Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Facile Synthesis of Organic Compounds in PEG, ScCO2 and H2O: A Review

Author(s): Arabinda Chandra Nath and Gongutri Borah*

Volume 26, Issue 17, 2022

Published on: 16 December, 2022

Page: [1638 - 1652] Pages: 15

DOI: 10.2174/1385272827666221130121750

Price: $65

Abstract

Green solvent is a topic of increasing attention in modern chemistry because of the consciousness of the effect of solvents on air quality, energy usage, pollution, and continuous climate change. Over the past few years, remarkable progress has been made to accomplish these goals by giving interest in sustainable synthesis. For sustainable development, continuous efforts have been put forward for addressing these issues and the chemical approaches are now analysed for the usage of solvents. Realizing solvent property is a crucial area of green chemistry, and therefore the solvents were categorized by their handling techniques, ecological, and healthiness (ESH) features. The focus of this ranking is to help the researchers in choosing their reaction solvent efficiently, keeping in mind the ESH values of the solvents and discouraging them from using environmentally harmful and toxic solvents which are commonly used in laboratories. In this review article, we are trying to consider various synthetic methodologies of the most protuberant sustainable solvents such as polyethylene glycol, supercritical CO2, and water. We herein examine not only the chemical reactions but also represent the mechanism and synthetic utility of each class of solvent inside the background of the reactions for which it is used, but also documented the widespread substrate scope of the reaction. A broad range of economic and environmental factors are also demonstrated, giving a wider display of the current status of sustainable solvent research and development.

Graphical Abstract

[1]
Nwankwo, C.B.; Hoque, M.A.; Islam, M.A.; Dewan, A. Groundwater constituents and trace elements in the basement aquifers of africa and sedimentary aquifers of Asia: Medical hydrogeology of drinking water minerals and toxicants. Earth Sys. Environ., 2020, 4(2), 369-384.
[http://dx.doi.org/10.1007/s41748-020-00151-z]
[2]
Pitt, W.R.; Parry, D.M.; Perry, B.G.; Groom, C.R. Heteroaromatic rings of the future. J. Med. Chem., 2009, 52(9), 2952-2963.
[http://dx.doi.org/10.1021/jm801513z] [PMID: 19348472]
[3]
Glavič, P.; Lukman, R. Review of sustainability terms and their definitions. J. Clean. Prod., 2007, 15(18), 1875-1885.
[http://dx.doi.org/10.1016/j.jclepro.2006.12.006]
[4]
Clark, J.; Farmer, T.; Hunt, A.; Sherwood, J. Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int. J. Mol. Sci., 2015, 16(8), 17101-17159.
[http://dx.doi.org/10.3390/ijms160817101] [PMID: 26225963]
[5]
Buncel, E.; Stairs, R.; Wilson, H. The role of the solvent in chemical reactions; Oxford University Press: UK, 2003.
[6]
Reichardt, C.; Welton, T. Solvents and solvent effects in organic chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim: Germany , 2011.
[7]
Abou-Shehada, S.; Clark, J.H. Solvent impact assessment for the one-flow functional solvent factory. J. Eng. Process., 2016, 99, 88.
[http://dx.doi.org/10.1016/j.cep.2015.07.005]
[8]
Sheldon, R.A. Green solvents for sustainable organic synthesis: state of the art. Green Chem., 2005, 7(5), 267.
[http://dx.doi.org/10.1039/b418069k]
[9]
Roschangar, F.; Colberg, J.; Dunn, P.J.; Gallou, F.; Hayler, J.D.; Koenig, S.G.; Kopach, M.E.; Leahy, D.K.; Mergelsberg, I.; Tucker, J.L.; Sheldon, R.A.; Senanayake, C.H. A deeper shade of green: Inspiring sustainable drug manufacturing. Green Chem., 2017, 19(1), 281-285.
[http://dx.doi.org/10.1039/C6GC02901A]
[10]
Constable, D.J.C.; Jimenez-Gonzalez, C.; Henderson, R.K. Perspective on solvent use in the pharmaceutical industry. Org. Process Res. Dev., 2007, 11(1), 133-137.
[http://dx.doi.org/10.1021/op060170h]
[11]
Savelski, M.J.; Slater, C.S.; Tozzi, P.V.; Wisniewski, C.M. On the simulation, economic analysis, and life cycle assessment of batch-mode organic solvent recovery alternatives for the pharmaceutical industry. Clean Technol. Environ. Policy, 2017, 19(10), 2467-2477.
[http://dx.doi.org/10.1007/s10098-017-1444-8]
[12]
Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9(9), 927.
[http://dx.doi.org/10.1039/b617536h]
[13]
Henderson, R.K.; Jiménez-González, C.; Constable, D.J.C.; Alston, S.R.; Inglis, G.G.A.; Fisher, G.; Sherwood, J.; Binks, S.P.; Curzons, A.D. Expanding GSK’s solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem., 2011, 13(4), 854.
[http://dx.doi.org/10.1039/c0gc00918k]
[14]
Diorazio, L.J.; Hose, D.R.J.; Adlington, N.K. Toward a more holistic framework for solvent selection. Org. Process Res. Dev., 2016, 20(4), 760-773.
[http://dx.doi.org/10.1021/acs.oprd.6b00015]
[15]
Alfonsi, K.; Colberg, J.; Dunn, P.J.; Fevig, T.; Jennings, S.; Johnson, T.A.; Kleine, H.P.; Knight, C.; Nagy, M.A.; Perry, D.A.; Stefaniak, M. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem., 2008, 10(1), 31-36.
[http://dx.doi.org/10.1039/B711717E]
[16]
Prat, D.; Pardigon, O.; Flemming, H.W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. Sanofi’s solvent selection guide: A step toward more sustainable processes. Org. Process Res. Dev., 2013, 17(12), 1517-1525.
[http://dx.doi.org/10.1021/op4002565]
[17]
Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem., 2016, 18(1), 288-296.
[http://dx.doi.org/10.1039/C5GC01008J]
[18]
Subramaniam, B. Exploiting neoteric solvents for sustainable catalysis and reaction engineering: Opportunities and challenges. Ind. Eng. Chem. Res., 2010, 49(21), 10218-10229.
[http://dx.doi.org/10.1021/ie101543a]
[19]
Joucla, L.; Batail, N.; Djakovitch, L. “On Water” direct and site-selective pd-catalysed CH arylation of (NH)-indoles. Adv. Synth. Catal., 2010, 352(17), 2929-2936.
[http://dx.doi.org/10.1002/adsc.201000512]
[20]
Hu, Y.L.; Jiang, H.; Lu, M. Efficient and convenient C-3 functionalization of indoles through Ce(OAc)3/TBHP-mediated oxidative C–H bond activation in the presence of β-cyclodextrin. Green Chem., 2011, 13(11), 3079.
[http://dx.doi.org/10.1039/c1gc15639j]
[21]
Ackermann, L.; Lygin, A.V. Ruthenium-catalyzed direct C-H bond arylations of heteroarenes. Org. Lett., 2011, 13(13), 3332-3335.
[http://dx.doi.org/10.1021/ol2010648] [PMID: 21644545]
[22]
Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A.V. Ruthenium-catalyzed oxidative C-H alkenylations of anilides and benzamides in water. Org. Lett., 2012, 14(3), 728-731.
[http://dx.doi.org/10.1021/ol203251s] [PMID: 22264030]
[23]
Hikawa, H.; Suzuki, H.; Yokoyama, Y.; Azumaya, I. Mechanistic studies for synthesis of bis(indolyl)methanes: Pd-catalyzed C–H activation of indole–carboxylic acids with benzyl alcohols in water. Catalysts, 2013, 3(2), 486-500.
[http://dx.doi.org/10.3390/catal3020486]
[24]
Islam, S.; Larrosa, I. “On water”, phosphine-free palladium-catalyzed room temperature C-H arylation of indoles. Chemistry, 2013, 19(45), 15093-15096.
[http://dx.doi.org/10.1002/chem.201302838] [PMID: 24123582]
[25]
Duan, L.; Fu, R.; Zhang, B.; Shi, W.; Chen, S.; Wan, Y. An efficient reusable mesoporous solid-based Pd catalyst for selective C2 arylation of indoles in water. ACS Catal., 2016, 6(2), 1062-1074.
[http://dx.doi.org/10.1021/acscatal.5b02147]
[26]
Yang, L.; Li, H.; Zhang, H.; Lu, H. Palladium-catalyzed intramolecular C–H amination in water. Chem. Eur., 2016, 34, 5611.
[27]
Arumugam, V.; Kaminsky, W.; Nallasamy, D. Pd(II) pincer type complex catalyzed tandem C–H and N–H activation of acetanilide in aqueous media: a concise access to functionalized carbazoles in a single step. Green Chem., 2016, 18(11), 3295-3301.
[http://dx.doi.org/10.1039/C5GC02937F]
[28]
Chen, X.; Cui, X.; Bai, L.; Wang, Y.; Xie, Y.; Wang, S.; Zhai, R.; Zhao, K.; Kong, D.; Li, Y. Ruthenium(II)‐catalyzed C−H bond [3+2] annulation of N ‐nitrosoanilines with alkynes in water. Asian J. Org. Chem., 2019, 8(12), 2209-2212.
[http://dx.doi.org/10.1002/ajoc.201900553]
[29]
Debbarma, S.; Sk, M.R.; Modak, B.; Maji, M.S. On-Water Cp*Ir(III)-catalyzed C–H functionalization for the synthesis of chromones through annulation of salicylaldehydes with diazo-ketones. J. Org. Chem., 2019, 84(10), 6207-6216.
[http://dx.doi.org/10.1021/acs.joc.9b00418] [PMID: 31002245]
[30]
Li, M.; Yao, T.Y.; Sun, S.Z.; Yan, T.X.; Wen, L.R.; Zhang, L.B. The ruthenium(II)-catalyzed C–H olefination of indoles with alkynes: the facile construction of tetrasubstituted alkenes under aqueous conditions. Org. Biomol. Chem., 2020, 18(16), 3158-3163.
[http://dx.doi.org/10.1039/D0OB00508H] [PMID: 32267286]
[31]
Zhang, J.; Qian, H.; Liu, Z.; Xiong, C.; Zhang, Y. Rhodium(III)-catalyzed one-pot access to isoquinolines and heterocycle-fused pyridines in aqueous medium through C–H cleavage. Chem. Eur., 2016, 36, 8110.
[32]
Rao, N.N.; Meshram, H.M. Microwave promoted catalyst-free benzylic C-Hfunctionalization of methylquinoline and Michael addition to beta-nitro styrene. Tetrahedron Lett., 2013, 54, 5087.
[33]
Kim, S.; Han, S.; Park, J.; Sharma, S.; Mishra, N.K.; Oh, H.; Kwak, J.H.; Kim, I.S. Cp*Rh(III)-catalyzed C(sp 3)–H alkylation of 8-methylquinolines in aqueous media. Chem. Commun. (Camb.), 2017, 53(21), 3006-3009.
[http://dx.doi.org/10.1039/C6CC09830D] [PMID: 28184396]
[34]
Maji, M.; Chakrabarti, K.; Panja, D.; Kundu, S. Sustainable synthesis of N-heterocycles in water using alcohols following the double dehydrogenation strategy. J. Catal., 2019, 373, 93-102.
[http://dx.doi.org/10.1016/j.jcat.2019.03.028]
[35]
Singh, K.S.; Sawant, S.G.; Dixneuf, P.H. Ruthenium(II)-catalyzed synthesis of pyrrole- and indole-fused isocoumarins by C−H bond activation in DMF and water. ChemCatChem, 2016, 8(6), 1046-1050.
[http://dx.doi.org/10.1002/cctc.201501261]
[36]
Ackermann, L.; Fenner, S. Ruthenium-catalyzed C-H/N-O bond functionalization: Green isoquinolone syntheses in water. Org. Lett., 2011, 13(24), 6548-6551.
[http://dx.doi.org/10.1021/ol202861k] [PMID: 22077379]
[37]
Upadhyay, N.S.; Thorat, V.H.; Sato, R.; Annamalai, P.; Chuang, S.C.; Cheng, C.H. Synthesis of isoquinolones via Rh-catalyzed C–H activation of substituted benzamides using air as the sole oxidant in water. Green Chem., 2017, 19(14), 3219-3224.
[http://dx.doi.org/10.1039/C7GC01221G]
[38]
Hu, X.; Yang, X.; Dai, X.J.; Li, C-J. Palladium-catalyzed direct β-C−H arylation of ketones with arylboronic acids in water. Adv. Synth. Catal., 2017, 359(14), 2402-2406.
[http://dx.doi.org/10.1002/adsc.201700277]
[39]
Tang, G.D.; Pan, C.L.; Li, X. Iridium(III)- and rhodium(III)-catalyzed coupling of anilines with α-diazoesters via chelation-assisted C–H activation. Org. Chem. Front., 2016, 3(1), 87-90.
[http://dx.doi.org/10.1039/C5QO00316D]
[40]
Turner, G.L.; Morris, J.A.; Greaney, M.F. Direct arylation of thiazoles on water. Angew. Chem. Int. Ed., 2007, 46(42), 7996-8000.
[http://dx.doi.org/10.1002/anie.200702141] [PMID: 17876864]
[41]
Su, Y.X.; Deng, Y.H.; Ma, T.T.; Li, Y.Y.; Sun, L.P. “On water” direct Pd-catalysed C–H arylation of thiazolo[5,4-d]pyrimidine derivatives. Green Chem., 2012, 14(7), 1979.
[http://dx.doi.org/10.1039/c2gc35399g]
[42]
Nishikata, T.; Abela, A.R.; Lipshutz, B.H. Room temperature C-H activation and cross-coupling of aryl ureas in water. Angew. Chem. Int. Ed., 2010, 49(4), 781-784.
[http://dx.doi.org/10.1002/anie.200905967] [PMID: 20025011]
[43]
Ohnmacht, S.A.; Culshaw, A.J.; Greaney, M.F. Direct arylations of 2H-indazoles on water. Org. Lett., 2010, 12(2), 224-226.
[http://dx.doi.org/10.1021/ol902537d] [PMID: 20014781]
[44]
Gambouz, K.; Abbouchi, A.E.; Nassiri, S.; Suzenet, F.; Mostapha, B.; Akssira, M.; Guillaumet, G.; Kazzouli, S.E. Palladium-catalyzed oxidative arylation of 1H-indazoles with arenes. Chem. Eur., 2020, 48, 7435.
[45]
Chen, F.; Min, Q.Q.; Zhang, X. Pd-catalyzed direct arylation of polyfluoroarenes on water under mild conditions using PPh3 ligand. J. Org. Chem., 2012, 77(6), 2992-2998.
[http://dx.doi.org/10.1021/jo300036d] [PMID: 22339158]
[46]
Arockiam, P.B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P.H. Ruthenium(II)-catalyzed selective monoarylation in water and sequential functionalisations of C–H bonds. Green Chem., 2013, 15(1), 67-71.
[http://dx.doi.org/10.1039/C2GC36222H]
[47]
Adrio, L.A.; Gimeno, J.; Vicent, C. One-pot direct C–H arylation of arenes in water catalysed by RuCl3·nH2O–NaOAc in the presence of Zn. Chem. Commun. (Camb.), 2013, 49(75), 8320-8322.
[http://dx.doi.org/10.1039/c3cc43452d] [PMID: 23801026]
[48]
Qi, J.; Huang, L.; Wang, Z.; Jiang, H. Ruthenium- and rhodium-catalyzed oxidative alkylation of C–H bonds: efficient access to β-aryl ketones. Org. Biomol. Chem., 2013, 11(46), 8009-8013.
[http://dx.doi.org/10.1039/c3ob41590b] [PMID: 24057305]
[49]
Tlili, A.; Schranck, J.; Pospech, J.; Neumann, H.; Beller, M. Ruthenium-catalyzed hydroaroylation of styrenes in water through directed C-H bond activation. ChemCatChem, 2014, 6(6), 1562-1566.
[http://dx.doi.org/10.1002/cctc.201402031]
[50]
Jin, W.; Zheng, P.; Wong, W.T.; Law, G.L. Efficient palladium-catalyzed direct C−H phenylselenylation of (hetero)arenes in water. Asian J. Org. Chem., 2015, 4(9), 875-878.
[http://dx.doi.org/10.1002/ajoc.201500192]
[51]
Binnani, C.; Tyagi, D.; Rai, R.K.; Mobin, S.M.; Singh, S.K. C−H bond activation/arylation catalyzed by arene-ruthenium-aniline complexes in water. Chem. Asian J., 2016, 11(21), 3022-3031.
[http://dx.doi.org/10.1002/asia.201600954] [PMID: 27549021]
[52]
Surendra Babu, G.V.; Sai Prathima, P.; Perumgani, P.C.; Sridhar, B.; Venkateshwar Rao, T.; Mohan, Rao, M. Metal-free cross-dehydrogenative coupling approach for C-H bond functionalization of 2-phenyl pyridine derivatives in water. Heteroatom Chem., 2018, 29(3), e21423.
[http://dx.doi.org/10.1002/hc.21423]
[53]
Nie, R.; Lai, R.; Lv, S.; Xu, Y.; Guo, L.; Wang, Q.; Wu, Y. Water-mediated C–H activation of arenes with secure carbene precursors: the reaction and its application. Chem. Commun. (Camb.), 2019, 55(76), 11418-11421.
[http://dx.doi.org/10.1039/C9CC05804D] [PMID: 31482875]
[54]
Du, K.; Yao, T. The C–H activated controlled mono- and di-olefination of arenes in ionic liquids at room temperature. RSC Advances, 2020, 10(6), 3203-3211.
[http://dx.doi.org/10.1039/C9RA09736H] [PMID: 35497718]
[55]
Fu, X.P.; Liu, L.; Wang, D.; Chen, Y.J.; Li, C.J. “On water”-promoted direct alkynylation of isatins catalyzed by NHC–silver complexes for the efficient synthesis of 3-hydroxy-3-ethynylindolin-2-ones. Green Chem., 2011, 13(3), 549.
[http://dx.doi.org/10.1039/c0gc00807a]
[56]
Kumari, K.; Allam, B.K.; Singh, K.N. A simple and sustainable tetrabutylammonium fluoride (TBAF)-catalyzed synthesis of azaarene-substituted 3-hydroxy-2-oxindoles through sp 3 C–H functionalization. RSC Advances, 2014, 4(38), 19789-19793.
[http://dx.doi.org/10.1039/C3RA47332E]
[57]
Cho, B.S.; Bae, H.J.; Chung, Y.K. Phosphine-free palladium-catalyzed direct bisarylation of pyrroles with aryl iodides on water. J. Org. Chem., 2015, 80(10), 5302-5307.
[http://dx.doi.org/10.1021/acs.joc.5b00451] [PMID: 25919427]
[58]
Yedage, S.L.; Bhanage, B.M. Ru(II)/PEG-400 as a highly efficient and recyclable catalytic media for annulation and olefination reactions via C–H bond activation. Green Chem., 2016, 18(20), 5635-5642.
[http://dx.doi.org/10.1039/C6GC01581F]
[59]
Kumar, R.; Chaudhary, P.; Nimesh, S.; Chandra, R. Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes. Green Chem., 2006, 8(4), 356.
[http://dx.doi.org/10.1039/b517397c]
[60]
Xiao, J.; Nefkens, S.C.A.; Jessop, P.G.; Ikariya, T.; Noyori, R. Asymmetric hydrogenation of α,β-unsaturated carboxylic acids in supercritical carbon dioxide. Tetrahedron Lett., 1996, 37(16), 2813-2816.
[http://dx.doi.org/10.1016/0040-4039(96)00436-4]
[61]
Hu, Y.; Birdsall, D.J.; Stuart, A.M.; Hope, E.G.; Xiao, J. Ruthenium-catalysed asymmetric hydrogenation with fluoroalkylated BINAP ligands in supercritical CO2. J. Mol. Catal. Chem., 2004, 219(1), 57-60.
[http://dx.doi.org/10.1016/j.molcata.2004.05.009]
[62]
Koch, D.; Leitner, W. Rhodium-catalyzed hydroformylation in supercritical carbon dioxide. J. Am. Chem. Soc., 1998, 120(51), 13398-13404.
[http://dx.doi.org/10.1021/ja980729w]
[63]
Gava, R.; Olmos, A.; Noverges, B.; Varea, T.; Álvarez, E.; Belderrain, T.R.; Caballero, A.; Asensio, G.; Pérez, P.J. Discovering copper for methane C–H bond functionalization. ACS Catal., 2015, 5(6), 3726-3730.
[http://dx.doi.org/10.1021/acscatal.5b00718]
[64]
Cravotto, G.; Binello, A.; Orio, L. Green extraction techniques: For high-quality natural products. Agro Food Ind. Hi-Tech, 2011, 22, 24-36.
[65]
Blicharski, T.; Oniszczuk, A. Extraction methods for the isolation of isoflavonoids from plant material. Open Chem., 2017, 15(1), 34-45.
[http://dx.doi.org/10.1515/chem-2017-0005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy