Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Understanding and Targeting the Epigenetic Regulation to Overcome EGFR-TKIs Resistance in Human Cancer

Author(s): Lan Sun, Lingyue Gao, Yingxi Zhao, Yuqing Wang, Qianhui Xu, Yiru Zheng, Jiali Chen, He Wang* and Lihui Wang*

Volume 18, Issue 4, 2023

Published on: 26 December, 2022

Page: [506 - 516] Pages: 11

DOI: 10.2174/1574892818666221201145810

Price: $65

Abstract

Background: The occurrence and progression of cancer are the results of the dysregulation of genetics and epigenetics. Epigenetic regulation can reversibly affect gene transcription activity without changing DNA structure. Covalent modification of histones is crucial in the epigenetic regulation of gene expression. Furthermore, epidermal growth factor receptor (EGFR) significantly affects cell tumorigenesis, proliferation, antitumor drug resistance, etc. Overexpression of EGFR promotes cancer development. Therefore, EGFR-targeted drugs have become the focus of tumor therapy. With the advent of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), EGFR-TKIs resistance, which occurs about half a year to a year, has become an obstacle in cancer treatment.

Objective: The objective of this study is to discuss the ways to overcome EGFR-TKIs resistance in a variety of tumors.

Methods: The combination therapy of epigenetic drugs and other drugs is used.

Results: The combination of the two drugs can overcome the resistance of EGFR-TKIs and prolong the survival of patients.

Conclusion: This article depicts the concepts of epigenetics and the mechanism of EGFR-TKIs resistance and then illustrates the relationship between epigenetic mechanisms and EGFR-TKIs resistance. Finally, it discusses the clinical research and the latest patents for using epigenetic drugs to reverse EGFR-TKIs resistance in human cancer. In the future, more novel targets may be discovered for overcoming resistance to EGFR-TKIs, not just on histone deacetylases (HDACs). The dosing course and mode of administration of the combination therapy containing epigenetic drugs need further study. This review provides new ideas for using epigenetic agents to overcome EGFR-TKIs resistance.

[1]
Moehler M, Maderer A, Ehrlich A, et al. Safety and efficacy of afatinib as add-on to standard therapy of gemcitabine/cisplatin in chemotherapy-naive patients with advanced biliary tract cancer: An open-label, phase I trial with an extensive biomarker program. BMC Cancer 2019; 19(1): 55.
[http://dx.doi.org/10.1186/s12885-018-5223-7] [PMID: 30634942]
[2]
Spaans JN, Goss GD. Epidermal growth factor receptor tyrosine kinase inhibitors in early-stage nonsmall cell lung cancer. Curr Opin Oncol 2015; 27(2): 102-7.
[http://dx.doi.org/10.1097/CCO.0000000000000163] [PMID: 25611026]
[3]
Hayashi H, Nakagawa K. Is EGF receptor-tyrosine kinase inhibitor therapy in non-small-cell lung cancer patients with EGFR mutations the best option? Lung Cancer Manag 2013; 2(6): 441-3.
[http://dx.doi.org/10.2217/lmt.13.57]
[4]
Chong CR, Jänne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 2013; 19(11): 1389-400.
[http://dx.doi.org/10.1038/nm.3388] [PMID: 24202392]
[5]
Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer 2018; 17(1): 38.
[http://dx.doi.org/10.1186/s12943-018-0777-1] [PMID: 29455650]
[6]
Sandoval J, Esteller M. Cancer epigenomics: Beyond genomics. Curr Opin Genet Dev 2012; 22(1): 50-5.
[http://dx.doi.org/10.1016/j.gde.2012.02.008] [PMID: 22402447]
[7]
Taby R, Issa JPJ. Cancer epigenetics. CA Cancer J Clin 2010; 60(6): 376-92.
[http://dx.doi.org/10.3322/caac.20085] [PMID: 20959400]
[8]
Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Adv Genet 2010; 70: 87-99.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60004-6] [PMID: 20920746]
[9]
Schiffmann I, Greve G, Jung M, Lübbert M. Epigenetic therapy approaches in non-small cell lung cancer: Update and perspectives. Epigenetics 2016; 11(12): 858-70.
[http://dx.doi.org/10.1080/15592294.2016.1237345] [PMID: 27846368]
[10]
Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC. Epigenetics in metastatic breast cancer: Its regulation and implications in diagnosis, prognosis and therapeutics. Curr Cancer Drug Targets 2019; 19(2): 82-100.
[http://dx.doi.org/10.2174/1568009618666180430130248] [PMID: 29714144]
[11]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[12]
Ning B, Li W, Zhao W, Wang R. Targeting epigenetic regulations in cancer. Acta Biochim Biophys Sin 2016; 48(1): 97-109.
[http://dx.doi.org/10.1093/abbs/gmv116] [PMID: 26508480]
[13]
Altenberger C, Heller G, Ziegler B, et al. SPAG6 and L1TD1 are transcriptionally regulated by DNA methylation in non-small cell lung cancers. Mol Cancer 2017; 16(1): 1.
[http://dx.doi.org/10.1186/s12943-016-0568-5] [PMID: 28093071]
[14]
Eisenberg-Lerner A, Kimchi A. DAPk silencing by DNA methylation conveys resistance to anti EGFR drugs in lung cancer cells. Cell Cycle 2012; 11(11): 2051.
[http://dx.doi.org/10.4161/cc.20538] [PMID: 22622084]
[15]
Maeda M, Murakami Y, Watari K, Kuwano M, Izumi H, Ono M. CpG hypermethylation contributes to decreased expression of PTEN during acquired resistance to gefitinib in human lung cancer cell lines. Lung Cancer 2015; 87(3): 265-71.
[http://dx.doi.org/10.1016/j.lungcan.2015.01.009] [PMID: 25638724]
[16]
Musselman CA, Gibson MD, Hartwick EW, et al. Binding of PHF1 Tudor to H3K36me3 enhances nucleosome accessibility. Nat Commun 2013; 4(1): 2969.
[http://dx.doi.org/10.1038/ncomms3969] [PMID: 24352064]
[17]
Bassett S, Barnett M. The role of dietary Histone Deacetylases (HDACs) inhibitors in health and disease. Nutrients 2014; 6(10): 4273-301.
[http://dx.doi.org/10.3390/nu6104273] [PMID: 25322459]
[18]
Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 2017; 18(7): 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[19]
Zhao Z, Shilatifard A. Epigenetic modifications of histones in cancer. Genome Biol 2019; 20(1): 245.
[http://dx.doi.org/10.1186/s13059-019-1870-5] [PMID: 31747960]
[20]
Moreno-Yruela C, Bæk M, Vrsanova AE, Schulte C, Maric HM, Olsen CA. Hydroxamic acid-modified peptide microarrays for profiling isozyme-selective interactions and inhibition of histone deacetylases. Nat Commun 2021; 12(1): 62.
[http://dx.doi.org/10.1038/s41467-020-20250-9] [PMID: 33397936]
[21]
Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 2016; 6(10): a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[22]
Peng X, Li L, Chen J, et al. Discovery of novel histone deacetylase 6 (HDAC6) inhibitors with enhanced antitumor immunity of anti-PD-L1 immunotherapy in melanoma. J Med Chem 2022; 65(3): 2434-57.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01863] [PMID: 35043615]
[23]
Edwards A, Li J, Atadja P, Bhalla K, Haura EB. Effect of the histone deacetylase inhibitor LBH589 against epidermal growth factor receptor-dependent human lung cancer cells. Mol Cancer Ther 2007; 6(9): 2515-24.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0761] [PMID: 17876048]
[24]
Witta SE, Gemmill RM, Hirsch FR, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 2006; 66(2): 944-50.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1988] [PMID: 16424029]
[25]
Lin YC, Lin YC, Shih JY, et al. DUSP1 expression induced by HDAC1 inhibition mediates gefitinib sensitivity in non-small cell lung cancers. Clin Cancer Res 2015; 21(2): 428-38.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1150] [PMID: 25593344]
[26]
Weng CH, Chen LY, Lin YC, et al. Epithelial-Mesenchymal Transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 2019; 38(4): 455-68.
[http://dx.doi.org/10.1038/s41388-018-0454-2] [PMID: 30111817]
[27]
Lu Y, Liu Y, Oeck S, Glazer PM. Hypoxia promotes resistance to EGFR inhibition in NSCLC cells via the histone demethylases, LSD1 and PLU-1. Mol Cancer Res 2018; 16(10): 1458-69.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0637] [PMID: 29934325]
[28]
Watson ZL, Yamamoto TM, McMellen A, et al. Histone methyltransferases EHMT1 and EHMT2 (GLP/G9A) maintain PARP inhibitor resistance in high-grade serous ovarian carcinoma. Clin Epigenetics 2019; 11(1): 165.
[http://dx.doi.org/10.1186/s13148-019-0758-2] [PMID: 31775874]
[29]
Wang L, Dong X, Ren Y, et al. Targeting EHMT2 reverses EGFR-TKI resistance in NSCLC by epigenetically regulating the PTEN/AKT signaling pathway. Cell Death Dis 2018; 9(2): 129.
[http://dx.doi.org/10.1038/s41419-017-0120-6] [PMID: 29374157]
[30]
Duan R, Du W, Guo W. EZH2: A novel target for cancer treatment. J Hematol Oncol 2020; 13(1): 104.
[http://dx.doi.org/10.1186/s13045-020-00937-8] [PMID: 32723346]
[31]
Zhang N, Li Y, Zheng Y, et al. miR-608 and miR-4513 significantly contribute to the prognosis of lung adenocarcinoma treated with EGFR-TKIs. Lab Invest 2019; 99(4): 568-76.
[http://dx.doi.org/10.1038/s41374-018-0164-y] [PMID: 30552364]
[32]
Amri J, Molaee N, Karami H. Up-regulation of MiRNA-125a-5p inhibits cell proliferation and increases EGFR-TKI induced apoptosis in lung cancer cells. Asian Pac J Cancer Prev 2019; 20(11): 3361-7.
[http://dx.doi.org/10.31557/APJCP.2019.20.11.3361] [PMID: 31759360]
[33]
Zhao Q, Li P, Ma J, Yu X. MicroRNAs in lung cancer and lung cancer bone metastases: Biomarkers for early diagnosis and targets for treatment. Recent Patents Anticancer Drug Discov 2015; 10(2): 182-200.
[http://dx.doi.org/10.2174/1574892810666150120163617] [PMID: 25600282]
[34]
Markou A, Zavridou M, Lianidou ES. miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer 2016; 7: 19-27.
[PMID: 28210157]
[35]
Shen H, Zhu F, Liu J, et al. Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer. PLoS One 2014; 9(7): e103305.
[http://dx.doi.org/10.1371/journal.pone.0103305] [PMID: 25058005]
[36]
Li B, Ren S, Li X, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer 2014; 83(2): 146-53.
[http://dx.doi.org/10.1016/j.lungcan.2013.11.003] [PMID: 24331411]
[37]
Liu YN, Tsai MF, Wu SG, et al. miR-146b-5p enhances the sensitivity of NSCLC to EGFR tyrosine kinase inhibitors by regulating the IRAK1/NF-κB pathway. Mol Ther Nucleic Acids 2020; 22: 471-83.
[http://dx.doi.org/10.1016/j.omtn.2020.09.015] [PMID: 33230450]
[38]
Ma P, Zhang M, Nie F, et al. Transcriptome analysis of EGFR tyrosine kinase inhibitors resistance associated long noncoding RNA in non-small cell lung cancer. Biomed Pharmacother 2017; 87: 20-6.
[http://dx.doi.org/10.1016/j.biopha.2016.12.079] [PMID: 28040594]
[39]
Zhou JY, Chen X, Zhao J, et al. MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting MET. Cancer Lett 2014; 351(2): 265-71.
[http://dx.doi.org/10.1016/j.canlet.2014.06.010] [PMID: 24983493]
[40]
Chen J, Cui J, Guo X, Cao X, Li Q. Increased expression of miR-641 contributes to erlotinib resistance in non-small-cell lung cancer cells by targeting NF1. Cancer Med 2018; 7(4): 1394-403.
[http://dx.doi.org/10.1002/cam4.1326] [PMID: 29493886]
[41]
Yue J, Lv D, Wang C, et al. Epigenetic silencing of miR-483-3p promotes acquired gefitinib resistance and EMT in EGFR-mutant NSCLC by targeting integrin β3. Oncogene 2018; 37(31): 4300-12.
[http://dx.doi.org/10.1038/s41388-018-0276-2] [PMID: 29717264]
[42]
Wang HY, Liu YN, Wu SG, et al. MiR-200c-3p suppression is associated with development of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer via a mediating epithelial-to-mesenchymal transition (EMT) process. Cancer Biomark 2020; 28(3): 351-63.
[http://dx.doi.org/10.3233/CBM-191119] [PMID: 32417760]
[43]
Han S, Lin F, Ruan Y, et al. miR-132-3p promotes the cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells by targeting SIRT1 via the NF-κB pathway. Int Immunopharmacol 2021; 99: 108022.
[http://dx.doi.org/10.1016/j.intimp.2021.108022] [PMID: 34339961]
[44]
Yin J, Hu W, Pan L, et al. let 7 and miR 17 promote self renewal and drive gefitinib resistance in non small cell lung cancer. Oncol Rep 2019; 42(2): 495-508.
[http://dx.doi.org/10.3892/or.2019.7197] [PMID: 31233201]
[45]
Liu X, Jiang T, Li X, et al. Exosomes transmit T790M mutation‐induced resistance in EGFR‐mutant NSCLC by activating PI3K/AKT signalling pathway. J Cell Mol Med 2020; 24(2): 1529-40.
[http://dx.doi.org/10.1111/jcmm.14838] [PMID: 31894895]
[46]
Zhou J, Wang J, Zeng Y, et al. Implication of epithelial-mesenchymal transition in IGF1R-induced resistance to EGFR-TKIs in advanced non-small cell lung cancer. Oncotarget 2015; 6(42): 44332-45.
[http://dx.doi.org/10.18632/oncotarget.6293] [PMID: 26554308]
[47]
Hassanein SS, Ibrahim SA, Abdel-Mawgood AL. Cell behavior of non-small cell lung cancer is at EGFR and MicroRNAs hands. Int J Mol Sci 2021; 22(22): 12496.
[http://dx.doi.org/10.3390/ijms222212496] [PMID: 34830377]
[48]
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20(3): 300-7.
[http://dx.doi.org/10.1038/nsmb.2480] [PMID: 23463315]
[49]
Jiang W, Xia J, Xie S, et al. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 2020; 50: 100683.
[http://dx.doi.org/10.1016/j.drup.2020.100683] [PMID: 32146422]
[50]
Sun R, Wang R, Chang S, et al. Long non-coding RNA in drug resistance of non-small cell lung cancer: A mini review. Front Pharmacol 2019; 10: 1457.
[http://dx.doi.org/10.3389/fphar.2019.01457] [PMID: 31920650]
[51]
Wang L, Ma L, Xu F, et al. Role of long non-coding RNA in drug resistance in non-small cell lung cancer. Thorac Cancer 2018; 9(7): 761-8.
[http://dx.doi.org/10.1111/1759-7714.12652] [PMID: 29726094]
[52]
Yang H, Fu H, Xu W, Zhang X. Exosomal non-coding RNAs: A promising cancer biomarker. Clinic Chem Lab Med (CCLM) 2016; 54(12): 1871-9.
[53]
Li Q, Shao Y, Zhang X, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol 2015; 36(3): 2007-12.
[http://dx.doi.org/10.1007/s13277-014-2807-y] [PMID: 25391424]
[54]
Liu Y, Xu N, Liu B, et al. Long noncoding RNA RP11-838N2.4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of miR-10a in glioblastoma cell lines. Oncotarget 2016; 7(28): 43835-51.
[http://dx.doi.org/10.18632/oncotarget.9699] [PMID: 27270310]
[55]
Shu D, Xu Y, Chen W. Knockdown of lncRNA BLACAT1 reverses the resistance of afatinib to non-small cell lung cancer via modulating STAT3 signalling. J Drug Target 2020; 28(3): 300-6.
[http://dx.doi.org/10.1080/1061186X.2019.1650368] [PMID: 31359792]
[56]
Wang Q, Li X, Ren S, et al. HOTAIR induces EGFR-TKIs resistance in non-small cell lung cancer through epithelial-mesenchymal transition. Lung Cancer 2020; 147: 99-105.
[http://dx.doi.org/10.1016/j.lungcan.2020.06.037] [PMID: 32683208]
[57]
Pan H, Jiang T, Cheng N, et al. Long non-coding RNA BC087858 induces non-T790M mutation acquired resistance to EGFR-TKIs by activating PI3K/AKT and MEK/ERK pathways and EMT in non-small-cell lung cancer. Oncotarget 2016; 7(31): 49948-60.
[http://dx.doi.org/10.18632/oncotarget.10521] [PMID: 27409677]
[58]
Peng W-X, Koirala P, Mo Y-Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 2017; 36(41): 5661-7.
[http://dx.doi.org/10.1038/onc.2017.184] [PMID: 28604750]
[59]
Wang B, Jiang H, Wang L, et al. Increased MIR31HG lncRNA expression increases gefitinib resistance in non-small cell lung cancer cell lines through the EGFR/PI3K/AKT signaling pathway. Oncol Lett 2017; 13(5): 3494-500.
[http://dx.doi.org/10.3892/ol.2017.5878] [PMID: 28529576]
[60]
Chen Z, Chen Q, Cheng Z, et al. Long non-coding RNA CASC9 promotes gefitinib resistance in NSCLC by epigenetic repression of DUSP1. Cell Death Dis 2020; 11(10): 858.
[http://dx.doi.org/10.1038/s41419-020-03047-y] [PMID: 33056982]
[61]
Yi YC, Chen XY, Zhang J, Zhu JS. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Mol Cancer 2020; 19(1): 121.
[http://dx.doi.org/10.1186/s12943-020-01233-2] [PMID: 32767982]
[62]
Zhou H, Mao L, Xu H, Wang S, Tian J. The functional roles of m6A modification in T lymphocyte responses and autoimmune diseases. Cytokine Growth Factor Rev 2022; 65: 51-60.
[http://dx.doi.org/10.1016/j.cytogfr.2022.04.004] [PMID: 35490098]
[63]
Liu S, Li Q, Li G, et al. The mechanism of m6A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene. Cell Death Dis 2020; 11(11): 969.
[http://dx.doi.org/10.1038/s41419-020-03148-8] [PMID: 33177491]
[64]
Bauman J, Verschraegen C, Belinsky S, et al. A phase I study of 5-azacytidine and erlotinib in advanced solid tumor malignancies. Cancer Chemother Pharmacol 2012; 69(2): 547-54.
[http://dx.doi.org/10.1007/s00280-011-1729-2] [PMID: 21901396]
[65]
Gerber DE, Boothman DA, Fattah FJ, et al. Phase 1 study of romidepsin plus erlotinib in advanced non-small cell lung cancer. Lung Cancer 2015; 90(3): 534-41.
[http://dx.doi.org/10.1016/j.lungcan.2015.10.008] [PMID: 26474959]
[66]
Han JY, Lee SH, Lee GK, et al. Phase I/II study of gefitinib (Iressa®) and vorinostat (IVORI) in previously treated patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 2015; 75(3): 475-83.
[http://dx.doi.org/10.1007/s00280-014-2664-9] [PMID: 25552401]
[67]
Reguart N, Rosell R, Cardenal F, et al. Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression. Lung Cancer 2014; 84(2): 161-7.
[http://dx.doi.org/10.1016/j.lungcan.2014.02.011] [PMID: 24636848]
[68]
Liao C, Tian Y, Xie Z, Lyu X. Phthalazine derivative, preparation method and applications thereof. CN110845425, 2020.
[69]
Marcar L, Bardhan K, Gheorghiu L, et al. Acquired resistance of EGFR-mutated lung cancer to tyrosine kinase inhibitor treatment promotes PARP inhibitor sensitivity. Cell Rep 2019; 27(12): 3422-32.
[http://dx.doi.org/10.1016/j.celrep.2019.05.058] [PMID: 31216465]
[70]
Gan Z, Yu Y, Pan T. HDAC/ALK double-target inhibitor and preparation method and application thereof. Patent CN111039875, 2020.
[71]
Umapathy G, Mendoza-Garcia P, Hallberg B, Palmer RH. Targeting anaplastic lymphoma kinase in neuroblastoma. APMIS. Acta pathologica, microbiologica, et immunologica Scandinavica 2019; 127(5): 288-302.
[http://dx.doi.org/10.1111/apm.12940]
[72]
De Mello RA, Liu DJ, Aguiar PN. Recent Patents Anticancer Drug Discov 2016; 11(4): 393-400.
[http://dx.doi.org/10.2174/1574892811666160803090944]
[73]
Greg P. Methods to increase the sensitivity and reversing the resistance to drugs Patent WO2021055562, 2021.
[74]
Cao B, Ma S, Lang J, Zhu G, Mi K. Verification method for reason for EREG to promote NSCLC cells to generate drug resistance to EGFR-TKI Patent CN112813164, 2021.
[75]
Chikao M, Kei O, Ryo H, Takumi I, Yutaro K. Agent for reversing resistance to anticancer drugs Patent WO2021251340, 2021.
[76]
Stephen B, Drew M, Suzanne L. Cancer therapy via a combination of epigenetic modulation and immune modulation Patent US2021161928, 2021.
[77]
Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019; 380(12): 1103-15.
[http://dx.doi.org/10.1056/NEJMoa1816047] [PMID: 30779531]
[78]
Peng X, Wang Z, Liu Y, et al. Oxyfadichalcone C inhibits melanoma A375 cell proliferation and metastasis via suppressing PI3K/Akt and MAPK/ERK pathways. Life Sci 2018; 206: 35-44.
[http://dx.doi.org/10.1016/j.lfs.2018.05.032] [PMID: 29782872]
[79]
Kelly AD, Issa JPJ. The promise of epigenetic therapy: Reprogramming the cancer epigenome. Curr Opin Genet Dev 2017; 42: 68-77.
[http://dx.doi.org/10.1016/j.gde.2017.03.015] [PMID: 28412585]
[80]
Kim YD, Park SM, Ha HC, et al. HDAC inhibitor, CG-745, enhances the anti-cancer effect of anti-PD-1 immune checkpoint inhibitor by modulation of the immune microenvironment. J Cancer 2020; 11(14): 4059-72.
[http://dx.doi.org/10.7150/jca.44622] [PMID: 32368288]
[81]
Isomoto K, Haratani K, Hayashi H, et al. Impact of EGFR-TKI treatment on the tumor immune microenvironment in EGFR mutation–positive non-small cell lung cancer. Clin Cancer Res 2020; 26(8): 2037-46.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2027] [PMID: 31937613]
[82]
Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019; 51(2): 202-6.
[http://dx.doi.org/10.1038/s41588-018-0312-8] [PMID: 30643254]
[83]
Yang L, Hao X, Hu X, et al. Superior efficacy of immunotherapy‐based combinations over monotherapy forEGFR mutant non‐small cell lung cancer acquired resistance to EGFR‐TKIs. Thorac Cancer 2020; 11(12): 3501-9.
[http://dx.doi.org/10.1111/1759-7714.13689] [PMID: 33075201]
[84]
Wiest N, Majeed U, Seegobin K, Zhao Y, Lou Y, Manochakian R. Role of immune checkpoint inhibitor therapy in advanced EGFR-mutant non-small cell lung cancer. Front Oncol 2021; 11: 751209.
[http://dx.doi.org/10.3389/fonc.2021.751209] [PMID: 34868953]
[85]
Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: Strength in numbers. J Leukoc Biol 2016; 100(2): 275-90.
[http://dx.doi.org/10.1189/jlb.5RI0116-013RR] [PMID: 27256570]
[86]
Patel SA, Minn AJ. Combination cancer therapy with immune checkpoint blockade: Mechanisms and strategies. Immunity 2018; 48(3): 417-33.
[http://dx.doi.org/10.1016/j.immuni.2018.03.007] [PMID: 29562193]
[87]
Schoenfeld AJ, Arbour KC, Rizvi H, et al. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann Oncol 2019; 30(5): 839-44.
[http://dx.doi.org/10.1093/annonc/mdz077] [PMID: 30847464]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy