E, et al. A pilot-scale study on utilizing Multi-Anode/Cathode Microbial Fuel Cells (MAC MFCs) to enhance the power production in wastewater treatment. Int J Hydrogen Energy 2011; 36(1): 876-84.
[http://dx.doi.org/10.1016/j.ijhydene.2010.08.074]
[49]
Munoz-Cupa C, Hu Y, Xu C, Bassi A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci Total Environ 2021; 754: 142429.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142429] [PMID: 33254845]
[50]
Prathiba S, Kumar PS, Vo DVN. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere 2022; 286(Pt 3): 131856.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131856] [PMID: 34399268]
[51]
Bose D, Rawat R, Bahuguna R, Vijay P, Gopinath M. Sustainable approach to wastewater treatment and bioelectricity generation using microbial fuel cells Current Developments in Biotechnology and Bioengineering. Elsevier 2020; pp. 37-50.
[http://dx.doi.org/10.1016/B978-0-444-64321-6.00003-3]
[52]
Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta 2003; 48(8): 1015-21.
[http://dx.doi.org/10.1016/S0013-4686(02)00815-0]
[53]
Guo K, Hassett DJ, Gu T. Microbial fuel cells: electricity generation from organic wastes by microbes. 2012; pp. 162-89.
[http://dx.doi.org/10.1079/9781845939564.0162]
[54]
Dharmalingam S, Kugarajah V, Sugumar M. Membranes for microbial fuel cells microbial electrochemical technology. Elsevier 2019; pp. 143-94.
[http://dx.doi.org/10.1016/B978-0-444-64052-9.00007-8]
[55]
Leech D, Kavanagh P, Schuhmann W. Enzymatic fuel cells: Recent progress. Electrochim Acta 2012; 84: 223-34.
[http://dx.doi.org/10.1016/j.electacta.2012.02.087]
[56]
Barelli L, Bidini G, Pelosi D, Sisani E. Enzymatic biofuel cells: A review on flow designs. Energies 2021; 14(4): 910.
[http://dx.doi.org/10.3390/en14040910]
[57]
Nasar A, Perveen R. Applications of enzymatic biofuel cells in bioelectronic devices - A review. Int J Hydrogen Energy 2019; 44(29): 15287-312.
[http://dx.doi.org/10.1016/j.ijhydene.2019.04.182]
[58]
de Poulpiquet A, Ciaccafava A, Lojou E. New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells. Electrochim Acta 2014; 126: 104-14.
[http://dx.doi.org/10.1016/j.electacta.2013.07.133]
[59]
An L. Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J Power Sources 2011; 196(1): 186-90.
[60]
Habrioux A, Napporn T, Servat K, Tingry S, Kokoh KB. Electrochemical characterization of adsorbed bilirubin oxidase on Vulcan XC 72R for the biocathode preparation in a glucose/O2 biofuel cell. Electrochim Acta 2010; 55(26): 7701-5.
[http://dx.doi.org/10.1016/j.electacta.2009.09.080]
[61]
Banerjee S, Slaughter G. A tattoo-like glucose abiotic biofuel cell. J Electroanalhem 2022; 904: 115941.
[62]
Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD. Enzyme catalysed biofuel cells. Energy Environ Sci 2008; 1(3): 320.
[http://dx.doi.org/10.1039/b809009b]
[63]
Cosnier S, Le Goff A, Holzinger M. Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochem Commun 2014; 38: 19-23.
[http://dx.doi.org/10.1016/j.elecom.2013.09.021]
[64]
Ha S, Wee Y, Kim J. Nanobiocatalysis for enzymatic biofuel cells. Top Catal 2012; 55(16-18): 1181-200.
[http://dx.doi.org/10.1007/s11244-012-9903-2]
[65]
Babadi AA, Bagheri S, Hamid SBA. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosens Bioelectron 2016; 79: 850-60.
[http://dx.doi.org/10.1016/j.bios.2016.01.016] [PMID: 26785309]
[66]
Karimi A, Othman A, Uzunoglu A, Stanciu L, Andreescu S. Graphene based enzymatic bioelectrodes and biofuel cells. Nanoscale 2015; 7(16): 6909-23.
[http://dx.doi.org/10.1039/C4NR07586B] [PMID: 25832672]
[67]
Mazurenko I, Wang X, de Poulpiquet A, Lojou E. H2/O2 enzymatic fuel cells: from proof-of-concept to powerful devices. Sustain Energy Fuels 2017; 1(7): 1475-501.
[http://dx.doi.org/10.1039/C7SE00180K]
[68]
Meredith MT, Minteer SD. Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annu Rev Anal Chem 2012; 5(1): 157-79.
[http://dx.doi.org/10.1146/annurev-anchem-062011-143049] [PMID: 22524222]
[69]
Ammam M. Electrochemical and electrophoretic deposition of enzymes: Principles, differences and application in miniaturized biosensor and biofuel cell electrodes. Biosens Bioelectron 2014; 58: 121-31.
[http://dx.doi.org/10.1016/j.bios.2014.02.030] [PMID: 24632138]
[70]
Yang XY, Tian G, Jiang N. Immobilization technology a sustainable solution for biofuel cell design. Energy Environl Sci 5(2): 5540-463.
[http://dx.doi.org/10.1039/C1EE02391H]
[71]
Yates NDJ, Fascione MA, Parkin A. Methodologies for “Wiring” redox proteins/enzymes to electrode surfaces. Chem Eur J 2018; 24: 12164.
[72]
Abdellaoui S, Macazo FC, Cai R, De Lacey AL, Pita M, Minteer SD. Enzymatic electrosynthesis of alkanes by bioelectrocatalytic decarbonylation of fatty aldehydes. Angew Chem Int Ed 2018; 57(9): 2404-8.
[http://dx.doi.org/10.1002/anie.201712890] [PMID: 29286557]
[73]
Gentil S, Che Mansor SM, Jamet H, Cosnier S, Cavazza C, Le Goff A. Oriented immobilization of [NiFeSe] hydrogenases on covalently and noncovalently functionalized carbon nanotubes for H2/air enzymatic fuel cells. ACS Catal 2018; 8(5): 3957-64.
[http://dx.doi.org/10.1021/acscatal.8b00708]
[74]
Milton RD, Cai R, Abdellaoui S, et al. Bioelectrochemical haber-bosch process: An ammonia-producing H2/N2 Fuel Cell. Angew Chem Int Ed 2017; 56(10): 2680-3.
[http://dx.doi.org/10.1002/anie.201612500] [PMID: 28156040]
[75]
Xia H, So K, Kitazumi Y, et al. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature. J Power Sources 2016; 335: 105-12.
[http://dx.doi.org/10.1016/j.jpowsour.2016.10.030]
[76]
Palmore GTR, Bertschy H, Bergens SH, Whitesides GM. A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J Electroanal Chem 1998; 443(1): 155-61.
[http://dx.doi.org/10.1016/S0022-0728(97)00393-8]
[77]
Arechederra RL, Minteer SD. Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells 2009; 9(1): 63-9.
[http://dx.doi.org/10.1002/fuce.200800029]
[78]
Zhao F, Slade RCT, Varcoe JR. Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 2009; 38(7): 1926-39.
[http://dx.doi.org/10.1039/b819866g] [PMID: 19551173]
[79]
So K, Sakai K, Kano K. Gas diffusion bioelectrodes. Curr Opin Electrochem 2017; 5.
[80]
Wen D, Eychmüller A. Enzymatic biofuel cells on porous nanostructures. Small 2016; 12(34): 4649-61.
[http://dx.doi.org/10.1002/smll.201600906] [PMID: 27377976]
[81]
Zhao C, Gai P, Song R, Chen Y, Zhang J, Zhu JJ. Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 2017; 46(5): 1545-64.
[http://dx.doi.org/10.1039/C6CS00044D] [PMID: 28211932]
[82]
Ding Y, Kim YJ, Erlebacher J. Nanoporous gold leaf? ancient technology?/advanced material. Adv Mater 2004; 16(21): 1897-900.
[http://dx.doi.org/10.1002/adma.200400792]
[83]
Scanlon MD, Salaj-Kosla U, Belochapkine S, et al. Characterization of nanoporous gold electrodes for bioelectrochemical applications. Langmuir 2012; 28(4): 2251-61.
[http://dx.doi.org/10.1021/la202945s] [PMID: 22004670]
[84]
Siepenkoetter T, Salaj-Kosla U, Xiao X, Belochapkine S, Magner E. Nanoporous gold electrodes with tuneable pore sizes for bioelectrochemical applications. Electroanalysis 2016; 28(10): 2415-23.
[http://dx.doi.org/10.1002/elan.201600249]
[85]
Nishio K, Masuda H. Anodization of Gold in Oxalate Solution to Form a Nanoporous Black Film Angew 2001.
[86]
Pita M, Gutierrez-Sanchez C, Toscano MD, Shleev S, De Lacey AL. Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry 2013; 94: 69-74.
[http://dx.doi.org/10.1016/j.bioelechem.2013.07.001] [PMID: 23973738]
[87]
Siepenkoetter T, Salaj-Kosla U, Magner E. The immobilization of fructose dehydrogenase on nanoporous gold electrodes for the detection of fructose. ChemElectroChem 2017; 4(4): 905-12.
[http://dx.doi.org/10.1002/celc.201600842]
[88]
Siepenkoetter T, Salaj-Kosla U, Xiao X, et al. Immobilization of Redox Enzymes on Nanoporous Gold Electrodes: Applications in Biofuel Cells. ChemPlusChem 2017; 82(4): 553-60.
[http://dx.doi.org/10.1002/cplu.201600455] [PMID: 31961582]
[89]
Gao Z, Binyamin G, Kim HH, Barton SC, Zhang Y, Heller A. Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking. Angew Chem Int Ed 2002; 41(5): 810-3.
[http://dx.doi.org/10.1002/1521-3773(20020301)41:5<810::AID-ANIE810>3.0.CO;2-I] [PMID: 12491344]
[90]
Xiao X, Wang M, Li H, Si P. One-step fabrication of bio-functionalized nanoporous gold/poly(3,4-ethylenedioxythiophene) hybrid electrodes for amperometric glucose sensing. Talanta 2013; 116: 1054-9.
[http://dx.doi.org/10.1016/j.talanta.2013.08.014] [PMID: 24148515]
[91]
Pepe Sciarria T, Merlino G, Scaglia B, et al. Electricity generation using white and red wine lees in air cathode microbial fuel cells. J Power Sources 2015; 274: 393-9.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.050]
[92]
Mansoorian HJ, Mahvi AH, Jafari AJ, Khanjani N. Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. J Saudi Chem Soc 2016; 20(1): 88-100.
[http://dx.doi.org/10.1016/j.jscs.2014.08.002]
[93]
Noori P, Najafpour Darzi G. Enhanced power generation in annular single-chamber microbial fuel cell via optimization of electrode spacing using chocolate industry wastewater. Biotechnol Appl Biochem 2016; 63(3): 427-34.
[http://dx.doi.org/10.1002/bab.1374] [PMID: 25810217]
[94]
Sawasdee V, Pisutpaisal N. Simultaneous pollution treatment and electricity generation of tannery wastewater in air-cathode single chamber MFC. Int J Hydrogen Energy 2016; 41(35): 15632-7.
[http://dx.doi.org/10.1016/j.ijhydene.2016.04.179]
[95]
Nor MHM, Mubarak MFM, Elmi HSA, Ibrahim N, Wahab MFA, Ibrahim Z. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge. Bioresour Technol 2015; 190: 458-65.
[http://dx.doi.org/10.1016/j.biortech.2015.02.103] [PMID: 25799955]
[96]
Sharma P, Mutnuri S. Nutrient recovery and microbial diversity in human urine fed microbial fuel cell. Water Sci Technol 2019; 79(4): 718-30.
[http://dx.doi.org/10.2166/wst.2019.089] [PMID: 30975938]
[97]
Xu R, Zhang K, Xie S, Liu P, Yu Z. Evaluation of electricity production from paper industry wastewater by Cellulomonas iranensis LZ-P1 isolated from giant panda. JCleanerProd 2021; 278: 123576.
[98]
Ren B, Wang T, Zhao Y. Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation. Chemosphere 2021; 268: 128803.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128803] [PMID: 33143898]
[99]
Chaijak P, Sato C, Lertworapreecha M, Sukkasem C, Boonsawang P, Paucar N. Potential of biochar-anode in a ceramic-separator microbial fuel cell (CMFC) with a laccase-based air cathode. Pol J Environ Stud 2019; 29(1): 499-503.
[http://dx.doi.org/10.15244/pjoes/99099]
[100]
Kloch M, Toczyłowska-Mamińska R. Toward optimization of wood industry wastewater treatment in microbial fuel cells—mixed wastewaters approach. Energies 2020; 13(1): 263.
[http://dx.doi.org/10.3390/en13010263]
[101]
Moniz E J. Nanotechnology for the energy challenge. John Wiley & Son 2010.
[102]
Xiao X, Xia H, Wu R, et al. Tackling the challenges of enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119(16): 9509-58.
[http://dx.doi.org/10.1021/acs.chemrev.9b00115] [PMID: 31243999]
[103]
Osman MH, Shah AA, Walsh FC. Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial. Biosens Bioelectron 2010; 26(3): 953-63.
[http://dx.doi.org/10.1016/j.bios.2010.08.057] [PMID: 20864328]
[104]
Osman MH, Shah AA, Walsh FC. Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosens Bioelectron 2011; 26(7): 3087-102.
[http://dx.doi.org/10.1016/j.bios.2011.01.004] [PMID: 21295964]
[105]
Flexer V, Brun N, Destribats M, Backov R, Mano N. A novel three-dimensional macrocellular carbonaceous biofuel cell. Phys Chem Chem Phys 2013; 15(17): 6437-45.
[http://dx.doi.org/10.1039/c3cp50807b] [PMID: 23525249]
[106]
Kwon KY, Youn J, Kim JH, et al. Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells. Biosens Bioelectron 2010; 26(2): 655-60.
[http://dx.doi.org/10.1016/j.bios.2010.07.001] [PMID: 20673623]
[107]
Cosnier S, Holzinger M, Le Goff A. Recent advances in carbon nanotube-based enzymatic fuel cells. Front Bioeng Biotechnol 2014; 2: 45.
[http://dx.doi.org/10.3389/fbioe.2014.00045] [PMID: 25386555]
[108]
Tasca F, Harreither W, Ludwig R, Gooding JJ, Gorton L. Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface. Anal Chem 2011; 83(8): 3042-9.
[http://dx.doi.org/10.1021/ac103250b] [PMID: 21417322]
[109]
Campbell AS, Jeong YJ, Geier SM, et al. Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes. ACS Appl Mater Interfaces 2015; 7(7): 4056-65.
[http://dx.doi.org/10.1021/am507801x] [PMID: 25643030]
[110]
Liu J, Qiao Y, Guo CX, Lim S, Song H, Li CM. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour Technol 2012; 114: 275-80.
[http://dx.doi.org/10.1016/j.biortech.2012.02.116] [PMID: 22483349]
[111]
Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res 2013; 46(3): 702-13.
[http://dx.doi.org/10.1021/ar300028m] [PMID: 22999420]
[112]
Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Letters 2006; 6(6): 1121-5.
[http://dx.doi.org/10.1021/nl060162e]
[113]
Kwon CH, Ko Y, Shin D, et al. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nat Commun 2018; 9(1): 4479.
[http://dx.doi.org/10.1038/s41467-018-06994-5] [PMID: 30367069]
[114]
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666-9.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[115]
Fang XY, Yu XX, Zheng HM, Jin HB, Wang L, Cao MS. Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys Lett A 2015; 379(37): 2245-51.
[http://dx.doi.org/10.1016/j.physleta.2015.06.063]
[116]
Gnana kumar G, Kirubaharan CJ, Udhayakumar S, et al. Synthesis, structural, and morphological characterizations of reduced graphene oxide-supported polypyrrole anode catalysts for improved microbial fuel cell performances. ACS Sustain Chem Eng 2014; 2(10): 2283-90.
[http://dx.doi.org/10.1021/sc500244f]
[117]
Hou J, Liu Z, Zhang P. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources 2013; 224: 139-44.
[http://dx.doi.org/10.1016/j.jpowsour.2012.09.091]
[118]
kumar GG, Hashmi S, Karthikeyan C, GhavamiNejad A, Vatankhah-Varnoosfaderani M, Stadler FJ. Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications. Macromol Rapid Commun 2014; 35(21): 1861-5.
[http://dx.doi.org/10.1002/marc.201400332] [PMID: 25228415]
[119]
Liu Y, Yu L, Ong CN, Xie J. Nitrogen-doped graphene nanosheets as reactive water purification membranes. Nano Res 2016; 9(7): 1983-93.
[http://dx.doi.org/10.1007/s12274-016-1089-7]
[120]
Tsang ACH, Kwok HYH, Leung DYC. The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sci 2017; 67: A1-A14.
[http://dx.doi.org/10.1016/j.solidstatesciences.2017.03.015]
[121]
Khan K, Tareen AK, Aslam M, et al. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale 2019; 11(45): 21622-78.
[http://dx.doi.org/10.1039/C9NR05919A]
[122]
Bi H, Xie X, Yin K, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 2012; 22(21): 4421-5.
[http://dx.doi.org/10.1002/adfm.201200888]
[123]
Cheng C, Li D. Solvated graphenes: an emerging class of functional soft materials. Adv Mater 2013; 25(1): 13-30.
[http://dx.doi.org/10.1002/adma.201203567] [PMID: 23180382]
[124]
Zhang Y, Mo G, Li X, Ye J. Iron tetrasulfophthalocyanine functionalized graphene as a platinum-free cathodic catalyst for efficient oxygen reduction in microbial fuel cells. J Power Sources 2012; 197: 93-6.
[http://dx.doi.org/10.1016/j.jpowsour.2011.06.105]
[125]
Zhang HH, Liu Q, Feng K, Chen B, Tung CH, Wu LZ. Facile photoreduction of graphene oxide by an NAD(P)H Model Hantzsch 1,4-dihydropyridine. Langmuir 2012; 28(21): 8224-9.
[http://dx.doi.org/10.1021/la301429g]
[126]
Wang Y, Zhao C, Sun D, Zhang JR, Zhu JJ. A Graphene/poly(3,4-ethylenedioxythiophene) Hybrid as an anode for high-performance microbial fuel cells. ChemPlusChem 2013; 78(8): 823-9.
[http://dx.doi.org/10.1002/cplu.201300102] [PMID: 31986676]
[127]
Wang X, Wang J, Cheng H, Yu P, Ye J, Mao L. Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices. Langmuir 2011; 27(17): 11180-6.
[http://dx.doi.org/10.1021/la202018r] [PMID: 21793577]
[128]
Fang Y, Miao R, Wang T, Wang X. Suppression of methanol cross-over in novel composite membranes for direct methanol fuel cells. Pure Appl Chem 2009; 81(12): 2309-16.
[http://dx.doi.org/10.1351/PAC-CON-08-12-01]
[129]
He Z, Liu J, Qiao Y, Li CM, Tan TTY. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett 2012; 12(9): 4738-41.
[http://dx.doi.org/10.1021/nl302175j] [PMID: 22889473]
[130]
Xie X, Yu G, Liu N. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ Sci 2012; 5(5): 6862-6.
[http://dx.doi.org/10.1039/c2ee03583a]
[131]
Yong YC, Dong XC, Chan-Park MB, Song H, Chen P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 2012; 6(3): 2394-400.
[http://dx.doi.org/10.1021/nn204656d] [PMID: 22360743]
[132]
Vickery JL, Patil AJ, Mann S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 2009; 21(21): 2180-4.
[http://dx.doi.org/10.1002/adma.200803606]
[133]
Klaysom C, Marschall R, Moon SH, Ladewig BP, Lu GQM, Wang L. Preparation of porous composite ion-exchange membranes for desalination application. J Mater Chem 2011; 21(20): 7401-9.
[http://dx.doi.org/10.1039/c0jm04142d]
[134]
Sadrzadeh M, Bhattacharjee S. Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives. J Membr Sci 2013; 441: 31-44.
[http://dx.doi.org/10.1016/j.memsci.2013.04.009]
[135]
Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM. Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether sulfone) and Fe2O3 nanoparticles for direct methanol fuel cell application. Int J Hydrogen Energy 2011; 36(23): 15323-32.
[http://dx.doi.org/10.1016/j.ijhydene.2011.08.068]
[136]
Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, et al. Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications. Chem Commun 2010; 46(35): 6500-2.
[http://dx.doi.org/10.1039/c0cc01125h] [PMID: 20697619]
[137]
Shen Y, Qiu X, Shen J, Xi J, Zhu W. PVDF-g-PSSA and Al2O3 composite proton exchange membranes. J Power Sources 2006; 161(1): 54-60.
[http://dx.doi.org/10.1016/j.jpowsour.2006.03.049]
[138]
Krishnan NN, Henkensmeier D, Jang JH, et al. Sulfonated poly(ether sulfone)-based silica nanocomposite membranes for high temperature polymer electrolyte fuel cell applications. Int J Hydrogen Energy 2011; 36(12): 7152-61.
[http://dx.doi.org/10.1016/j.ijhydene.2011.03.015]
[139]
Klaysom C, Marschall R, Wang L, Ladewig BP, Lu GQM. Synthesis of composite ion-exchange membranes and their electrochemical properties for desalination applications. J Mater Chem 2010; 20(22): 4669-74.
[http://dx.doi.org/10.1039/b925357b]
[140]
Nonjola PT, Mathe MK, Modibedi RM. Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles. Int J Hydrogen Energy 2013; 38(12): 5115-21.
[http://dx.doi.org/10.1016/j.ijhydene.2013.02.028]
[141]
Fiorilli S, Caldarola D, Ma H, Onida B. Bi-functionalization of silica spheres with sulfonic and carboxylic groups via a co-condensation route. J Sol-Gel Sci Technol 2011; 60(3): 260-5.
[http://dx.doi.org/10.1007/s10971-011-2484-x]
[142]
Zolfigol MA, Khazaei A, Mokhlesi M, Derakhshan-Panah F. Synthesis, characterization and catalytic properties of monodispersed nano-sphere silica sulfuric acid. J Mol Catal Chem 2013; 370: 111-6.
[http://dx.doi.org/10.1016/j.molcata.2013.01.010]
[143]
Vincent KA, Li X, Blanford CF, Belsey NA, Weiner JH, Armstrong FA. Enzymatic catalysis on conducting graphite particles. Nat Chem Biol 2007; 3(12): 761-2.
[http://dx.doi.org/10.1038/nchembio.2007.47] [PMID: 17994012]
[144]
Habrioux A, Sibert E, Servat K, Vogel W, Kokoh KB, Alonso-Vante N. Activity of platinum-gold alloys for glucose electrooxidation in biofuel cells. J Phys Chem B 2007; 111(34): 10329-33.
[http://dx.doi.org/10.1021/jp0720183] [PMID: 17685566]
[145]
Murata K, Suzuki M, Kajiya K, Nakamura N, Ohno H. High performance bioanode based on direct electron transfer of fructose dehydrogenase at gold nanoparticle-modified electrodes. Electrochem Commun 2009; 11(3): 668-71.
[http://dx.doi.org/10.1016/j.elecom.2009.01.011]
[146]
Ryu J, Kim HS, Hahn HT, Lashmore D. Carbon nanotubes with platinum nano-islands as glucose biofuel cell electrodes. Biosens Bioelectron 2010; 25(7): 1603-8.
[http://dx.doi.org/10.1016/j.bios.2009.11.019] [PMID: 20022482]
[147]
Yang X, Lu J, Zhu Y, et al. Microbial fuel cell cathode with dendrimer encapsulated Pt nanoparticles as catalyst. J Power Sources 2011; 196(24): 10611-5.
[http://dx.doi.org/10.1016/j.jpowsour.2011.08.111]
[148]
Zhao S, Li Y, Yin H, et al. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci Adv 2015; 1(10): e1500372.
[http://dx.doi.org/10.1126/sciadv.1500372] [PMID: 26702430]
[149]
Jeerapan I, Ma N. Challenges and opportunities of carbon nanomaterials for biofuel cells and supercapacitors: personalized energy for futuristic self-sustainable devices. C 2019; 5(4): 62.
[150]
Falk M, Shleev S. Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Biosens Bioelectron 2019; 126: 275-91.
[http://dx.doi.org/10.1016/j.bios.2018.10.053] [PMID: 30445303]
[151]
Jeerapan I, Sempionatto JR, Pavinatto A, You JM, Wang J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J Mater Chem A Mater Energy Sustain 2016; 4(47): 18342-53.
[http://dx.doi.org/10.1039/C6TA08358G] [PMID: 28439415]
[152]
Kim J, Jeerapan I, Sempionatto JR, et al. Wearable bioelectronics: Enzyme-based body-worn electronic devices. Acc Chem Res 2018; 51(11): 2820-8.
[http://dx.doi.org/10.1021/acs.accounts.8b00451] [PMID: 30398344]
[153]
Xiao X, Siepenkoetter T, Conghaile PÓ, Leech D, Magner E. Nanoporous gold-based biofuel cells on contact lenses. ACS Appl Mater Interfaces 2018; 10(8): 7107-16.
[http://dx.doi.org/10.1021/acsami.7b18708] [PMID: 29406691]
[154]
Yu EH, Prodanovic R, Güven G, Ostafe R, Schwaneberg U. Electrochemical oxidation of glucose using mutant glucose oxidase from directed protein evolution for biosensor and biofuel cell applications. Appl Biochem Biotechnol 2011; 165(7-8): 1448-57.
[http://dx.doi.org/10.1007/s12010-011-9366-0] [PMID: 21915588]
[155]
Hou X. Cardiac Pacemaker-A Smart DeviceBiotechnology Products in Everyday Life. Springer International Publishing 2019; pp. 87-97.
[http://dx.doi.org/10.1007/978-3-319-92399-4_6]
[156]
Boink GJJ, Christoffels VM, Robinson RB, Tan HL. The past, present, and future of pacemaker therapies. Trends Cardiovasc Med 2015; 25(8): 661-73.
[http://dx.doi.org/10.1016/j.tcm.2015.02.005] [PMID: 26001958]
[157]
Li N, Yi Z, Ma Y, et al. Direct powering a real cardiac pacemaker by natural energy of a heartbeat. ACS Nano 2019; 13(3): 2822-30.
[http://dx.doi.org/10.1021/acsnano.8b08567] [PMID: 30784259]
[158]
Slaughter G, Kulkarni T. Highly selective and sensitive self-powered glucose sensor based on capacitor circuit. Sci Rep 2017; 7(1): 1471.
[http://dx.doi.org/10.1038/s41598-017-01665-9] [PMID: 28469179]
[159]
Katz E, Bückmann AF, Willner I. Self-powered enzyme-based biosensors. J Am Chem Soc 2001; 123(43): 10752-3.
[http://dx.doi.org/10.1021/ja0167102] [PMID: 11674014]
[160]
Mano N, Mao F, Heller A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J Am Chem Soc 2003; 125(21): 6588-94.
[http://dx.doi.org/10.1021/ja0346328] [PMID: 12785800]
[161]
Moore CM, Minteer SD, Martin RS. Microchip-based ethanol/oxygen biofuel cell. Lab Chip 2005; 5(2): 218-25.
[http://dx.doi.org/10.1039/b412719f] [PMID: 15672138]
[162]
Min B, Cheng S, Logan BE. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 2005; 39(9): 1675-86.
[http://dx.doi.org/10.1016/j.watres.2005.02.002] [PMID: 15899266]
[163]
Wilkinson S. “Gastrobots”—benefits and challenges of microbial fuel cells in food powered robot applications. Auton Robots 2000; 9(2): 99-111.
[http://dx.doi.org/10.1023/A:1008984516499]
[164]
Kelly I. The design of a robotic predator: The SlugBot. Robotica 2003; 21(4): 399-406.
[http://dx.doi.org/10.1017/S0263574703004934]
[165]
He L, Du P, Chen Y, et al. Advances in microbial fuel cells for wastewater treatment. Renew Sustain Energy Rev 2017; 71: 388-403.
[http://dx.doi.org/10.1016/j.rser.2016.12.069]
[166]
Jaiswal KK, Kumar V, Vlaskin MS, et al. Microalgae fuel cell for wastewater treatment: Recent advances and challenges. J Water Process Eng 2020; 38: 101549.
[http://dx.doi.org/10.1016/j.jwpe.2020.101549]
[167]
Katz E, Bollella P. Fuel cells and biofuel cells: from past to perspectives. Isr J Chem 2021; 61(1-2): 68-84.
[http://dx.doi.org/10.1002/ijch.202000039]
[168]
Bharadwaj SVV, Ram S, Pancha I, Mishra S. Recent trends in strain improvement for production of biofuels from microalgae Microalgae Cultivation for Biofuels Production. Academic Press 2020; pp. 211-25.
[http://dx.doi.org/10.1016/B978-0-12-817536-1.00014-X]
[169]
Luo J, Li M, Zhou M, Hu Y. Characterization of a novel strain phylogenetically related to Kocuria rhizophila and its chemical modification to improve performance of microbial fuel cells. Biosens Bioelectron 2015; 69: 113-20.
[http://dx.doi.org/10.1016/j.bios.2015.02.025] [PMID: 25721974]
[170]
Nawaz A, Hafeez A, Abbas SZ, Haq I, Mukhtar H, Rafatullah M. A state of the art review on electron transfer mechanisms, characteristics, applications and recent advancements in microbial fuel cells technology. Green Chem Lett Rev 2020; 13(4): 365-81.
[http://dx.doi.org/10.1080/17518253.2020.1854871]
[171]
Zhu Q, Hu J, Liu B, et al. Recent advances on the development of functional materials in microbial fuel cells: from fundamentals to challenges and outlooks. Energy Environ Mater 2021; 11(4): 44.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy