Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Potential of Ebselen Against Bipolar Disorder: A Perspective on the Interaction with Inositol Monophosphatase (IMPase)

Author(s): Giovanni Ribaudo, Andrea Madabeni, Pablo Andrei Nogara, Chiara Pavan, Marco Bortoli, Joao Batista Teixeira Rocha and Laura Orian*

Volume 26, Issue 16, 2022

Published on: 15 December, 2022

Page: [1503 - 1511] Pages: 9

DOI: 10.2174/1385272827666221130122416

Price: $65

Abstract

Despite its narrow therapeutic index and the toxicity issues related to renal injuries, lithium is still a first-line choice for the treatment of mania and for preventing recurrences in bipolar disorder. Nevertheless, side effects and limited efficacy in some of the cases push the search for novel tools to ameliorate these conditions, which still represent a social burden, and great efforts are being made toward the identification of alternative therapeutic options. In this context, rational drug design, drug repurposing, and computer-aided drug discovery represent time-saving and efficient strategies to pursue this goal. Inositol monophosphatase (IMPase) represents the molecular target of lithium which acts as an uncompetitive inhibitor. In this context, a screening on NIH Clinical Collection of drug-like compounds highlighted the polypharmacological drug ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) as a non-competitive, irreversible IMPase inhibitor, suggesting that this molecule could represent a valid therapeutic alternative. In this perspective article, we aim at providing a historical overview of the uses of ebselen with particular attention to its potential use as lithium-mimetic. We critically analyse this aspect by investigating in silico the molecular mechanism leading to the formation of the Se-S bond between IMPase Cys141 and ebselen. Evidence of the bond formation is supported by the crystallographic data Fenn et al. We hypothesize that the IMPase-ebselen complex promotes the association with other IMPase chains, improving the formation of the tetramer adduct, suggesting that ebselen may stabilize the human IMPase in a form that could be less active, resulting in a decreased enzymatic activity.

Next »
Graphical Abstract

[1]
Tondo, L.; Alda, M.; Bauer, M.; Bergink, V.; Grof, P.; Hajek, T.; Lewitka, U.; Licht, R.W.; Manchia, M.; Müller-Oerlinghausen, B.; Nielsen, R.E.; Selo, M.; Simhandl, C.; Baldessarini, R.J. Clinical use of lithium salts: guide for users and prescribers. Int. J. Bipolar Disord., 2019, 7(1), 16.
[http://dx.doi.org/10.1186/s40345-019-0151-2] [PMID: 31328245]
[2]
Strobusch, A.D.; Jefferson, J.W.; Strobusch, A.D.; Jefferson, J.W. Checkered history of lithium in medicine the checkered history of lithium in medicine. Pharm. Hist., 1980, 22(2), 72-76.
[3]
Baird-Gunning, J.; Lea-Henry, T.; Hoegberg, L.C.G.; Gosselin, S.; Roberts, D.M. Lithium Poisoning. J. Intensive Care Med., 2017, 32(4), 249-263.
[http://dx.doi.org/10.1177/0885066616651582] [PMID: 27516079]
[4]
Atack, J.R.; Broughton, H.B.; Pollack, S.J. Structure and mechanism of inositol monophosphatase. FEBS Lett., 1995, 361(1), 1-7.
[http://dx.doi.org/10.1016/0014-5793(95)00063-F] [PMID: 7890024]
[5]
Cade, J.F.J. Lithium salts in the treatment of psychotic excitement. Med. J. Aust., 1949, 2(10), 349-352.
[http://dx.doi.org/10.5694/j.1326-5377.1949.tb36912.x] [PMID: 18142718]
[6]
Nahorski, S.R.; Ian Ragan, C.; Challiss, R.A.J. Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol. Sci., 1991, 12(8), 297-303.
[http://dx.doi.org/10.1016/0165-6147(91)90581-C] [PMID: 1658998]
[7]
Fauroux, C.M.J.; Freeman, S. Inhibitors of inositol monophosphatase. J. Enzyme Inhib., 1999, 14(2), 97-108.
[http://dx.doi.org/10.3109/14756369909036548] [PMID: 10445037]
[8]
Atack, J.R. Inositol monophosphatase, the putative therapeutic target for lithium. Brain Res. Brain Res. Rev., 1996, 22(2), 183-190.
[http://dx.doi.org/10.1016/0165-0173(96)00007-0] [PMID: 8883919]
[9]
Gee, N.S.; Ragan, C.I.; Watling, K.J.; Aspley, S.; Jackson, R.G.; Reid, G.G.; Gani, D.; Shute, J.K. The purification and properties of myo-inositol monophosphatase from bovine brain. Biochem. J., 1988, 249(3), 883-889.
[http://dx.doi.org/10.1042/bj2490883] [PMID: 2833231]
[10]
Ke, H.; Thorpe, C.M.; Seaton, B.A.; Marcuso, F.; Lipscomb, W.N. Molecular structure of fructose-1,6-bisphosphatase at 2.8-A resolution. Proc. Natl. Acad. Sci. USA, 1989, 86(5), 1475-1479.
[http://dx.doi.org/10.1073/pnas.86.5.1475]
[11]
Bone, R.; Springer, J.P.; Atack, J.R. Structure of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. USA, 1992, 89(21), 10031-10035.
[http://dx.doi.org/10.1073/pnas.89.21.10031] [PMID: 1332026]
[12]
Pollack, S.J.; Knowles, M.R.; Atack, J.R.; Broughton, H.B.; Ragan, C.I.; Osborne, S.; McAllister, G. Probing the role of metal ions in the mechanism of inositol monophosphatase by site-directed mutagenesis. Eur. J. Biochem., 1993, 217(1), 281-287.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb18244.x] [PMID: 8223565]
[13]
Pollack, S.J.; Atack, J.R.; Knowles, M.R.; McAllister, G.; Ragan, C.I.; Baker, R.; Fletcher, S.R.; Iversen, L.L.; Broughton, H.B. Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. USA, 1994, 91(13), 5766-5770.
[http://dx.doi.org/10.1073/pnas.91.13.5766] [PMID: 8016062]
[14]
Cole, A.G.; Wilkie, J.; Gani, D. Probes for the position and mechanistic role of the second ‘catalytic’ magnesium ion in the inositol monophosphatase reaction. J. Chem. Soc., Perkin Trans. 1, 1995, (21), 2695-2707.
[http://dx.doi.org/10.1039/P19950002695]
[15]
Dutta, A.; Bhattacharyya, S.; Dutta, D.; Das, A.K. Structural elucidation of the binding site and mode of inhibition of Li+ and Mg2+ in inositol monophosphatase. FEBS J., 2014, 281(23), 5309-5324.
[http://dx.doi.org/10.1111/febs.13070] [PMID: 25263816]
[16]
Wang, X.; Hirao, H. ONIOM (DFT:MM) study of the catalytic mechanism of myo-inositol monophosphatase: essential role of water in enzyme catalysis in the two-metal mechanism. J. Phys. Chem. B, 2013, 117(3), 833-842.
[http://dx.doi.org/10.1021/jp312483n] [PMID: 23268704]
[17]
Singh, N.; Halliday, A.C.; Thomas, J.M.; Kuznetsova, O.V.; Baldwin, R.; Woon, E.C.Y.; Aley, P.K.; Antoniadou, I.; Sharp, T.; Vasudevan, S.R.; Churchill, G.C. A safe lithium mimetic for bipolar disorder. Nat. Commun., 2013, 4(1), 1332.
[http://dx.doi.org/10.1038/ncomms2320] [PMID: 23299882]
[18]
Piettre, S.R. Ganzhorn, A.; Hoflack, J.; Islam, K.; Hornsperger, J.M. α-Hydroxytropolones: A New Class of Potent Inhibitors of Inositol Monophosphatase and Other Bimetallic Enzymes. J. Am. Chem. Soc., 1997, 119(14), 3201-3204.
[http://dx.doi.org/10.1021/ja9634278]
[19]
Lam, Y.K.T.; Wichmann, C.F.; Meinz, M.S.; Guariglia, L.; Giacobbe, R.A.; Mochales, S.; Kong, L.; Honeycutt, S.S.; Zink, D.; Bills, G.F.; Huang, L.; Burg, R.W.; Monaghan, R.L.; Jackson, R.; Reid, G.; Maguire, J.J.; McKnight, A.T.; Ragan, C.I. A novel inositol mono-phosphatase inhibitor from Memnoniella echinata. J. Antibiot. (Tokyo), 1992, 45(9), 1397-1402.
[http://dx.doi.org/10.7164/antibiotics.45.1397] [PMID: 1331013]
[20]
Wendel, A.; Fausel, M.; Safayhi, H.; Tiegs, G.; Otter, R. A novel biologically active seleno-organic compound--II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem. Pharmacol., 1984, 33(20), 3241-3245.
[http://dx.doi.org/10.1016/0006-2952(84)90084-4]
[21]
Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound—1. Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[http://dx.doi.org/10.1016/0006-2952(84)90083-2] [PMID: 6487370]
[22]
Orian, L.; Toppo, S. Organochalcogen peroxidase mimetics as potential drugs: a long story of a promise still unfulfilled. Free Radic. Biol. Med., 2014, 66, 65-74.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.006] [PMID: 23499840]
[23]
Nogara, P.A.; Oliveira, C.S.; Pereira, M.E.; Bortoli, M.; Orian, L.; Aschner, M.; Rocha, J.B.T. Therapeutic applications of low-molecular-weight thiols and selenocompounds. Redox Chemistry and Biology of Thiols; Elsevier, 2022, pp. 643-677.
[http://dx.doi.org/10.1016/B978-0-323-90219-9.00005-4]
[24]
Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and Analogues: Pharmacological properties and synthetic strategies for their preparation. Molecules, 2021, 26(14), 4230.
[http://dx.doi.org/10.3390/molecules26144230] [PMID: 34299505]
[25]
Pacuła, A.J.; Kaczor, K.B.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Wojtczak, A.; Ścianowski, J. New chiral ebselen analogues with antioxidant and cytotoxic potential. Molecules, 2017, 22(3), 492.
[http://dx.doi.org/10.3390/molecules22030492] [PMID: 28335518]
[26]
Balkrishna, S.J.; Bhakuni, B.S.; Kumar, S. Copper catalyzed/mediated synthetic methodology for ebselen and related isoselenazolones. Tetrahedron, 2011, 67(49), 9565-9575.
[http://dx.doi.org/10.1016/j.tet.2011.09.141]
[27]
Cantineau, R.; Tihange, G.; Plenevaux, A.; Christiaens, L.; Guillaume, M.; Welter, A.; Dereu, N. Synthesis of 75Se-2-phenyl-1,2-benzisoselenazol-3(2H)-one (PZ 51; ebselen. A novel biologically active organo-selenium compound. J. Labelled Comp. Radiopharm., 1986, 23(1), 59-65.
[http://dx.doi.org/10.1002/jlcr.2580230108]
[28]
Pietka-Ottlik, M.; Potaczek, P.; Piasecki, E.; Mlochowski, J. Crucial role of selenium in the virucidal activity of benzisoselenazol-3(2H)-ones and related diselenides. Molecules, 2010, 15(11), 8214-8228.
[http://dx.doi.org/10.3390/molecules15118214] [PMID: 21076388]
[29]
Luo, Z.; Liang, L.; Sheng, J.; Pang, Y.; Li, J.; Huang, L.; Li, X. Synthesis and biological evaluation of a new series of ebselen derivatives as glutathione peroxidase (GPx) mimics and cholinesterase inhibitors against Alzheimer’s disease. Bioorg. Med. Chem., 2014, 22(4), 1355-1361.
[http://dx.doi.org/10.1016/j.bmc.2013.12.066] [PMID: 24461494]
[30]
Engman, L.; Hallberg, A. Expedient synthesis of ebselen and related compounds. J. Org. Chem., 1989, 54(12), 2964-2966.
[http://dx.doi.org/10.1021/jo00273a035]
[31]
Oppenheimer, J.; Silks, L.A., III Synthesis of 2-phenyl-1,2-benziso[77Se]selenazol-3(2H)-one: “Ebselen”. J. Labelled Comp. Radiopharm., 1996, 38(3), 281-284.
[http://dx.doi.org/10.1002/(SICI)1099-1344(199603)38:3<281:AID-JLCR833>3.0.CO;2-1]
[32]
Thanna, S.; Goins, C.M.; Knudson, S.E.; Slayden, R.A.; Ronning, D.R.; Sucheck, S.J. Thermal and photoinduced copper-promoted C-Se bond formation: Synthesis of 2-Alkyl-1,2-benzisoselenazol-3(2 H)-ones and evaluation against mycobacterium tuberculosis. J. Org. Chem., 2017, 82(7), 3844-3854.
[http://dx.doi.org/10.1021/acs.joc.7b00440] [PMID: 28273423]
[33]
Pacuła, A.J.; Ścianowski, J.; Aleksandrzak, K.B. Highly efficient synthesis and antioxidant capacity of N-substituted benzisoselenazol-3(2H)-ones. RSC Advances, 2014, 4(90), 48959-48962.
[http://dx.doi.org/10.1039/C4RA08631G]
[34]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[35]
Madabeni, A.; Nogara, P.A.; Omage, F.B.; Rocha, J.B.T.; Orian, L. Mechanistic insight into SARS-CoV-2 Mpro inhibition by organoselenides: The ebselen case study. Appl. Sci. (Basel), 2021, 11(14), 6291.
[http://dx.doi.org/10.3390/app11146291]
[36]
Haritha, C.V.; Sharun, K.; Jose, B. Ebselen, a new candidate therapeutic against SARS-CoV-2. Int. J. Surg., 2020, 84, 53-56.
[http://dx.doi.org/10.1016/j.ijsu.2020.10.018] [PMID: 33120196]
[37]
Nogara, P.A.; Omage, F.B.; Bolzan, G.R.; Delgado, C.P.; Aschner, M.; Orian, L.; Teixeira Rocha, J.B. In silico Studies on the Interaction between Mpro and PLpro From SARS‐CoV‐2 and Ebselen, its Metabolites and Derivatives. Mol. Inform., 2021, 40(8), 2100028.
[http://dx.doi.org/10.1002/minf.202100028] [PMID: 34018687]
[38]
Amporndanai, K.; Meng, X.; Shang, W.; Jin, Z.; Rogers, M.; Zhao, Y.; Rao, Z.; Liu, Z.J.; Yang, H.; Zhang, L.; O’Neill, P.M.; Samar Hasnain, S. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat. Commun., 2021, 12(1), 3061.
[http://dx.doi.org/10.1038/s41467-021-23313-7] [PMID: 34031399]
[39]
Kil, J.; Lobarinas, E.; Spankovich, C.; Griffiths, S.K.; Antonelli, P.J.; Lynch, E.D.; Le Prell, C.G. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 2017, 390(10098), 969-979.
[http://dx.doi.org/10.1016/S0140-6736(17)31791-9] [PMID: 28716314]
[40]
Bortoli, M.; Madabeni, A.; Nogara, P.A.; Omage, F.B.; Ribaudo, G.; Zeppilli, D.; Rocha, J.B.T.; Orian, L. Chalcogen-nitrogen bond. Insights into a key chemical motif. Catalysts, 2020, 11(114), 21.
[http://dx.doi.org/10.3390/ECCS2020-07589]
[41]
Landgraf, A.D.; Alsegiani, A.S.; Alaqel, S.; Thanna, S.; Shah, Z.A.; Sucheck, S.J. Neuroprotective and anti-neuroinflammatory properties of ebselen derivatives and their potential to inhibit neurodegeneration. ACS Chem. Neurosci., 2020, 11(19), 3008-3016.
[http://dx.doi.org/10.1021/acschemneuro.0c00328] [PMID: 32840996]
[42]
Mengist, H.M.; Mekonnen, D.; Mohammed, A.; Shi, R.; Jin, T. Potency, safety, and pharmacokinetic profiles of potential inhibitors targeting SARS-CoV-2 main protease. Front. Pharmacol., 2021, 11, 630500.
[http://dx.doi.org/10.3389/fphar.2020.630500] [PMID: 33597888]
[43]
Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch. Toxicol., 2011, 85(11), 1313-1359.
[http://dx.doi.org/10.1007/s00204-011-0720-3] [PMID: 21720966]
[44]
Lynch, E.; Kil, J. Development of Ebselen, a glutathione peroxidase mimic, for the prevention and treatment of noise-induced hearing loss. Semin. Hear., 2009, 30(01), 047-055.
[http://dx.doi.org/10.1055/s-0028-1111106]
[45]
Masaki, C.; Sharpley, A.L.; Godlewska, B.R.; Berrington, A.; Hashimoto, T.; Singh, N.; Vasudevan, S.R.; Emir, U.E.; Churchill, G.C.; Cowen, P.J. Effects of the potential lithium-mimetic, ebselen, on brain neurochemistry: A magnetic resonance spectroscopy study at 7 tesla. Psychopharmacology (Berl.), 2016, 233(6), 1097-1104.
[http://dx.doi.org/10.1007/s00213-015-4189-2] [PMID: 26758281]
[46]
Loeschner, K.; Hadrup, N.; Hansen, M.; Pereira, S.A.; Gammelgaard, B.; Møller, L.H.; Mortensen, A.; Lam, H.R.; Larsen, E.H. Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats. Metallomics, 2014, 6(2), 330-337.
[http://dx.doi.org/10.1039/c3mt00309d] [PMID: 24413471]
[47]
Parnham, M.J.; Sies, H. The early research and development of ebselen. Biochem. Pharmacol., 2013, 86(9), 1248-1253.
[http://dx.doi.org/10.1016/j.bcp.2013.08.028] [PMID: 24012716]
[48]
Nascimento, V.; Cordeiro, P.S.; Arca, M.; Marini, F.; Sancineto, L.; Braga, A.L.; Lippolis, V.; Iwaoka, M.; Santi, C. Fast and easy conversion of ortho amidoaryldiselenides into the corresponding ebselen-like derivatives driven by theoretical investigations. New J. Chem., 2020, 44(22), 9444-9451.
[http://dx.doi.org/10.1039/D0NJ01605E]
[49]
Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[50]
Wessjohann, L.A.; Schneider, A.; Abbas, M.; Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem., 2007, 388(10), 997-1006.
[http://dx.doi.org/10.1515/BC.2007.138]
[51]
Dalla Tiezza, M.; Bickelhaupt, F.M.; Flohé, L.; Maiorino, M.; Ursini, F.; Orian, L. A dual attack on the peroxide bond. The common principle of peroxidatic cysteine or selenocysteine residues. Redox Biol., 2020, 34, 101540.
[http://dx.doi.org/10.1016/j.redox.2020.101540] [PMID: 32428845]
[52]
Madabeni, A.; Zucchelli, S.; Nogara, P.A.; Rocha, J.B.T.; Orian, L. In the chalcogenoxide elimination panorama: systematic insight into a key reaction. J. Org. Chem., 2022, 87(17), 11766-11775.
[http://dx.doi.org/10.1021/acs.joc.2c01454] [PMID: 35951408]
[53]
Wilson, S.R.; Zucker, P.A.; Huang, R.R.C.; Spector, A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc., 1989, 111(15), 5936-5939.
[http://dx.doi.org/10.1021/ja00197a065]
[54]
Cao, H.; Yang, Y.; Chen, X.; Liu, J.; Chen, C.; Yuan, S.; Yu, L. Synthesis of selenium-doped carbon from glucose: An efficient antibacterial material against Xcc. Chin. Chem. Lett., 2020, 31(7), 1887-1889.
[http://dx.doi.org/10.1016/j.cclet.2020.01.027]
[55]
Mao, X.; Li, P.; Li, T.; Zhao, M.; Chen, C.; Liu, J.; Wang, Z.; Yu, L. Inhibition of mycotoxin deoxynivalenol generation by using selenized glucose. Chin. Chem. Lett., 2020, 31(12), 3276-3278.
[http://dx.doi.org/10.1016/j.cclet.2020.06.033]
[56]
Liu, M.; Zhang, X.; Chu, S.; Ge, Y.; Huang, T.; Liu, Y.; Yu, L. Selenization of cotton products with NaHSe endowing the antibacterial activities. Chin. Chem. Lett., 2022, 33(1), 205-208.
[http://dx.doi.org/10.1016/j.cclet.2021.05.061]
[57]
Singh, B.G.; Gandhi, V.V.; Phadnis, P.P.; Kunwar, A. Identification of a pyridine derivative of diselenides as a potent inhibitor of the main protease of SARS-CoV-2 through in silico screening and biochemical evaluation. New J. Chem., 2022, 46(38), 18447-18457.
[http://dx.doi.org/10.1039/D2NJ02744E]
[58]
Wagner, M.S.; Schultze, E.; Oliveira, T.L.; de Leon, P.M.M.; Thurow, H.S.; Campos, V.F.; Oliveira, I.; Souza, D.; Rodrigues, O.E.D.; Collares, T.; Seixas, F.K. Revitalizing the AZT through of the selenium: An approach in human triple negative breast cancer cell line. Front. Oncol., 2018, 8, 525.
[http://dx.doi.org/10.3389/fonc.2018.00525] [PMID: 30524958]
[59]
Jimoh, Y.A.; Lawal, A.O.; Kade, I.J.; Olatunde, D.M.; Oluwayomi, O. Diphenyl diselenide modulates antioxidant status, inflammatory and redox-sensitive genes in diesel exhaust particle-induced neurotoxicity. Chem. Biol. Interact., 2022, 367, 110196.
[http://dx.doi.org/10.1016/j.cbi.2022.110196] [PMID: 36174737]
[60]
Mal’tseva, V.N.; Goltyaev, M.V.; Turovsky, E.A.; Varlamova, E.G. Immunomodulatory and Anti-Inflammatory Properties of Selenium-Containing Agents: Their Role in the Regulation of Defense Mechanisms against COVID-19. Int. J. Mol. Sci., 2022, 23(4), 2360.
[http://dx.doi.org/10.3390/ijms23042360] [PMID: 35216476]
[61]
Xiao, X.; Shao, Z.; Yu, L. A perspective of the engineering applications of carbon-based selenium-containing materials. Chin. Chem. Lett., 2021, 32(10), 2933-2938.
[http://dx.doi.org/10.1016/j.cclet.2021.03.047]
[62]
Antoniadou, I.; Kouskou, M.; Arsiwala, T.; Singh, N.; Vasudevan, S.R.; Fowler, T.; Cadirci, E.; Churchill, G.C.; Sharp, T. Ebselen has lithium-like effects on central 5-HT 2A receptor function. Br. J. Pharmacol., 2018, 175(13), 2599-2610.
[http://dx.doi.org/10.1111/bph.14179] [PMID: 29488218]
[63]
Bortoli, M.; Dalla Tiezza, M.; Muraro, C.; Pavan, C.; Ribaudo, G.; Rodighiero, A.; Tubaro, C.; Zagotto, G.; Orian, L. Psychiatric disorders and oxidative injury: Antioxidant effects of zolpidem therapy disclosed in silico. Comput. Struct. Biotechnol. J., 2019, 17, 311-318.
[http://dx.doi.org/10.1016/j.csbj.2019.02.004] [PMID: 30867894]
[64]
Muraro, C.; Dalla Tiezza, M.; Pavan, C.; Ribaudo, G.; Zagotto, G.; Orian, L. Major depressive disorder and oxidative stress: in silico investigation of fluoxetine activity against ROS. Appl. Sci. (Basel), 2019, 9(17), 3631.
[http://dx.doi.org/10.3390/app9173631]
[65]
Ribaudo, G.; Bortoli, M.; Pavan, C.; Zagotto, G.; Orian, L. Antioxidant potential of psychotropic drugs: from clinical evidence to in vitro and in vivo assessment and toward a new challenge for in silico molecular design. Antioxidants, 2020, 9(8), 714.
[http://dx.doi.org/10.3390/antiox9080714] [PMID: 32781750]
[66]
Ribaudo, G.; Bortoli, M.; Ongaro, A.; Oselladore, E.; Gianoncelli, A.; Zagotto, G.; Orian, L. Fluoxetine scaffold to design tandem molecular antioxidants and green catalysts. RSC Advances, 2020, 10(32), 18583-18593.
[http://dx.doi.org/10.1039/D0RA03509B] [PMID: 35518299]
[67]
Ribaudo, G.; Bortoli, M.; Witt, C.E.; Parke, B.; Mena, S.; Oselladore, E.; Zagotto, G.; Hashemi, P.; Orian, L. ROS-scavenging selenofluoxetine derivatives inhibit in vivo serotonin reuptake. ACS Omega, 2022, 7(10), 8314-8322.
[http://dx.doi.org/10.1021/acsomega.1c05567] [PMID: 35309454]
[68]
Garcia, C.S.; Besckow, E.M.; da Silva Espíndola, C.N.; D’Avila Nunes, G.; Zuge, N.P.; de Azeredo, M.P.; Rocha, M.J.; Carraro, Junior, L.R.; Penteado, F.; Gomes, C.S.; Lenardão, E.J.; Bortolatto, C.F.; Brüning, C.A. Antidepressant-like effect of a selenoindolizine in mice: In vivo and in silico evidence for the involvement of the serotonergic 5-HT 2A/C receptors. ACS Chem. Neurosci., 2022, 13(12), 1746-1755.
[http://dx.doi.org/10.1021/acschemneuro.2c00129] [PMID: 35605134]
[69]
Domingues, M.; Casaril, A.M.; Smaniotto, T.Â.; Birmann, P.T.; Lourenço, D.A.; Bampi, S.R.; Vieira, B.; Lenardão, E.J.; Savegnago, L. Selanylimidazopyridine abolishes inflammation- and stress-induced depressive-like behaviors by modulating the oxido-nitrosative system. Eur. J. Pharmacol., 2022, 914(914), 174570.
[http://dx.doi.org/10.1016/j.ejphar.2021.174570] [PMID: 34653379]
[70]
Casaril, A.M.; Segatto, N.; Simões, L.; Paschoal, J.; Domingues, M.; Vieira, B.; Sousa, F.S.S.; Lenardão, E.J.; Seixas, F.K.; Collares, T.; Savegnago, L. Neuroprotective effect of 3-[(4-Chlorophenyl)selanyl]-1-methyl-1H-indole on hydrogen peroxide-induced oxidative stress in SH-SY5Y cells. Neurochem. Res., 2021, 46(3), 535-549.
[http://dx.doi.org/10.1007/s11064-020-03190-0] [PMID: 33548035]
[71]
Posser, T.; Kaster, M.P.; Baraúna, S.C.; Rocha, J.B.T.; Rodrigues, A.L.S.; Leal, R.B. Antidepressant-like effect of the organoselenium compound ebselen in mice: Evidence for the involvement of the monoaminergic system. Eur. J. Pharmacol., 2009, 602(1), 85-91.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.055] [PMID: 19026628]
[72]
Singh, N.; Sharpley, A.L.; Emir, U.E.; Masaki, C.; Herzallah, M.M.; Gluck, M.A.; Sharp, T.; Harmer, C.J.; Vasudevan, S.R.; Cowen, P.J.; Churchill, G.C. Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep, and emotional processing in humans. Neuropsychopharmacology, 2016, 41(7), 1768-1778.
[http://dx.doi.org/10.1038/npp.2015.343] [PMID: 26593266]
[73]
Fenn, G.D.; Waller-Evans, H.; Atack, J.R.; Bax, B.D. Crystallization and structure of ebselen bound to Cys141 of human inositol monophosphatase. Acta Crystallogr. F Struct. Biol. Commun., 2020, 76(10), 469-476.
[http://dx.doi.org/10.1107/S2053230X20011310] [PMID: 33006574]
[74]
Knowles, M.R.; Gee, N.; McAllister, G.; Ragan, C.I.; Greasley, P.J.; Gore, M.G. Bovine inositol monophosphatase. Modification, identification and mutagenesis of reactive cysteine residues. Biochem. J., 1992, 285(2), 461-468.
[http://dx.doi.org/10.1042/bj2850461] [PMID: 1322134]
[75]
Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19]
[76]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 21334.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[77]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian 16, Revision B.01 2016.
[78]
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[79]
Raghavachari, K. Perspective on “Density functional thermochemistry. III. The role of exact exchange”. Theor. Chem. Acc., 2000, 103(3-4), 361-363.
[http://dx.doi.org/10.1007/s002149900065]
[80]
Grimme, S. Density functional theory with London dispersion corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(2), 211-228.
[http://dx.doi.org/10.1002/wcms.30]
[81]
Becke, A.D.; Johnson, E.R. A density-functional model of the dispersion interaction. J. Chem. Phys., 2005, 123(15), 154101.
[http://dx.doi.org/10.1063/1.2065267] [PMID: 16252936]
[82]
Bortoli, M.; Torsello, M.; Bickelhaupt, F.M.; Orian, L. Role of the Chalcogen (S, Se, Te) in the oxidation mechanism of the glutathione peroxidase active site. ChemPhysChem, 2017, 18(21), 2990-2998.
[http://dx.doi.org/10.1002/cphc.201700743] [PMID: 28837255]
[83]
Li, L.; Li, C.; Zhang, Z.; Alexov, E. On the dielectric “constant” of proteins: Smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J. Chem. Theory Comput., 2013, 9(4), 2126-2136.
[http://dx.doi.org/10.1021/ct400065j] [PMID: 23585741]
[84]
Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, 113(18), 6378-6396.
[http://dx.doi.org/10.1021/jp810292n] [PMID: 19366259]
[85]
Dalla Tiezza, M.; Bickelhaupt, F.M.; Flohé, L.; Orian, L. Proton transfer and S N 2 reactions as steps of fast selenol and thiol oxidation in proteins: a model molecular study based on GPx. ChemPlusChem, 2021, 86(4), 525-532.
[http://dx.doi.org/10.1002/cplu.202000660] [PMID: 33215863]
[86]
Ramos-Guzmán, C.A.; Ruiz-Pernía, J.J.; Tuñón, I. Unraveling the SARS-CoV-2 main protease mechanism using multiscale methods. ACS Catal., 2020, 10(21), 12544-12554.
[http://dx.doi.org/10.1021/acscatal.0c03420] [PMID: 34192089]
[87]
Arafet, K. Serrano-Aparicio, N.; Lodola, A.; Mulholland, A.J.; González, F.V.; Świderek, K.; Moliner, V. Mechanism of inhibition of SARS-CoV-2 M pro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chem. Sci. (Camb.), 2021, 12(4), 1433-1444.
[http://dx.doi.org/10.1039/D0SC06195F] [PMID: 34163906]
[88]
Capper, M.J.; Wright, G.S.A.; Barbieri, L.; Luchinat, E.; Mercatelli, E.; McAlary, L.; Yerbury, J.J.; O’Neill, P.M.; Antonyuk, S.V.; Banci, L.; Hasnain, S.S. The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nat. Commun., 2018, 9(1), 1693.
[http://dx.doi.org/10.1038/s41467-018-04114-x] [PMID: 29703933]
[89]
Selwood, T.; Jaffe, E.K. Dynamic dissociating homo-oligomers and the control of protein function. Arch. Biochem. Biophys., 2012, 519(2), 131-143.
[http://dx.doi.org/10.1016/j.abb.2011.11.020] [PMID: 22182754]
[90]
Stieglitz, K.A.; Roberts, M.F.; Li, W.; Stec, B. Crystal structure of the tetrameric inositol 1-phosphate phosphatase (TM1415) from the hyperthermophile, Thermotoga maritima. FEBS J., 2007, 274(10), 2461-2469.
[http://dx.doi.org/10.1111/j.0014-2956.2007.05779.x] [PMID: 17419729]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy