Abstract
Background: The Brugada syndrome (BrS) is a heart rhythm condition that is commonly associated with a strong predisposition for sudden cardiac death. Malignant ventricular arrhythmias could occur secondary to the dysfunction of the cardiac sodium voltage-gated Na(v)1.5 channel (SCN5A).
Objective: This study aimed to perform a multiparametric computational analysis of the physicochemical properties of SCN5A mutants associated with BrS using a set of bioinformatics tools.
Methods: In-house algorithms were calibrated to calculate, in a double-blind test, the Polarity Index Method (PIM) profile and protein intrinsic disorder predisposition (PIDP) profile of each sequence, and computer programs specialized in the genomic analysis were used.
Results: Specific regularities in the charge/polarity and PIDP profile of the SCN5A mutant proteins enabled the re-creation of the taxonomy, allowing us to propose a bioinformatics method that takes advantage of the PIM profile to identify this group of proteins from their sequence.
Conclusion: Bioinformatics programs could reproduce characteristic PIM and PIDP profiles of the BrS-related SCN5A mutant proteins. This information can contribute to a better understanding of these altered proteins.
[http://dx.doi.org/10.1016/0735-1097(92)90253-J] [PMID: 1309182]
[http://dx.doi.org/10.1016/j.jacc.2018.06.037] [PMID: 30139433]
[http://dx.doi.org/10.1016/j.ijcha.2020.100468] [PMID: 31993492]
[http://dx.doi.org/10.1016/j.acmx.2013.10.001] [PMID: 24269159]
[http://dx.doi.org/10.1016/j.jacep.2018.03.006] [PMID: 29798782]
[http://dx.doi.org/10.1007/164_2017_43] [PMID: 28965168]
[http://dx.doi.org/10.1371/journal.pone.0042037] [PMID: 22876298]
[http://dx.doi.org/10.3934/mbe.2019127] [PMID: 31137226]
[http://dx.doi.org/10.1007/s12013-018-0839-4] [PMID: 29511990]
[http://dx.doi.org/10.1016/j.bbapap.2010.01.011] [PMID: 20100603]
[http://dx.doi.org/10.1093/nar/gkh131] [PMID: 14681372]
[http://dx.doi.org/10.1093/nar/gky384] [PMID: 29860432]
[http://dx.doi.org/10.1093/nar/gkw1056] [PMID: 27899601]
[PMID: 27824362]
[http://dx.doi.org/10.1007/s00424-016-1844-3] [PMID: 27287068]
[http://dx.doi.org/10.1016/j.ijcard.2018.03.044] [PMID: 29754923]
[http://dx.doi.org/10.1021/acsomega.9b03927] [PMID: 32743159]
[http://dx.doi.org/10.1093/database/bas015]
[http://dx.doi.org/10.1093/nar/gkt1113] [PMID: 24234437]
[PMID: 23193291]
[http://dx.doi.org/10.1093/nar/gkz297] [PMID: 31251384]
[http://dx.doi.org/10.1093/bioinformatics/btg223] [PMID: 12967961]
[http://dx.doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7] [PMID: 11025552]
[http://dx.doi.org/10.1016/S1093-3263(00)00138-8] [PMID: 11381529]
[http://dx.doi.org/10.1529/biophysj.106.094045] [PMID: 17158572]
[http://dx.doi.org/10.1186/1471-2105-8-211] [PMID: 17578581]
[http://dx.doi.org/10.1038/cr.2009.87] [PMID: 19597536]
[http://dx.doi.org/10.1007/s00018-017-2555-4] [PMID: 28589442]
[http://dx.doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3] [PMID: 11093259]
[http://dx.doi.org/10.1002/prot.20735] [PMID: 16187360]
[http://dx.doi.org/10.1142/S0219720005000886] [PMID: 15751111]
[http://dx.doi.org/10.1021/acsomega.9b03940] [PMID: 31956845]
[http://dx.doi.org/10.1093/nar/29.1.308] [PMID: 11125122]
[http://dx.doi.org/10.1093/bioinformatics/btx541] [PMID: 28968638]
[http://dx.doi.org/10.1093/nar/gkq973] [PMID: 21045058]
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[http://dx.doi.org/10.1073/pnas.2100069118] [PMID: 33712541]
[http://dx.doi.org/10.1021/acs.jproteome.1c00848] [PMID: 34812044]
[http://dx.doi.org/10.1016/j.jmb.2010.11.046] [PMID: 21167176]
[http://dx.doi.org/10.1038/ncomms6126] [PMID: 25370050]
[http://dx.doi.org/10.1002/pmic.202100232] [PMID: 34730875]
[http://dx.doi.org/10.1016/j.gene.2021.145643] [PMID: 33848577]
[http://dx.doi.org/10.1016/j.gene.2018.01.085] [PMID: 29408733]
[http://dx.doi.org/10.1016/S0959-440X(96)80079-0] [PMID: 8728656]
[http://dx.doi.org/10.1002/prot.10549] [PMID: 14579331]