Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Synthesis, in silico Studies and Pharmacological Evaluation of a New Series of Indanone Derivatives as Anti-Parkinsonian and Anti-Alzheimer’s Agents

Author(s): Ranju Bansal*, Ranjit Singh and Pratibha Rana

Volume 19, Issue 2, 2023

Published on: 26 December, 2022

Page: [94 - 107] Pages: 14

DOI: 10.2174/1573409919666221129155110

Price: $65

Abstract

Objective: Parkinson’s disease (PD) and Alzheimer’s disease (AD) are the most common forms of neurodegenerative disorders. The aim of the current work is to study the potential of some new indanone derivatives for the treatment of these neurological disorders.

Methods: A new series of 4-(2-oxo-2-aminoethoxy)-2-benzylidene substituted indanone derivatives have been synthesized and studied for anti-Parkinsonian and anti-Alzheimer’s effects. Substitution of different aminoalkyl functionalities at the para position of 2-benzylidene moiety of indanone ring resulted in the formation of potent anti-parkinsonian and anti-Alzheimer’s agents (5-10). The neuroprotective effects of newly synthesized compounds were evaluated using perphenazine (PPZ)-induced catatonia in rats and LPS-induced cognitive deficits in mice models. Further, in silico molecular modelling studies of the new indanone derivatives were performed by docking against the 3D structures of various neuroinflammatory mediators, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and monoamine oxidase-B (MAO-B), to gain the mechanistic insights of their anti-Alzheimer’s and antiparkinsonian effects.

Results: The newly synthesized indanone analogues 5-10 were found effective against PPZinduced motor dysfunction and LPS-induced memory impairment in animal models. Among all the synthesized analogues, morpholine-substituted indanone 9 displayed maximum anti-parkinsonian activity, even better than the standard drug L-DOPA, while pyrrolidine and piperidine substituted analogues 5 and 6 were found to be the most potent anti-Alzheimer’s agents.

Conclusion: The new 2-arylidene-1-indanone analogues show good potential as promising leads for designing compounds against Parkinson’s and Alzheimer’s diseases.

Graphical Abstract

[1]
Ramanan, V.K.; Saykin, A.J. Pathways to neurodegeneration: Mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am. J. Neurodegener. Dis., 2013, 2(3), 145-175.
[PMID: 24093081]
[2]
Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[3]
Block, M.L.; Hong, J.S. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Prog. Neurobiol., 2005, 76(2), 77-98.
[http://dx.doi.org/10.1016/j.pneurobio.2005.06.004] [PMID: 16081203]
[4]
Seidl, S.E.; Potashkin, J.A. The promise of neuroprotective agents in Parkinson’s disease. Front. Neurol., 2011, 2, 68-69.
[http://dx.doi.org/10.3389/fneur.2011.00068] [PMID: 22125548]
[5]
Bachurin, S.O. Medicinal chemistry approaches for the treatment and prevention of Alzheimer’s disease. Med. Res. Rev., 2003, 23(1), 48-88.
[http://dx.doi.org/10.1002/med.10026] [PMID: 12424753]
[6]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[7]
Turek, M.; Szczęsna, D.; Koprowski, M.; Bałczewski, P. Synthesis of 1-indanones with a broad range of biological activity. Beilstein J. Org. Chem., 2017, 13, 451-494.
[http://dx.doi.org/10.3762/bjoc.13.48] [PMID: 28382183]
[8]
Saxena, H.O.; Faridi, U.; Srivastava, S.; Kumar, J.K.; Darokar, M.P.; Luqman, S.; Chanotiya, C.S.; Krishna, V.; Negi, A.S.; Khanuja, S.P.S. Gallic acid-based indanone derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2008, 18(14), 3914-3918.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.039] [PMID: 18586491]
[9]
Josh, C.; Menezes, J.M.D. Arylidene indanone scaffold: Medicinal chemistry and structure activity relationship. J. Med. Chem., 2017, 7, 935.
[10]
Sharma, G.S.; Saxena, A.K. Synthesis and biological evaluation of chalcones having heterosubstituents. Indian J. Pharm. Sci., 2010, 24, 801-806.
[11]
Leoni, L.M.; Hamel, E.; Genini, D.; Shih, H.; Carrera, C.J.; Cottam, H.B.; Carson, D.A. Indanocine, a microtubule-binding indanone and a selective inducer of apoptosis in multidrug-resistant cancer cells. J. Natl. Cancer Inst., 2000, 92(3), 217-224.
[http://dx.doi.org/10.1093/jnci/92.3.217] [PMID: 10655438]
[12]
Patil, S.A.; Patil, R.; Patil, S.A. Recent developments in biological activities of indanones. Eur. J. Med. Chem., 2017, 138, 182-198.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.032]
[13]
Mostert, S.; Petzer, A.; Petzer, J.P. Indanones as high-potency reversible inhibitors of monoamine oxidase. ChemMedChem, 2015, 10(5), 862-873.
[http://dx.doi.org/10.1002/cmdc.201500059] [PMID: 25820651]
[14]
Huang, L.; Lu, C.; Sun, Y.; Mao, F.; Luo, Z.; Su, T.; Jiang, H.; Shan, W.; Li, X. Multitarget-directed benzylideneindanone derivatives: Anti-β-amyloid (Aβ) aggregation, antioxidant, metal chelation, and monoamine oxidase B (MAO-B) inhibition properties against Alzheimer’s disease. J. Med. Chem., 2012, 55(19), 8483-8492.
[http://dx.doi.org/10.1021/jm300978h] [PMID: 22978824]
[15]
Huang, L.; Miao, H.; Sun, Y.; Meng, F.; Li, X. Discovery of indanone derivatives as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2014, 87, 429-439.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.081] [PMID: 25282266]
[16]
Batista, C.R.A.; Gomes, G.F.; Candelario-Jalil, E.; Fiebich, B.L.; de Oliveira, A.C.P. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int. J. Mol. Sci., 2019, 20(9), 2293.
[http://dx.doi.org/10.3390/ijms20092293] [PMID: 31075861]
[17]
Riederer, P.; Müller, T. Use of monoamine oxidase inhibitors in chronic neurodegeneration. Expert Opin. Drug Metab. Toxicol., 2017, 13(2), 233-240.
[http://dx.doi.org/10.1080/17425255.2017.1273901] [PMID: 27998194]
[18]
Guglielmi, P.; Carradori, S.; Ammazzalorso, A.; Secci, D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: Is there room for improvement? Expert Opin. Drug Discov., 2019, 14(10), 995-1035.
[http://dx.doi.org/10.1080/17460441.2019.1637415] [PMID: 31268358]
[19]
Nel, M.S.; Petzer, A.; Petzer, J.P.; Legoabe, L.J. 2-Benzylidene-1-indanone derivatives as inhibitors of monoamine oxidase. Bioorg. Med. Chem. Lett., 2016, 26(19), 4599-4605.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.067] [PMID: 27578245]
[20]
Nel, M.S.; Petzer, A.; Petzer, J.P.; Legoabe, L.J. 2-Heteroarylidene-1-indanone derivatives as inhibitors of monoamine oxidase. Bioorg. Chem., 2016, 69, 20-28.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.004] [PMID: 27662218]
[21]
Affini, A.; Hagenow, S.; Zivkovic, A.; Marco-Contelles, J.; Stark, H. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem., 2018, 148, 487-497.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.015] [PMID: 29477889]
[22]
Bansal, R.; Narang, G.; Zimmer, C.; Hartmann, R.W. Synthesis of some imidazolyl-substituted 2-benzylidene indanone derivatives as potent aromatase inhibitors for breast cancer therapy. Med. Chem. Res., 2011, 20(6), 661-669.
[http://dx.doi.org/10.1007/s00044-010-9368-4]
[23]
Morpurgo, C. Effects of antiparkinson drugs on a phenothiazine-induced catatonic reaction. Arch. Intel. Pharmaco., 1962, 137, 84-90.
[PMID: 14476206]
[24]
Singh, R.; Thota, S.; Bansal, R. Studies on 16,17-pyrazoline substituted heterosteroids as anti-Alzheimer and anti-Parkinsonian agents using LPS induced neuroinflammation models of mice and rats. ACS Chem. Neurosci., 2018, 9(2), 272-283.
[http://dx.doi.org/10.1021/acschemneuro.7b00303] [PMID: 29019394]
[25]
Crystal Structure of TNF-alpha with a small molecule inhibitor. Available from: http://www.rcsb.org/pdb/explore/explore.do?structureId=2az5 (Accessed on: 23/2/2020)
[26]
Crystal structure of an Interleukin-1 receptor complex. Available from: https://www.rcsb.org/structure/3O4O (Accessed on: 23/2/2020)
[27]
Crystal structure of human monoamine oxidase B (MAO B) in complex with pioglitazone. Available from: https://www.rcsb.org/structure/4A79 (Accessed on 26/6/2021)
[28]
Rubio-Perez, J.M.; Morillas-Ruiz, J.M. A review: Inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal, 2012, 2012, 1-15.
[http://dx.doi.org/10.1100/2012/756357] [PMID: 22566778]
[29]
Hirsch, E.C.; Hunot, S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol., 2009, 8(4), 382-397.
[http://dx.doi.org/10.1016/S1474-4422(09)70062-6] [PMID: 19296921]
[30]
He, M.M.; Smith, A.S.; Oslob, J.D.; Flanagan, W.M.; Braisted, A.C.; Whitty, A.; Cancilla, M.T.; Wang, J.; Lugovskoy, A.A.; Yoburn, J.C.; Fung, A.D.; Farrington, G.; Eldredge, J.K.; Day, E.S.; Cruz, L.A.; Cachero, T.G.; Miller, S.K.; Friedman, J.E.; Choong, I.C.; Cunningham, B.C. Small-molecule inhibition of TNF-α. Science, 2005, 310(5750), 1022-1025.
[http://dx.doi.org/10.1126/science.1116304] [PMID: 16284179]
[31]
Wang, D.; Zhang, S.; Li, L.; Liu, X.; Mei, K.; Wang, X. Structural insights into the assembly and activation of IL-1β with its receptors. Nat. Immunol., 2010, 11(10), 905-911.
[http://dx.doi.org/10.1038/ni.1925] [PMID: 20802483]
[32]
Shook, B.C.; Rassnick, S.; Osborne, M.C.; Davis, S.; Westover, L.; Boulet, J.; Hall, D.; Rupert, K.C.; Heintzelman, G.R.; Hansen, K.; Chakravarty, D.; Bullington, J.L.; Russell, R.; Branum, S.; Wells, K.M.; Damon, S.; Youells, S.; Li, X.; Beauchamp, D.A.; Palmer, D.; Reyes, M.; Demarest, K.; Tang, Y.; Rhodes, K.; Jackson, P.F. In vivo characterization of a dual adenosine A2A/A1 receptor antagonist in animal models of Parkinson’s disease. J. Med. Chem., 2010, 53(22), 8104-8115.
[http://dx.doi.org/10.1021/jm100971t] [PMID: 20973483]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy