Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Combined Experimental and Theoretical Spectroscopic Properties (FT-IR, FT-Ra, Uv-Vis, and NMR), DFT Studies, Biological Activity, Molecular Docking, and Toxicity Investigations of 3-methoxy-1-piperazinylbenzene

Author(s): Ceyhun Kucuk*, Senay Yurdakul and Belgin Erdem

Volume 20, Issue 5, 2023

Published on: 27 December, 2022

Page: [457 - 480] Pages: 24

DOI: 10.2174/1570178620666221130154652

Price: $65

Abstract

Background: Piperazine and its derivatives have many important pharmacological properties such as antimicrobial, antituberculosis, anticancer, antiviral, and antimalarial activity, as well as HIV protease inhibitors and antidepressant activity. Therefore, the structural, spectroscopic, electronic, optic, and thermodynamic properties, and biological activity of the 3-methoxy-1- piperazinylbenzene molecule, which is a piperazine derivative, were investigated in this study.

Methods: Theoretical calculations for ligands were carried out with the DFT method by using B3LYP /6-311++G(d,p) basis set except for NMR calculations. NMR analyses were calculated with 6-311++G(2d,p) and were recorded experimentally.

Results: Experimental and calculated frequencies are compared and they are in agreement with each other. Also, the Uv-Vis absorbance spectrum for the title molecule was recorded and calculated. They were found to be in harmony with each other. According to the results of molecular orbital analysis and other quantum chemical properties, this molecule has low reactivity and stability. The reactive areas of the ligand were investigated by using MEP map, Fukui functions, and electronic charge analyses, and also performing ELF and LOL analysis. As a result of all these analysis methods, electrophilic regions of the molecule were found to be similar. Some thermodynamic properties at different temperatures and non-linear optical properties were investigated. The increase in enthalpy and entropy values depending on the temperature rise indicates that the thermodynamic structure of the molecule has changed. Also, this molecule has an important non-linear optical response.

Conclusion: In biological activity and toxicity studies, the title molecule has an activity against microorganisms and a good drug score.

Graphical Abstract

[1]
Al-Ghorbani, M.; Bushra, B.A.; Zabiulla, S.; Mamatha, S.V.; Khanum, S.A. J. Chem. Pharm. Res., 2015, 7(5), 28.
[2]
Gan, L.L.; Fang, B.; Zhou, C.H. Bull. Korean Chem. Soc., 2010, 31(12), 3684-3692.
[http://dx.doi.org/10.5012/bkcs.2010.31.12.3684]
[3]
Haroz, R.; Greenberg, M.I. Clin. Lab. Med., 2006, 26(1), 147-164.ix.
[http://dx.doi.org/10.1016/j.cll.2006.01.008] [PMID: 16567229]
[4]
Arbo, M.D.; Bastos, M.L.; Carmo, H.F. Drug Alcohol Depend., 2012, 122(3), 174-185.
[http://dx.doi.org/10.1016/j.drugalcdep.2011.10.007] [PMID: 22071119]
[5]
Bean, D.C.; Wareham, D.W. J. Antimicrob. Chemother., 2008, 63(2), 349-352.
[http://dx.doi.org/10.1093/jac/dkn493]
[6]
Coban, A.Y.; Bayram, Z.; Sezgin, F.M.; Durupinar, B. Microbiol. Bull., 2009, 43, 457-461.
[7]
Chaudhary, P.; Kumar, R.; Verma, A.K.; Singh, D.; Yadav, V.; Chhillar, A.K.; Sharma, G.L.; Chandra, R. Bioorg. Med. Chem., 2006, 14(6), 1819-1826.
[http://dx.doi.org/10.1016/j.bmc.2005.10.032] [PMID: 16289939]
[8]
Farzaliev, V.M.; Abbasova, M.T.; Ashurova, A.A.; Babaeva, G.B.; Ladokhina, N.P.; Kerimova, Y.M. Russ. J. Appl. Chem., 2009, 82(5), 928-930.
[http://dx.doi.org/10.1134/S107042720905036X]
[9]
Yi, E.Y.; Jeong, E.J.; Song, H.; Lee, M.S.; Kang, D.W.; Joo, J.H.; Kwon, H.S.; Lee, S.H.; Park, S.K.; Chung, S.G.; Cho, E.H.; Kim, Y.J. Int. J. Oncol., 2004, 25(2), 365-372.
[http://dx.doi.org/10.3892/ijo.25.2.365] [PMID: 15254733]
[10]
Weiderhold, K.N.; Randall-Hlubek, D.A.; Polin, L.A.; Hamel, E.; Mooberry, S.L. Int. J. Cancer, 2006, 118(4), 1032-1040.
[http://dx.doi.org/10.1002/ijc.21424] [PMID: 16152590]
[11]
Sharma, R.N.; Ravani, R. Med. Chem. Res., 2013, 22(6), 2788-2794.
[http://dx.doi.org/10.1007/s00044-012-0260-2]
[12]
Hatnapure, G.D.; Keche, A.P.; Rodge, A.H.; Birajdar, S.S.; Tale, R.H.; Kamble, V.M. Bioorg. Med. Chem. Lett., 2012, 22(20), 6385-6390.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.071] [PMID: 22981334]
[13]
Osa, Y.; Kobayashi, S.; Sato, Y.; Suzuki, Y.; Takino, K.; Takeuchi, T.; Miyata, Y.; Sakaguchi, M.; Takayanagi, H. J. Med. Chem., 2003, 46(10), 1948-1956.
[http://dx.doi.org/10.1021/jm020379v] [PMID: 12723957]
[14]
Rathi, A.K.; Syed, R.; Shin, H.S.; Petel, R.V. Opin. The. Pat., 2016, 26(7), 777-797.
[http://dx.doi.org/10.1080/13543776.2016.1189902]
[15]
Krishnakumar, V.; Seshadri, S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 68(3), 833-838.
[http://dx.doi.org/10.1016/j.saa.2006.12.067]
[16]
Baglayan, O.; Kaya, M.F.; Parlak, C.; Senyel, M. Spectrochim. Acta A, 2012, 90, 109-117.
[17]
Prabavathi, N.; Nilufer, A.; Krishnakumar, V. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121, 483-493.
[http://dx.doi.org/10.1016/j.saa.2013.10.102]
[18]
Ekincioglu, Y.; Kılıç, H.Ş; Dereli, Ö. Brazil. J. Phys., 51, 958-968.
[19]
Ravindranath, L.; Reddy, B.V. J. Mol. Struct., 2020, 1200(36), 127089.
[http://dx.doi.org/10.1016/j.molstruc.2019.127089]
[20]
Prabavathi, N.; Senthil, N.N.; Krishnakumar, V. Pharm. Anal. Acta, 2015, 6(7), 2-20.
[21]
Çelik, S.; Alp, M.; Yurdakul, S. Spectrosc. Lett., 2020, 53(4), 234-248.
[http://dx.doi.org/10.1080/00387010.2020.1734840]
[22]
Gunasekaran, S.; Anita, B. Indian J. Pure Appl. Phy., 2008, 46, 833-838.
[23]
Yurdakul, Ş; Badoğlu, S.; Güleşci, Y. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 945-956.
[http://dx.doi.org/10.1016/j.saa.2014.08.097] [PMID: 25282024]
[24]
Çelik, S.; Özel, A.E.; Kecel, S.; Akyüz, S. Vib. Spectrosc., 2012, 61, 54-65.
[http://dx.doi.org/10.1016/j.vibspec.2012.01.014]
[25]
Akyüz, S.; Akyüz, T.J. Inclusion Phenomena, 2004, 48(1/2), 75-80.
[http://dx.doi.org/10.1023/B:JIPH.0000016587.89549.0e]
[26]
Atilgan, A. Yurdakul, Ş; Erdogdu, Y.; Güllüoğ;lu. M.T. J. Mol. Struct., 2018, 1161, 55-65.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.080]
[27]
Murugavel, S.; Vetri Velan, V.; Kannan, D.; Bakthadoss, M. J. Mol. Struct., 2016, 1108, 150-167.
[http://dx.doi.org/10.1016/j.molstruc.2015.11.047]
[28]
Bahgat, K. Cent. Eur. J. Chem., 2006, 4(4), 773-785.
[29]
Sarı;kaya, E.K.; Dereli, O. J. Mol. Struct., 2013, 1052, 214-220.
[http://dx.doi.org/10.1016/j.molstruc.2013.08.024]
[30]
Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 7th ed; John Wiley and Sons: New York, 2005.
[31]
Varsanyi, G. Academic Kiado: Budagset 1973, 668
[32]
Selveraj, S.; Rajkumar, P.; Thirunavukkarasu, K.; Gunasekaran, S. Kumaresana. S. Vib. Spect., 2018, 95, 16-12.
[33]
Subashini, K.; Periandy, S. J. Mol. Struct., 2016, 1117, 240-256.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.063]
[34]
Beatrice, M.L.; Delphine, S.M.; Amalanathan, M.; Mary, M.S.M.; Robert, H.M.; Mol, K.T. J. Mol. Struct., 2021, 1238, 130381.
[http://dx.doi.org/10.1016/j.molstruc.2021.130381]
[35]
Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; DiStasio, R.A., Jr Phys. Chem., 2006, 8, 3172-3191.
[36]
Yazıcı, S.; Albayrak, Ç.; Gümrükçüoğlu, İ.; Şenel, İ; Büyükgüngör, O. J. Mol. Struct., 2011, 985(2-3), 292-298.
[http://dx.doi.org/10.1016/j.molstruc.2010.11.009]
[37]
Altürk, S.; Tamer, Ö. Avcı; D.; Atalay, Y. J. Organomet. Chem., 2015, 797, 110-119.
[http://dx.doi.org/10.1016/j.jorganchem.2015.08.014]
[38]
Khan, B.; Khalid, M.; Shah, M.R.; Tahir, M.N.; Asif, H.M.; Rahnamaye Aliabad, H.A.; Hussain, A. J. Mol. Struct., 2020, 1200, 127140.
[http://dx.doi.org/10.1016/j.molstruc.2019.127140]
[39]
Gece, G.; Bilgiç, S. Ind. Eng. Chem. Res., 2013, 2013(51), 14115-14120.
[40]
Asath, R.M.; Premkumar, S.; Mathavan, T.; Benial, A.M.F. J. Mol. Struct., 2017, 1134, 143-156.
[http://dx.doi.org/10.1016/j.molstruc.2016.12.058]
[41]
Drissi, M.; Benhalima, N.; Megrouss, Y.; Rachida, R.; Chouaih, A.; Hamzaoui, F. Molecules, 2015, 20(3), 4042-4054.
[http://dx.doi.org/10.3390/molecules20034042] [PMID: 25741898]
[42]
Mahalakshmi, G.; Balachandran, V. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 321-334.
[43]
Ulahannan, R.T.; Kannan, V.; Vidya, V.; Sreekumar, K. J. Mol. Struct., 2020, 1199(127004), 1-7.
[44]
Lu, T.; Chen, F. Wuli Huaxue Xuebao, 2011, 27, 2786-2792.
[http://dx.doi.org/10.3866/PKU.WHXB20112786]
[45]
Radder, S.B.; Melavanki, R.; Radder, U.; Hiremath, S.M.; Kusanur, R.; Khemalapure, S.S. J. Mol. Struct., 2022, 1255, 132443.
[http://dx.doi.org/10.1016/j.molstruc.2022.132443]
[46]
Erdoğdu, Y.; Sertbakan, T.R.; Güllüoğlu, M.T.; Yurdakul, Ş; Güvenir, A. J. Appl. Spectrosc., 2018, 85(3), 517-525.
[http://dx.doi.org/10.1007/s10812-018-0682-9]
[47]
Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785]
[48]
Bultinck, P.; Carbó-Dorca, R.; Langenaeker, W. J. Chem. Phys., 2003, 118(10), 4349-4356.
[http://dx.doi.org/10.1063/1.1542875]
[49]
Weitao, Y.; Mortier, W.J. J. Am. Chem. Soc., 1986, 108, 5708-5711.
[http://dx.doi.org/10.1021/ja00279a008] [PMID: 22175316]
[50]
Srivastava, S.; Gupta, P.; Sethi, A.; Singh, R.P. J. Mol. Struct., 2016, 1117, 173-180.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.033]
[51]
Roy, R.K.; Krishnamurti, S.; Geerlings, P.; Pal, S. J. Phys. Chem. A, 1998, 102(21), 3746-3755.
[http://dx.doi.org/10.1021/jp973450v]
[52]
Eryı;lmaz, S.; Akdemir, N.; İ;nkaya. E. Spectrosc. Lett., 2019, 52(1), 28-42.
[http://dx.doi.org/10.1080/00387010.2018.1544569]
[53]
Leszczynski, J.; Papadopoulos, M.G.; Sadlej, A.J. Non‐Linear Optical Properties of Matter; Springer: Dordrecht, The Netherlands, 2006.
[54]
Zhang, R.; Du, B.; Sun, G.; Sun, Y. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 75(3), 1115-1124.
[http://dx.doi.org/10.1016/j.saa.2009.12.067] [PMID: 20093073]
[55]
Prashanth, J.; Ramesh, G.; Naik, J.L.; Ojha, J.K.; Reddy, B.V.; Rao, G.R. Opt. Photonics J., 2015, 5(3), 91-107.
[http://dx.doi.org/10.4236/opj.2015.53008]
[56]
Karamanis, P.; Pouchan, C.; Maroulis, G. Phys. Rev. A, 2008, 77(013201), 1-7.
[57]
Singh, P.; Islam, S.S.; Ahmad, H.; Prabaharan, A. J. Mol. Struct., 2018, 1154, 39-50.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.012]
[58]
Büyükmurat, Y.; Akyüz, S. J. Mol. Struct., 2001, 563-564, 545-550.
[http://dx.doi.org/10.1016/S0022-2860(00)00801-2]
[59]
Yurdakul, S.; Temel, E.; Buyukgungor, O. J. Mol. Struct., 2019, 1191, 301-313.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.071]
[60]
McLean, R.J.C.; Pierson, L.S., III; Fuqua, C. J. Microbiol. Methods, 2004, 58(3), 351-360.
[http://dx.doi.org/10.1016/j.mimet.2004.04.016]
[61]
Chu, W.; Vattem, D.A.; Maitin, V.; Barnes, M.B.; McLean, R.J.C. Methods Mol. Biol., 2011, 692, 3-19.
[http://dx.doi.org/10.1007/978-1-60761-971-0_1] [PMID: 21031300]
[62]
Asfour, H. J. Microsc. Ultrastruct., 2018, 6(1), 1-10.
[http://dx.doi.org/10.4103/JMAU.JMAU_10_18]
[63]
Çelik, S. Demirdağ; A.D.; Ozel, A.E.; Akyuz. S. J. Chin. Soc., 2021, 1, 1-13.
[64]
Uetrecht, J.J. Curr. Opin. Drug Discov. Dev., 2001, 4(1), 55-59.
[65]
Ishikawa, M.; Hashimoto, Y. J. Med. Chem., 2011, 54(6), 1539-1554.
[http://dx.doi.org/10.1021/jm101356p] [PMID: 21344906]
[66]
Begley, T.P. Wiley Encyclopedia of Chemical Biology, 1st ed; Wiley Interscience: Hoboken, 2008.
[67]
Di, L.; Kerns, E.H. Blood-Brain Barrier in Drug Discovery: Optimizing Brain Exposure of CNS Drugs and Minimizing Brain Side Effects for Peripheral Drugs; John Wiley & Sons: Hoboken, 2015.
[68]
Brito, M.A. Braz. J. Pharm. Sci., 2011, 47(4), 797-805.
[http://dx.doi.org/10.1590/S1984-82502011000400017]
[69]
Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. MedChemComm, 2019, 10(1), 148-157.
[http://dx.doi.org/10.1039/C8MD00472B] [PMID: 30774861]
[70]
Organic Chemistry portal. Available from: http://www.organicchemistry. org/prog/peo/ [Accessed: Oct 01, 2021].
[71]
Frisch, M.J.; Trucks, G.; Schlegel, U.H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09. Revision C.01; Gaussian, Inc.: Wallingford, CT, 2009.
[72]
Dennington, R.D.; Keith, T.A.; Millam, J.M. GaussView 5; Gaussian Inc., 2008.
[73]
Becke, A.D. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[74]
Shah, T.A.; Alam, U.; Alam, M.; Park, S.; Muneer, M. J. Mol. Struct., 2018, 1157, 638-653.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.074]
[75]
Pulay, P. 2013, 4(3), 169-181.
[76]
Trott, O.; Olson, A.J. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[77]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[78]
Protein Data Bank Available from: https://www.rcsb.org/ [Accessed Oct 01, 2021].
[80]
Sigma Aldrich Company Safety Data Sheet. 1907. Available from: https://www.sigmaaldrich.com/TR/en/sds/aldrich/471682 [Accessed Feb 10, 2022].
[81]
Clinical and Laboratory Standards Institute.s. NCCLS Performance Standards for Antimicrobial Susceptibility NCCLS document M100-S13 (M2), supplement to NCCLS document M2-A8 (disk diffusion); National Committee for Clinical Laboratory, 2003.
[82]
McLean, K.H.; Winson, M.K.; Fish, L.; Taylor, A.; Chhabra, S.R.; Camara, M.; Daykin, M.; Lamb, J.H.; Swift, S.; Bycroft, B.W.; Stewart, G.S.; Williams, P. Microbiology, 1997, 143, 3703-3711.
[83]
Clinical and Laboratory Standards Institute. NCCLS Performance Standards for Antimicrobial Susceptibility Testing: NCCLS document M100-S10(M7), supplement to NCCLS document M7-A5 (MIC testing); National Committee for Clinical Laboratory, 2000.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy