Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Identifying TMPRSS2 Inhibitors by Drug Repurposing Screenings of Known fXIa Inhibitors: A Computational Study

Author(s): Yanshu Liang*, Zhixia Qiao and Fancui Meng

Volume 21, Issue 3, 2024

Published on: 27 December, 2022

Page: [590 - 601] Pages: 12

DOI: 10.2174/1570180820666221130160256

Price: $65

conference banner
Abstract

Background: SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Hence the inhibition of TMPRSS2 may block or decrease the severity of SARSCoV- 2, making TMPRSS2 an attractive target for COVID-19. fXIa has a similar binding pocket as TMPRSS2, implying the possibility of fXIa inhibitors being TMPRSS2 inhibitors.

Methods: In order to find potential TMPRSS2 inhibitors, molecular docking of known fXIa inhibitors was performed. Molecular dynamics simulations and MM/GBSA were conducted on representative compounds with characteristic binding modes. R-group enumeration was used to generate compounds with better binding interactions.

Results: Three scaffolds can make hydrogen bonds with Gly439 and Ser441, and form the chloride– Tyr474 interactions at S1 pocket as well. Further structure optimization of one scaffold found that two compounds have better docking scores and lower binding free energies.

Conclusion: Compounds R1a and R1b can be taken as potentially reversible inhibitors of TMPRSS2. Our results could provide insight into both the discovery and lead optimization of TMPRSS2 inhibitors.

Graphical Abstract

[1]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[2]
Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet, 2020, 395(10223), 470-473.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[3]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[4]
Ojha, P.K.; Kar, S.; Krishna, J.G.; Roy, K.; Leszczynski, J. Therapeutics for COVID-19: From computation to practices—where we are, where we are heading to. Mol. Divers., 2021, 25(1), 625-659.
[http://dx.doi.org/10.1007/s11030-020-10134-x] [PMID: 32880078]
[5]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[6]
Abu-Saleh, A.A.A.A.; Awad, I.E.; Yadav, A.; Poirier, R.A. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations. Phys. Chem. Chem. Phys., 2020, 22(40), 23099-23106.
[http://dx.doi.org/10.1039/D0CP04326E] [PMID: 33025993]
[7]
Ton, A.T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol. Inform., 2020, 39(8), 2000028.
[http://dx.doi.org/10.1002/minf.202000028] [PMID: 32162456]
[8]
Shen, L.W.; Mao, H.J.; Wu, Y.L.; Tanaka, Y.; Zhang, W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie, 2017, 142, 1-10.
[http://dx.doi.org/10.1016/j.biochi.2017.07.016] [PMID: 28778717]
[9]
Laporte, M.; Naesens, L. Airway proteases: An emerging drug target for influenza and other respiratory virus infections. Curr. Opin. Virol., 2017, 24, 16-24.
[http://dx.doi.org/10.1016/j.coviro.2017.03.018] [PMID: 28414992]
[10]
Wata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H.; Takeda, M.; Nagata, N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol., 2019, 93(6), e0815-e0818.
[11]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[12]
Shrimp, J.H.; Janiszewski, J.; Chen, C.Z.; Xu, M.; Wilson, K.M.; Kales, S.C.; Sanderson, P.E.; Shinn, P.; Schneider, R.; Itkin, Z.; Guo, H.; Shen, M.; Klumpp-Thomas, C.; Michael, S.G.; Zheng, W.; Simeonov, A.; Hall, M.D. Suite of TMPRSS2 assays for screening drug repurposing candidates as potential treatments of COVID-19. ACS Infect. Dis., 2022, 8(6), 1191-1203.
[PMID: 35648838]
[13]
Xu, Y.M.; Inacio, M.C.; Liu, M.X.; Gunatilaka, A.A.L. Discovery of diminazene as a dual inhibitor of SARS-CoV-2 human host proteases TMPRSS2 and furin using cell-based assays. CRCHBI, 2022, 2, 100023.
[http://dx.doi.org/10.1016/j.crchbi.2022.100023] [PMID: 35815069]
[14]
Shrimp, J.H.; Kales, S.C.; Sanderson, P.E.; Simeonov, A.; Shen, M.; Hall, M.D. An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. ACS Pharmacol. Transl. Sci., 2020, 3(5), 997-1007.
[http://dx.doi.org/10.1021/acsptsci.0c00106] [PMID: 33062952]
[15]
Hu, X.; Shrimp, J.H.; Guo, H.; Xu, M.; Chen, C.Z.; Zhu, W.; Zakharov, A.V.; Jain, S.; Shinn, P.; Simeonov, A.; Hall, M.D.; Shen, M. Discovery of TMPRSS2 inhibitors from virtual screening as a potential treatment of COVID-19. ACS Pharmacol. Transl. Sci., 2021, 4(3), 1124-1135.
[http://dx.doi.org/10.1021/acsptsci.0c00221] [PMID: 34136758]
[16]
Ozdemir, E.S.; Le, H.H.; Yildirim, A.; Ranganathan, S.V. In silico screening and testing of FDA-approved small molecules to block SARS-CoV-2 entry to the host cell by inhibiting spike protein cleavage. Viruses, 2022, 14(6), 1129.
[http://dx.doi.org/10.3390/v14061129] [PMID: 35746605]
[17]
Hatmal, M.M.; Abuyaman, O.; Taha, M. Docking-generated multiple ligand poses for bootstrapping bioactivity classifying Machine Learning: Repurposing covalent inhibitors for COVID-19-related TMPRSS2 as case study. Comput. Struct. Biotechnol. J., 2021, 19, 4790-4824.
[http://dx.doi.org/10.1016/j.csbj.2021.08.023] [PMID: 34426763]
[18]
Fraser, B.J.; Beldar, S.; Seitova, A.; Hutchinson, A.; Mannar, D.; Li, Y.; Kwon, D.; Tan, R.; Wilson, R.P.; Leopold, K.; Subramaniam, S.; Halabelian, L.; Arrowsmith, C.H.; Bénard, F. Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nat. Chem. Biol., 2022, 18(9), 963-971.
[http://dx.doi.org/10.1038/s41589-022-01059-7] [PMID: 35676539]
[19]
Sharma, T.; Baig, M.H.; Khan, M.I.; Alotaibi, S.S.; Alorabi, M.; Dong, J.J. Computational screening of camostat and related compounds against human TMPRSS2: A potential treatment of COVID-19. Saudi Pharm. J., 2022, 30(3), 217-224.
[http://dx.doi.org/10.1016/j.jsps.2022.01.005] [PMID: 35095307]
[20]
Manjunathan, R.; Periyaswami, V.; Mitra, K.; Rosita, A.S.; Pandya, M.; Selvaraj, J.; Ravi, L.; Devarajan, N.; Doble, M. Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein. BMC Bioinformatics, 2022, 23(1), 180.
[http://dx.doi.org/10.1186/s12859-022-04724-9] [PMID: 35578172]
[21]
Kahraman, A.; Morris, R.J.; Laskowski, R.A.; Thornton, J.M. Shape variation in protein binding pockets and their ligands. J. Mol. Biol., 2007, 368(1), 283-301.
[http://dx.doi.org/10.1016/j.jmb.2007.01.086] [PMID: 17337005]
[22]
Hempel, T.; Elez, K.; Krüger, N.; Raich, L.; Shrimp, J.H.; Danov, O.; Jonigk, D.; Braun, A.; Shen, M.; Hall, M.D.; Pöhlmann, S.; Hoffmann, M.; Noé, F. Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: pre-clinical assessment of pharmacological and molecular properties. Chem. Sci., 2021, 12(38), 12600-12609.
[http://dx.doi.org/10.1039/D1SC01494C] [PMID: 34703545]
[23]
Smith, L.M., II; Orwat, M.J.; Hu, Z.; Han, W.; Wang, C.; Rossi, K.A.; Gilligan, P.J.; Pabbisetty, K.B.; Osuna, H.; Corte, J.R.; Rendina, A.R.; Luettgen, J.M.; Wong, P.C.; Narayanan, R.; Harper, T.W.; Bozarth, J.M.; Crain, E.J.; Wei, A.; Ramamurthy, V.; Morin, P.E.; Xin, B.; Zheng, J.; Seiffert, D.A.; Quan, M.L.; Lam, P.Y.S.; Wexler, R.R.; Pinto, D.J.P. Novel phenylalanine derived diamides as Factor XIa inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(2), 472-478.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.089] [PMID: 26704266]
[24]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[25]
Schrödinger release 2020-2: LigPrep; Schrödinger, LLC: New York, NY, 2020. Available from: https://www.schrodinger.com/products/ligprep
[26]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[27]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[28]
Schrödinger release 2020-2: Desmond molecular dynamics system, DE Shaw Research, New York, NY. Maestro-Desmond interoperability tools; Schrödinger: New York, NY, 2020. Available from: https://www.schrodinger.com/products/desmond
[29]
Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 2011, 79(10), 2794-2812.
[http://dx.doi.org/10.1002/prot.23106] [PMID: 21905107]
[30]
Schrödinger release 2020-2: Maestro; Schrödinger, LLC: New York, NY, 2020. Available from: https://www.schrodinger.com/products/maestro
[31]
DeLano, W.L. The PyMOL molecular graphics system; DeLano Scientific: San Carlos, 2002.
[32]
Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev., 2002, 102(12), 4501-4524.
[http://dx.doi.org/10.1021/cr000033x] [PMID: 12475199]
[33]
Shapira, T.; Monreal, I.A.; Dion, S.P.; Buchholz, D.W.; Imbiakha, B.; Olmstead, A.D.; Jager, M.; Désilets, A.; Gao, G.; Martins, M.; Vandal, T.; Thompson, C.A.H.; Chin, A.; Rees, W.D.; Steiner, T.; Nabi, I.R.; Marsault, E.; Sahler, J.; Diel, D.G.; Van de Walle, G.R.; August, A.; Whittaker, G.R.; Boudreault, P.L.; Leduc, R.; Aguilar, H.C.; Jean, F.A. TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature, 2022, 605(7909), 340-348.
[http://dx.doi.org/10.1038/s41586-022-04661-w] [PMID: 35344983]
[34]
Andrea, V.P.H. The role of halogen bonding in inhibitor recognition and binding by protein kinases. Curr. Top. Med. Chem., 2007, 7(14), 1336-1348.
[http://dx.doi.org/10.2174/156802607781696846] [PMID: 17692024]
[35]
Lu, Y.; Wang, Y.; Zhu, W. Nonbonding interactions of organic halogens in biological systems: Implications for drug discovery and biomolecular design. Phys. Chem. Chem. Phys., 2010, 12(18), 4543-4551.
[http://dx.doi.org/10.1039/b926326h] [PMID: 20428531]
[36]
Wallnoefer, H.G.; Fox, T.; Liedl, K.R.; Tautermann, C.S. Dispersion dominated halogen–π interactions: Energies and locations of minima. Phys. Chem. Chem. Phys., 2010, 12(45), 14941-14949.
[http://dx.doi.org/10.1039/c0cp00607f] [PMID: 20953472]
[37]
Roehrig, S.; Straub, A.; Pohlmann, J.; Lampe, T.; Pernerstorfer, J.; Schlemmer, K.H.; Reinemer, P.; Perzborn, E. Discovery of the Novel Antithrombotic Agent 5-Chloro- N -((5 S)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-ylmethyl)thiophene- 2-carboxamide (BAY 59-7939): An oral, direct factor Xa inhibitor. J. Med. Chem., 2005, 48(19), 5900-5908.
[http://dx.doi.org/10.1021/jm050101d] [PMID: 16161994]
[38]
Matter, H.; Nazaré, M.; Güssregen, S.; Will, D.W.; Schreuder, H.; Bauer, A.; Urmann, M.; Ritter, K.; Wagner, M.; Wehner, V. Evidence for C-Cl/C-Br...π interactions as an important contribution to protein-ligand binding affinity. Angew. Chem. Int. Ed., 2009, 48(16), 2911-2916.
[http://dx.doi.org/10.1002/anie.200806219] [PMID: 19294721]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy