Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

RBC Membrane-coated Nanoparticles: A Comprehensive Review on the Preparation Methods, Characterisations and Applications

Author(s): Zainab A. Almardod, Amira I.M. Alkayed, Marwa G.B. Makhashen, Tasneem M.H. Sbahi, Alaa I.M. Ahmed, Rasha F. Albacha and Rana M.F. Sammour*

Volume 18, Issue 2, 2023

Published on: 15 December, 2022

Page: [98 - 116] Pages: 19

DOI: 10.2174/1574885518666221129151025

Price: $65

Abstract

Natural cells have become an area of interest due to their biocompatibility, nonimmunogenicity, biodegradability, and targeting specificity. The human vascular system retains distinctive physiological features that can be developed for enhanced and effective targeted drug delivery. Red blood cells (RBCs) have unique features and properties that make them potential natural carriers for numerous substances. Recently, the RBC membrane has become a unique biological carrier and it has been extensively studied due to its long-circulating half-life, low toxicity, high stability and the ability to transport various biologically active substances with higher drug release efficiency. Among the benefits of the RBC membrane as a drug delivery carrier in medical and biological fields is the use of this system in anticancer therapy. Antitumor drugs are loaded in gold NP, magnetic NPs, or mesoporous silica NPs. Then, the loaded NP is used as a core and coated with an RBC membrane to protect the NP from immune attack and enhance drug targeting. Moreover, RBCs have been used for encapsulating different enzymes to overcome the undesirable outcomes associated with enzyme replacement therapy. This review highlighted the most recent RBC membrane preparation methods, such as Membrane coating technology and Osmotic Loading Procedures. The recent advances in the design of RBC membrane carriers and discuss the applications of RBCs in different fields such as therapeutic enzymes, immunotherapy and anti-tumour therapy. Given the potential risks and challenges in the development of any treatment protocol, this review elucidated the problematic aspects and prospects, describing new modalities to overcome these problems. RBCs as a drug carriers are among the most interesting topics as a novel drug delivery system as they are convenient, effective, safer, biocompatible and have good properties to deliver and administrate the drug specifically to the target site of action with fewer side effects and interference with therapeutic aspects.

Graphical Abstract

[1]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2019; 25(1): 112.
[2]
Narain A, Asawa S, Chhabria V, Patil-Sen Y. Cell membrane coated nanoparticles: Next-generation therapeutics. Nanomedicine 2017; 12(21): 2677-92.
[http://dx.doi.org/10.2217/nnm-2017-0225] [PMID: 28965474]
[3]
Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater 2018; 30(23): e1706759.
[http://dx.doi.org/10.1002/adma.201706759]
[4]
Hossen MN, Murphy B. Probing cellular processes using engineered nanoparticles. Bioconjug Chem 2018; 29(6): 1793-808.
[5]
Mansoori GA, Soelaiman TAF. Nanotechnology - An introduction for the standards community. J ASTM Int 2005; 2(6): 1-22.
[6]
Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 2015; 220: 600-7.
[7]
de Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[8]
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9): 941-51.
[http://dx.doi.org/10.1038/nbt.3330]
[9]
Bhateria M, Rachumallu R, Singh R, Bhatta RS. Erythrocytes-based synthetic delivery systems: Transition from conventional to novel engineering strategies. Expert Opin Drug Deliv 2014; 11(8): 1219-36.
[http://dx.doi.org/10.1517/17425247.2014.927436] [PMID: 24912015]
[10]
Muzykantov VR. Drug delivery by red blood cells: Vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010; 7(4): 403-27.
[http://dx.doi.org/10.1517/17425241003610633] [PMID: 20192900]
[11]
Han X, Wang C, Liu Z. Red blood cells as smart delivery systems. Bioconjug Chem 2018; 29(4): 852-60.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00758] [PMID: 29298380]
[12]
Mohandas N, Gallagher PG. Red cell membrane: Past, present, and future. Blood 2008; 112(10): 3939-48.
[http://dx.doi.org/10.1182/blood-2008-07-161166] [PMID: 18988878]
[13]
Millán CG, Marinero MLS, Castañeda AZ, Lanao JM. Drug, enzyme and peptide delivery using erythrocytes as carriers. J Control Release 2004; 95(1): 27-49.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.018] [PMID: 15013230]
[14]
Jakobsson U, Mäkilä E, Rahikkala A, et al. Preparation and in vivo evaluation of red blood cell membrane coated porous silicon nanoparticles implanted with 155Tb. Nucl Med Biol J 2020; 84-85: 102-10.
[http://dx.doi.org/10.1016/j.nucmedbio.2020.04.001]
[15]
Lizano C, Pérez MT, Pinilla M. Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation. Life Sci 2001; 68(17): 2001-16.
[http://dx.doi.org/10.1016/S0024-3205(01)00991-2] [PMID: 11388702]
[16]
Sanz S, Lizano C, Garín MI, Luque J, Pinilla M. Biochemical properties of alcohol dehydrogenase and glutamate dehydrogenase encapsulated into human erythrocytes by a hypotonic-dialysis procedure. In: Erythrocytes as drug carriers in medicine. Boston, MA: Springer US 1997; pp. 101-8.
[http://dx.doi.org/10.1007/978-1-4899-0044-9_14]
[17]
Biagiotti S, Paoletti MF, Fraternale A, Rossi L, Magnani M. Drug delivery by red blood cells. IUBMB Life 2011; 63(8): 621-31.
[http://dx.doi.org/10.1002/iub.478] [PMID: 21766411]
[18]
Rao L, Cai B, Bu LL, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 2017; 11(4): 3496-505.
[http://dx.doi.org/10.1021/acsnano.7b00133] [PMID: 28272874]
[19]
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as carriers: From drug delivery to biosensors. Pharmaceutics 2020; 12(3): 276.
[http://dx.doi.org/10.3390/pharmaceutics12030276] [PMID: 32197542]
[20]
Ihler GM, Glew RH, Schnure FW. Enzyme loading of erythrocytes. Proc Natl Acad Sci 1973; 70(9): 2663-6.
[http://dx.doi.org/10.1073/pnas.70.9.2663] [PMID: 4354859]
[21]
Xia Q, Zhang Y, Li Z, Hou X, Feng N. Red blood cell membrane-camouflaged nanoparticles: A novel drug delivery system for antitumor application. Acta Pharm Sin B 2019; 9(4): 675-89.
[http://dx.doi.org/10.1016/j.apsb.2019.01.011] [PMID: 31384529]
[22]
Lejeune A, Moorjani M, Gicquaud C, Lacroix J, Poyet P, Gaudreault CR. Nanoerythrosome, a new derivative of erythrocyte ghost: Preparation and antineoplastic potential as drug carrier for daunorubicin. Anticancer Res 1994; 14(3): 915.
[23]
Désilets J, Lejeune A, Mercer J, Gicquaud C. Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res 2001; 21(3B): 1741-7.
[24]
Han X, Shen S, Fan Q. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci Adv 2019; 5(10): 6870.
[http://dx.doi.org/10.1126/sciadv.aaw6870]
[25]
Luk BT, Jack Hu C-M, Fang RH, et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 2014; 6(5): 2730-7.
[http://dx.doi.org/10.1039/C3NR06371B] [PMID: 24463706]
[26]
Xie X, Wang H, Williams GR, et al. Erythrocyte membrane cloaked curcumin-loaded nanoparticles for enhanced chemotherapy. Pharmaceutics 2019; 11(9): 429.
[http://dx.doi.org/10.3390/pharmaceutics11090429] [PMID: 31450749]
[27]
Luk BT, Fang RH, Hu CMJ, et al. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 2016; 6(7): 1004-1.
[http://dx.doi.org/10.7150/thno.14471]
[28]
Goel S, Chen F, Cai W. Red blood cell-mimicking hybrid nanoparticles. In: Hybrid Nanomaterials. CRC Press 2017; pp. 7-35.
[http://dx.doi.org/10.1201/9781315370934-2]
[29]
Yan J, Yu J, Wang C, Gu Z. Red blood cells for drug delivery. Small Methods 2017; 1(12): 1700270.
[http://dx.doi.org/10.1002/smtd.201700270]
[30]
Hao X, Li Q, Wang H, et al. Red-blood-cell-mimetic gene delivery systems for long circulation and high transfection efficiency in ECs. J Mater Chem B Mater Biol Med 2018; 6(37): 5975-85.
[http://dx.doi.org/10.1039/C8TB01789A] [PMID: 32254717]
[31]
Xu E, Wu X, Zhang X, et al. Study on the protection of dextran on erythrocytes during drug loading. Colloids Surf B Biointerfaces 2020; 189: 110882.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110882]
[32]
Zhang X, Qiu M, Guo P, Lian Y, Xu E, Su J. Autologous red blood cell delivery of betamethasone phosphate sodium for long anti-inflammation. Pharmaceutics 2018; 10(4): 286.
[http://dx.doi.org/10.3390/pharmaceutics10040286]
[33]
Li C, Wang X, Li R, et al. Resveratrol-loaded PLGA nanoparticles functionalized with red blood cell membranes as a biomimetic delivery system for prolonged circulation time. J Drug Deliv Sci Technol 2019; 54: 101369.
[http://dx.doi.org/10.1016/j.jddst.2019.101369]
[34]
Hamidi M, Rafiei P, Azadi A, Mohammadi-Samani S. Encapsulation of valproate-loaded hydrogel nanoparticles in intact human erythrocytes: a novel nano-cell composite for drug delivery. J Pharm Sci 2011; 100(5): 1702-11.
[http://dx.doi.org/10.1002/jps.22395] [PMID: 21374608]
[35]
Magnani M, Rossi L, Fraternale A, et al. Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther 2002; 9(11): 749-51.
[http://dx.doi.org/10.1038/sj.gt.3301758] [PMID: 12032702]
[36]
Mambrini G, Mandolini M, Rossi L, et al. Ex vivo encapsulation of dexamethasone sodium phosphate into human autologous erythrocytes using fully automated biomedical equipment. Int J Pharm 2017; 517(1-2): 175-84.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.011] [PMID: 27939571]
[37]
Li H, Jin K, Luo M, et al. Size dependency of circulation and biodistribution of biomimetic nanoparticles: Red blood cell membrane-coated nanoparticles. Cells 2019; 8(8): 881.
[http://dx.doi.org/10.3390/cells8080881] [PMID: 31412631]
[38]
Su J, Zhang R, Lian Y, et al. Preparation and characterization of erythrocyte membrane-camouflaged berberine hydrochloride-loaded gelatin nanoparticles. Pharmaceutics 2019; 11(2): 93.
[http://dx.doi.org/10.3390/pharmaceutics11020093]
[39]
Que X, Su J, Guo P, et al. Study on preparation, characterization and multidrug resistance reversal of red blood cell membrane-camouflaged tetrandrine-loaded PLGA nanoparticles. Drug Deliv 2019; 26(1): 199-207.
[http://dx.doi.org/10.1080/10717544.2019.1573861] [PMID: 30835586]
[40]
Leung P, Ray LE, Sander C, Way JL, Sylvester DM, Way JL. Encapsulation of thiosulfate: Cyanide sulfurtransferase by mouse erythrocytes. Toxicol Appl Pharmacol 1986; 83(1): 101-7.
[http://dx.doi.org/10.1016/0041-008X(86)90327-3] [PMID: 3456651]
[41]
Kwant WO, Seeman P. The erythrocyte ghost is a perfect osmometer. J Gen Physiol 1970; 55(2): 208-19.
[42]
Villa CH, Anselmo AC, Mitragotri S, Muzykantov V. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106(Pt A): 88-103.
[http://dx.doi.org/10.1016/j.addr.2016.02.007] [PMID: 26941164]
[43]
Tajerzadeh H, Hamidi M. Evaluation of hypotonic preswelling method for encapsulation of enalaprilat in intact human erythrocytes. Drug Dev Ind Pharm 2000; 26(12): 1247-57.
[http://dx.doi.org/10.1081/DDC-100102306] [PMID: 11147125]
[44]
Harisa GI, Badran MM, AlQahtani SA, Alanazi FK, Attia SM. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer. Saudi Pharm J 2016; 24(1): 74-81.
[http://dx.doi.org/10.1016/j.jsps.2015.03.024]
[45]
Franco RS, Barker R, Novick S, Weiner M, Martelo OJ. Effect of inositol hexaphosphate on the transient behavior of red cells following a DMSO-induced osmotic pulse. J Cell Physiol 1986; 129(2): 221-9.
[http://dx.doi.org/10.1002/jcp.1041290214] [PMID: 3771655]
[46]
DeLoach JR, Harris RL, Ihler GM. An erythrocyte encapsulator dialyzer used in preparing large quantities of erythrocyte ghosts and encapsulation of a pesticide in erythrocyte ghosts. Anal Biochem 1980; 102(1): 220-7.
[http://dx.doi.org/10.1016/0003-2697(80)90342-5] [PMID: 6766688]
[47]
Escajadillo T, Olson J, Luk BT, Zhang L, Nizet V. A red blood cell membrane-camouflaged nanoparticle counteracts streptolysin O-mediated virulence phenotypes of invasive group A Streptococcus. Front Pharmacol 2017; 8(7): 477.
[http://dx.doi.org/10.3389/fphar.2017.00477] [PMID: 28769806]
[48]
Hamidi M, Zarei N, Zarrin AH, Mohammadi-Samani S. Preparation and in vitro characterization of carrier erythrocytes for vaccine delivery. Int J Pharm 2007; 338(1-2): 70-8.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.025] [PMID: 17317049]
[49]
Hamidi M, Tajerzadeh H, Dehpour AR, Rouini MR, Ejtemaee-Mehr S. In vitro characterization of human intact erythrocytes loaded by enalaprilat. Drug Deliv 2001; 8(4): 223-30.
[http://dx.doi.org/10.1080/107175401317245903] [PMID: 11757780]
[50]
Ihler GM, Tsang HCW. Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes. Methods Enzymol 1987; 149: 221-9.
[http://dx.doi.org/10.1016/0076-6879(87)49059-9] [PMID: 3121983]
[51]
Ge D, Zou L, Li C, et al. Simulation of the osmosis-based drug encapsulation in erythrocytes. Eur Biophys J 2018; 47(3): 261-70.
[http://dx.doi.org/10.1007/s00249-017-1255-1] [PMID: 28929205]
[52]
Ren W, Sha H, Yan J, et al. Enhancement of radiotherapeutic efficacy for esophageal cancer by paclitaxel-loaded red blood cell membrane nanoparticles modified by the recombinant protein anti-EGFR-iRGD. J Biomater Appl 2018; 33(5): 707-24.
[http://dx.doi.org/10.1177/0885328218809019] [PMID: 30388386]
[53]
Zhai Y, Su J, Ran W, et al. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 2017; 7(10): 2575-5292.
[http://dx.doi.org/10.7150/thno.20118]
[54]
Leung P, Cannon EP, Petrikovics I, Hawkins A, Way JL. In vivo studies on rhodanese encapsulation in mouse carrier erythrocytes. Toxicol Appl Pharmacol 1991; 110(2): 268-74.
[http://dx.doi.org/10.1016/S0041-008X(05)80009-2] [PMID: 1891774]
[55]
Pei L, Omburo G, Mcguinn WD, et al. Encapsulation of phosphotriesterase within murine erythrocytes. Toxicol Appl Pharmacol 1994; 124(2): 296-301.
[http://dx.doi.org/10.1006/taap.1994.1035] [PMID: 8122276]
[56]
Favretto ME, Cluitmans JCA, Bosman GJCGM, Brock R. Human erythrocytes as drug carriers: Loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes. J Control Release 2013; 170(3): 343-51.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.032] [PMID: 23747798]
[57]
Bustamante López SC, Meissner KE. Characterization of carrier erythrocytes for biosensing applications. J Biomed Opt 2017; 22(9): 091510.
[http://dx.doi.org/10.1117/1.JBO.22.9.091510] [PMID: 28384789]
[58]
Ihler G, Lantzy A, Purpura J, Glew RH. Enzymatic degradation of uric acid by uricase-loaded human erythrocytes. J Clin Invest 1975; 56(3): 595-602.
[59]
Ogiso T, Iwaki M, Ohtori A. Encapsulation of dexamethasone in rabbit erythrocytes, the disposition in circulation and anti-inflammatory effect. J Pharmacobiodyn 1985; 8(12): 1032-40.
[http://dx.doi.org/10.1248/bpb1978.8.1032] [PMID: 3834058]
[60]
Pitt E, Johnson CM, Lewis DA, Jenner DA, Offord RE. Encapsulation of drugs in intact erythrocytes: An intravenous delivery system. Biochem Pharmacol 1983; 32(22): 3359-68.
[http://dx.doi.org/10.1016/0006-2952(83)90363-5] [PMID: 6651861]
[61]
Hamidi M, Zarei N, Zarrin A, Mohammadi-Samani S. Preparation and validation of carrier human erythrocytes loaded by bovine serum albumin as a model antigen/protein. Drug Deliv 2007; 14(5): 295-300.
[http://dx.doi.org/10.1080/10717540701203000] [PMID: 17613017]
[62]
Johnson KM, Tao JZ, Kennan RP, Gore JC. Gadolinium-bearing red cells as blood pool MRI contrast agents. Magn Reson Med 1998; 40(1): 133-42.
[http://dx.doi.org/10.1002/mrm.1910400118] [PMID: 9660563]
[63]
Franco RS, Wagner K, Weiner M, Martelo OJ. Preparation of low-affinity red cells with dimethylsulfoxide-mediated inositol hexaphosphate incorporation: Hemoglobin and ATP recovery using a continuous-flow method. Am J Hematol 1984; 17(4): 393-400.
[http://dx.doi.org/10.1002/ajh.2830170409] [PMID: 6496461]
[64]
Franco RS, Weiner M, Wagner K, et al. The 24-hour posttransfusion survival and lifespan of autologous baboon red cells treated with inositol hexaphosphate-polyethylene glycol or inositol hexaphosphate-adenosine triphosphate-polyethylene glycol to decrease oxygen affinity. Vox Sang 1988; 55(2): 90-6.
[http://dx.doi.org/10.1111/j.1423-0410.1988.tb05142.x] [PMID: 3188440]
[65]
Franco R, Barker R, Mayfield G, Silberstein E, Weiner M. The in vivo survival of human red cells with low oxygen affinity prepared by the osmotic pulse method of inositol hexaphosphate incorporation. Transfusion 1990; 30(3): 196-200.
[http://dx.doi.org/10.1046/j.1537-2995.1990.30390194336.x] [PMID: 2315992]
[66]
Xu P, Wang R, Wang X, Ouyang J. Recent advancements in erythrocytes, platelets,  albumin as delivery systems. OncoTargets Ther 2016; 9: 2873.
[67]
Kitao T, Hattori K, Takeshita M. Agglutination of leukemic cells and daunomycin entrapped erythrocytes with lectin in vitro and in vivo. Experientia 1978; 34(1): 94-5.
[http://dx.doi.org/10.1007/BF01921924] [PMID: 620752]
[68]
Schrier SL, Junga I. Entry and distribution of chlorpromazine and vinblastine into human erythrocytes during endocytosis. Exp Biol Med 1981; 168(2): 159-67.
[http://dx.doi.org/10.3181/00379727-168-41252] [PMID: 7348300]
[69]
Tsong TY. Electroporation of cell membranes. Biophys J 1991; 60(2): 297-306.
[http://dx.doi.org/10.1016/S0006-3495(91)82054-9] [PMID: 1912274]
[70]
Tsong TY, Kinosita K Jr. Use of voltage pulses for the pore opening and drug loading, and the subsequent resealing of red blood cells. Curr Stud Hematol Blood Transfus 1985; 51(51): 108-14.
[http://dx.doi.org/10.1159/000410233] [PMID: 4004753]
[71]
Saulis G, Saulė R. Size of the pores created by an electric pulse: Microsecond vs. millisecond pulses. Biochim Biophys Acta Biomembr 2012; 1818(12): 3032-9.
[http://dx.doi.org/10.1016/j.bbamem.2012.06.018] [PMID: 22766475]
[72]
Magnani M, Rossi L, D’ascenzo M, Panzani I, Bigi L, Zanella A. Erythrocyte engineering for drug delivery and targeting. Biotechnol Appl Biochem 1998; 28(1): 1-6.
[PMID: 9693082]
[73]
EryDel. Erydel delivery through erythrocytes. Available from: https://www.erydel.com/technology.php
[74]
Caminiti G, Carta SM, Flower R, et al. Use of ICG-loaded erythrocytes for choroidal angiography in human, pilot study. Invest Ophthalmol Vis Sci 2015; 56(7): 3362.
[75]
Erydel. Innovation into blood. Available from: https://www. erydel.com/pipeline.php
[76]
Janhofer GR. EDS in ataxia telangiectasia patients (ATTeST). clinicaltrials.gov identifier: NCT02770807, 2020.
[77]
Nirmalananthan N. Trial of erythrocyte encapsulated thymidine phosphorylase in mitochondrial neurogastrointestinal encephalomyopathy (TEETPIM). clinicaltrials.gov identifier: NCT03866 954, 2019.
[78]
Rossi L, Pierigè F, Carducci C, et al. Erythrocyte-mediated delivery of phenylalanine ammonia lyase for the treatment of phenylketonuria in BTBR-Pahenu2 mice. J Control Release 2014; 194: 37-44.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.012] [PMID: 25151978]
[79]
Hamidi M, Tajerzadeh H. Carrier erythrocytes: An overview. Drug Deliv 2003; 10(1): 9-20.
[http://dx.doi.org/10.1080/713840329] [PMID: 12554359]
[80]
Hamidi M, Zarrin AH, Foroozesh M, Zarei N, Mohammadi-Samani S. Preparation and in vitro evaluation of carrier erythrocytes for RES-targeted delivery of interferon-alpha 2b. Int J Pharm 2007; 341(1-2): 125-33.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.001] [PMID: 17512685]
[81]
Bird J, Best R, Lewis DA. The encapsulation of insulin in erythrocytes. J Pharm Pharmacol 2011; 35(4): 246-7.
[http://dx.doi.org/10.1111/j.2042-7158.1983.tb02921.x] [PMID: 6133935]
[82]
Leuzzi V, Micheli R, D’Agnano D, et al. Positive effect of erythrocyte-delivered dexamethasone in ataxia-telangiectasia. Neurol Neuroimmunol Neuroinflamm 2015; 2(3): e98.
[http://dx.doi.org/10.1212/NXI.0000000000000098]
[83]
Mishra PR, Jain NK. Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake. ‘A study on the rat’. Int J Pharm 2002; 231(2): 145-53.
[http://dx.doi.org/10.1016/S0378-5173(01)00847-X] [PMID: 11755267]
[84]
Godfrin Y, Horand F, Franco R, et al. International seminar on the red blood cells as vehicles for drugs. Expert Opin Biol Ther 2012; 12(1): 127-33.
[http://dx.doi.org/10.1517/14712598.2012.631909] [PMID: 22023703]
[85]
Mosca A, Paleari R, Russo V, et al. IHP entrapment into human erythrocytes: Comparison between hypotonic dialysis and DMSO osmotic pulse. In: The use of resealed erythrocytes as carriers and bioreactors. Boston, MA: Springer US 1992; pp. 19-26.
[http://dx.doi.org/10.1007/978-1-4615-3030-5_2]
[86]
Saurabh KV, Rani S, Rani S, Kesari A. Review article drug targeting by erythrocytes : A carrier system. Sch Acad J Pharm 2013; 2(2): 144-56.
[87]
Hayashi K, Yamada S, Sakamoto W, Usugi E, Watanabe M, Yogo T. Red blood cell-shaped microparticles with a red blood cell membrane demonstrate prolonged circulation time in blood. ACS Biomater Sci Eng 2018; 4(8): 2729-32.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00197] [PMID: 33434998]
[88]
Rao L. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 2015; 11(46): 6225-36.
[89]
Wang Y, Zhang K, Qin X, et al. Biomimetic nanotherapies: Red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv Sci 2019; 6(12): 1900172.
[http://dx.doi.org/10.1002/advs.201900172] [PMID: 31380165]
[90]
Gallagher PG. Red blood cell membrane disorders. Hematology 2018; 2018: 626-47.
[http://dx.doi.org/10.1016/B978-0-323-35762-3.00045-7]
[91]
Fernandes HP, Cesar CL, Barjas-Castro ML. Electrical properties of the red blood cell membrane and immunohematological investigation. Rev Bras Hematol Hemoter 2011; 33(4): 297-301.
[http://dx.doi.org/10.5581/1516-8484.20110080] [PMID: 23049321]
[92]
Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci 2011; 108(27): 10980-5.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[93]
Lamprecht A, Ubrich N, Yamamoto H, et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther 2001; 299(2): 775-81.
[PMID: 11602694]
[94]
Talwar N, Jain NK. Erythrocytes as carriers of metronidazole: In vitro characterization. Drug Dev Ind Pharm 1992; 18(16): 1799-812.
[http://dx.doi.org/10.3109/03639049209040903]
[95]
Bax BE. Erythrocytes as carriers of therapeutic enzymes. Pharmaceutics 2020; 12(5): 435.
[http://dx.doi.org/10.3390/pharmaceutics12050435] [PMID: 32397259]
[96]
Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol 1987; 49(1): 177-92.
[http://dx.doi.org/10.1146/annurev.ph.49.030187.001141] [PMID: 3551796]
[97]
Deplaine G, Safeukui I, Jeddi F, et al. The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood 2011; 117(8): e88-95.
[http://dx.doi.org/10.1182/blood-2010-10-312801] [PMID: 21163923]
[98]
Chen JY, Huestis WH. Role of membrane lipid distribution in chlorpromazine-induced shape change of human erythrocytes. Biochim Biophys Acta Biomembr 1997; 1323(2): 299-309.
[http://dx.doi.org/10.1016/S0005-2736(96)00197-6] [PMID: 9042352]
[99]
Dehpour AR, Jafar-Nejad P, Mani AR, Gharib B, Daryani NE. Chlorpromazine-induced erythrocyte shape change in ratswith obstructive cholestasis. Pharm Pharmacol Commun 1999; 5(10): 615-8.
[http://dx.doi.org/10.1211/146080899128734235]
[100]
Li R, He Y, Zhang S, Qin J, Wang J. Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B 2018; 8(1): 14-22.
[http://dx.doi.org/10.1016/j.apsb.2017.11.009] [PMID: 29872619]
[101]
Peng J, Yang Q, Li W, et al. Erythrocyte-membrane-coated prussian blue/manganese dioxide nanoparticles as H2O2 -responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy. ACS Appl Mater Interfaces 2017; 9(51): 44410-22.
[http://dx.doi.org/10.1021/acsami.7b17022] [PMID: 29210279]
[102]
Fang RH, Hu CMJ, Zhang L. Nanoparticles disguised as red blood cells to evade the immune system. Expert Opin Biol Ther 2012; 12(4): 385-9.
[http://dx.doi.org/10.1517/14712598.2012.661710] [PMID: 22332936]
[103]
Wu M, Le W, Mei T, et al. Cell membrane camouflaged nanoparticles: A new biomimetic platform for cancer photothermal therapy. Int J Nanomedicine 2019; 14: 4431-48.
[http://dx.doi.org/10.2147/IJN.S200284] [PMID: 31354269]
[104]
Bose RJC, Paulmurugan R, Moon J, Lee SH, Park H. Cell membrane-coated nanocarriers: The emerging targeted delivery system for cancer theranostics. Drug Discov Today 2018; 23(4): 891-9.
[http://dx.doi.org/10.1016/j.drudis.2018.02.001] [PMID: 29426004]
[105]
Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep 2018; 8(1): 13672.
[http://dx.doi.org/10.1038/s41598-018-31939-9] [PMID: 30209405]
[106]
Anders CK, Adamo B, Karginova O, et al. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer. PLoS One 2013; 8(5): e61359.
[http://dx.doi.org/10.1371/journal.pone.0061359]
[107]
Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 2014; 25(18): 2677-81.
[108]
Lucas A, Lam D, Cabrales P. Doxorubicin-loaded red blood cells reduced cardiac toxicity and preserved anticancer activity. Drug Deliv 2019; 26(1): 433-2.
[http://dx.doi.org/10.1080/10717544.2019.1591544]
[109]
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38(1): 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[110]
Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett 2019; 24(1): 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[111]
Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971; 93(9): 2325-7.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[113]
Chou PL, Huang YP, Cheng MH, Rau KM, Fang YP. Improvement of paclitaxel-associated Adverse Reactions (ADRs) via the use of nano-based drug delivery systems: A systematic review and network meta-analysis. Int J Nanomedicine 2020; 15: 1731-43.
[http://dx.doi.org/10.2147/IJN.S231407] [PMID: 32210563]
[114]
Markman M. Managing taxane toxicities. Support Care Cancer 2003; 11(3): 144-7.
[http://dx.doi.org/10.1007/s00520-002-0405-9] [PMID: 12618923]
[115]
Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science 2004; 303(5665): 1818-22.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[116]
N B. K R C. Tetrandrine and cancer - An overview on the molecular approach. Biomed Pharmacother 2018; 97: 624-32.
[http://dx.doi.org/10.1016/j.biopha.2017.10.116] [PMID: 29101806]
[117]
Meng L, Zhang H, Hayward L, Takemura H, Shao RG, Pommier Y. Tetrandrine induces early G1 arrest in human colon carcinoma cells by down-regulating the activity and inducing the degradation of G1-S-specific cyclin-dependent kinases and by inducing p53 and p21Cip1. Cancer Res 2004; 64(24): 9086-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0313] [PMID: 15604277]
[118]
Luan F, He X, Zeng N. Tetrandrine: A review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol 2020; 72(11): 1491-512.
[http://dx.doi.org/10.1111/jphp.13339] [PMID: 32696989]
[119]
Xu W, Wang X, Tu Y, et al. Tetrandrine and cepharanthine induce apoptosis through caspase cascade regulation, cell cycle arrest, MAPK activation and PI3K/Akt/mTOR signal modification in glucocorticoid resistant human leukemia Jurkat T cells. Chem Biol Interact 2019; 310: 108726.
[http://dx.doi.org/10.1016/j.cbi.2019.108726] [PMID: 31255635]
[120]
Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[121]
Khan I, Gothwal A, Sharma AK, et al. PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit Rev Ther Drug Carrier Syst 2016; 33(2): 159-93.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015273] [PMID: 27651101]
[122]
Moses JC, Gangrade A, Mandal BB. Carbon nanotubes and their polymer nanocomposites. In: Karak N, Ed. Nanomaterials and polymer nanocomposites: Raw materials to applications. Amsterdam: Elsevier 2019; pp. 145-75.
[123]
Zhu S, Gu Z. Lanthanide-doped materials as dual imaging and therapeutic agents. In: Ramos PM, Silva MR, Eds. Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs. Amsterdam: Elsevier 2018; pp. 381-410.
[http://dx.doi.org/10.1016/B978-0-12-813840-3.00011-9]
[124]
Li JQ, Zhao RX, Yang FM, Qi XT, Ye PK, Xie M. An erythrocyte membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of breast cancer. J Mater Chem B Mater Biol Med 2022; 10(12): 2047-56.
[http://dx.doi.org/10.1039/D1TB02522H] [PMID: 35254366]
[125]
Liu B, Wang W, Fan J, et al. RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials 2019; 217: 119301.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119301] [PMID: 31279101]
[126]
Li J, Huang X, Huang R, et al. Erythrocyte membrane camouflaged graphene oxide for tumor-targeted photothermal-chemotherapy. Carbon 2019; 146: 660-70.
[http://dx.doi.org/10.1016/j.carbon.2019.02.056]
[127]
Yang Q, Xiao Y, Yin Y, Li G, Peng J. Erythrocyte membrane-camouflaged IR780 and DTX coloading polymeric nanoparticles for imaging-guided cancer photo–chemo combination therapy. Mol Pharm 2019.
[128]
Gao W, Hu CMJ, Fang RH, Luk BT, Su J, Zhang L. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv Mater 2013; 25(26): 3549-53.
[http://dx.doi.org/10.1002/adma.201300638] [PMID: 23712782]
[129]
Kadhim RJ, Karsh EH, Taqi ZJ, Jabir MS. Biocompatibility of gold nanoparticles: In vitro and In vivo study. Mater Today Proc 2021; 42: 3041-5.
[http://dx.doi.org/10.1016/j.matpr.2020.12.826]
[130]
Kim C, Ghosh P, Rotello VM. Multimodal drug delivery using gold nanoparticles. Nanoscale 2009; 1(1): 61-7.
[http://dx.doi.org/10.1039/b9nr00112c] [PMID: 20644861]
[131]
Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 2010; 393(4): 649-55.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.046] [PMID: 20153731]
[132]
Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 2017; 22(9): 1445.
[http://dx.doi.org/10.3390/molecules22091445] [PMID: 28858253]
[133]
Raghunandan D, Ravishankar B, Sharanbasava G, et al. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2011; 2(1-6): 57-65.
[http://dx.doi.org/10.1007/s12645-011-0014-8] [PMID: 26069485]
[134]
Ghosh P, Han G, De M, Kim C, Rotello V. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[135]
Farooq MU, Novosad V, Rozhkova EA, et al. Retracted article: Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci Rep 2018; 8(1): 2907.
[http://dx.doi.org/10.1038/s41598-018-21331-y] [PMID: 29440698]
[136]
Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep 2020; 10(1): 9362.
[http://dx.doi.org/10.1038/s41598-020-66419-6] [PMID: 32518242]
[137]
Ersoz M, Erdemir A, Duranoglu D, et al. Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 319-29.
[http://dx.doi.org/10.1080/21691401.2018.1556213] [PMID: 30688095]
[138]
Niu Y, Dong W, Wang H, et al. Mesoporous magnesium silicate-incorporated poly(ϵ-caprolactone)-poly(ethylene glycol)- poly(ϵ-caprolactone) bioactive composite beneficial to osteoblast behaviors. Int J Nanomedicine 2014; 9(1): 2665-75.
[http://dx.doi.org/10.2147/IJN.S59040] [PMID: 24920903]
[139]
Li L, Guan Y, Liu H, et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 2011; 5(9): 7462-70.
[http://dx.doi.org/10.1021/nn202399w] [PMID: 21854047]
[140]
Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 2010; 22(25): 2729-42.
[http://dx.doi.org/10.1002/adma.201000260] [PMID: 20473985]
[141]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14(1): 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[142]
Wu Z, Esteban-Fernández de Ávila B, Martín A, et al. RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale 2015; 7(32): 13680-6.
[http://dx.doi.org/10.1039/C5NR03730A] [PMID: 26214151]
[143]
Gao C, Lin Z, Wang D, Wu Z, Xie H, He Q. Red blood cell-mimicking micromotor for active photodynamic cancer therapy. ACS Appl Mater Interfaces 2019; 11(26): 23392-400.
[http://dx.doi.org/10.1021/acsami.9b07979] [PMID: 31252507]
[144]
Wu Z, Li T, Li J, et al. Turning erythrocytes into functional micromotors. ACS Nano 2014; 8(12): 12041-8.
[http://dx.doi.org/10.1021/nn506200x] [PMID: 25415461]
[145]
Huang X, Wu B, Li J, et al. Anti-tumour effects of red blood cell membrane-camouflaged black phosphorous quantum dots combined with chemotherapy and anti-inflammatory therapy. Artif Cells Nanomed Biotechnol 2019; 47(1): 968-79.
[http://dx.doi.org/10.1080/21691401.2019.1584110] [PMID: 30880468]
[146]
Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol 2007; 147(2): 227-35.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x] [PMID: 17223962]
[147]
Poh S, Lin JB, Panitch A. Release of anti-inflammatory peptides from thermosensitive nanoparticles with degradable cross-links suppresses pro-inflammatory cytokine production. Biomacromolecules 2015; 16(4): 1191-200.
[http://dx.doi.org/10.1021/bm501849p] [PMID: 25728363]
[148]
Zhang YZ, Li YY. Inflammatory bowel disease: Pathogenesis. World J Gastroenterol 2014; 20(1): 91-9.
[http://dx.doi.org/10.3748/wjg.v20.i1.91] [PMID: 24415861]
[149]
Wang H, Liu Y, He R, et al. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater Sci 2020; 8(2): 552-68.
[http://dx.doi.org/10.1039/C9BM01392J] [PMID: 31769765]
[150]
Sha X, Dai Y, Song X, Liu S, Zhang S, Li J. The opportunities and challenges of silica nanomaterial for atherosclerosis. Int J Nanomedicine 2021; 16: 701-14.
[http://dx.doi.org/10.2147/IJN.S290537] [PMID: 33536755]
[151]
de Lima IA, Khalil NM, Tominaga TT, Lechanteur A, Sarmento B, Mainardes RM. Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artif Cells Nanomed Biotechnol 2018; 46(S2): 993-1002.
[152]
Bala I, Hariharan S, Kumar MNVR. PLGA nanoparticles in drug delivery: The state of the art. Crit Rev Ther Drug Carrier Syst 2004; 21(5): 387-422.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20] [PMID: 15719481]
[153]
Bruniera FR, Ferreira FM, Saviolli LRM, et al. The use of vancomycin with its therapeutic and adverse effects: A review. Eur Rev Med Pharmacol Sci 2015; 19(4): 694-700.
[PMID: 25753888]
[154]
Aldawsari HM, Hosny KM. Solid lipid nanoparticles of Vancomycin loaded with Ellagic acid as a tool for overcoming nephrotoxic side effects: Preparation, characterization, and nephrotoxicity evaluation. J Drug Deliv Sci Technol 2018; 45: 76-80.
[http://dx.doi.org/10.1016/j.jddst.2018.02.016]
[155]
Kamal Z, Su J, Yuan W, et al. Red blood cell membrane-camouflaged vancomycin and chlorogenic acid-loaded gelatin nanoparticles against multi-drug resistance infection mice model. J Drug Deliv Sci Technol 2022; 76: 103706.
[http://dx.doi.org/10.1016/j.jddst.2022.103706]
[156]
Li LL, Xu JH, Qi GB, Zhao X, Yu F, Wang H. Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano 2014; 8(5): 4975-83.
[http://dx.doi.org/10.1021/nn501040h] [PMID: 24716550]
[157]
Wu X, Li Y, Raza F, et al. Red blood cell membrane-camouflaged tedizolid phosphate-loaded PLGA nanoparticles for bacterial-infection therapy. Pharm 2021; 13(1): 99.
[http://dx.doi.org/10.3390/pharmaceutics13010099]
[158]
Stirnemann J, Belmatoug N, Camou F, et al. A review of gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci 2017; 18(2): 441.
[http://dx.doi.org/10.3390/ijms18020441] [PMID: 28218669]
[159]
Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: Mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 2008; 29(5): 567-83.
[http://dx.doi.org/10.1002/humu.20676] [PMID: 18338393]
[160]
Beutler E, Dale GL, Guinto DE, Kuhl W. Enzyme replacement therapy in Gaucher’s disease: Preliminary clinical trial of a new enzyme preparation. Proc Natl Acad Sci 1977; 74(10): 4620-3.
[http://dx.doi.org/10.1073/pnas.74.10.4620] [PMID: 200923]
[161]
Thorpe SR, Fiddler MB, Desnick RJ. Enzyme therapy. V. In vivo fate of erythrocyte-entrapped beta-glucuronidase in beta-glucuronidase-deficient mice. Pediatr Res 1975; 9(12): 918-23.
[http://dx.doi.org/10.1203/00006450-197512000-00011] [PMID: 1196710]
[162]
DeLoach JR, Widnell CC, Ihler GM. Phagocytosis of enzyme-containing carrier erythrocytes by macrophages. J Appl Biochem 1979; 1(2): 95-103.
[163]
Magnani M, Rossi L, Bianchi M, et al. Improved metabolic properties of hexokinase-overloaded human erythrocytes. Biochim Biophys Acta 1988; 972(1): 1-8.
[PMID: 3179333]
[164]
Rossi L, Bianchi M, Fraternale A, Magnani M. Normalization of hyperglycemia in diabetic mice by enzyme-loaded erythrocytes. In: The use of resealed erythrocytes as carriers and bioreactors. Boston, MA: Springer US 1992; pp. 183-8.
[http://dx.doi.org/10.1007/978-1-4615-3030-5_22]
[165]
Flynn G, Hackett TJ, McHale L, McHale AP. Encapsulation of the thrombolytic enzyme, brinase, in photosensitized erythrocytes: A novel thrombolytic system based on photodynamic activation. J Photochem Photobiol B 1994; 26(2): 193-6.
[http://dx.doi.org/10.1016/1011-1344(94)07037-7] [PMID: 7815192]
[166]
Delahousse B, Kravtzoff R, Ropars C. Use of erythrocytes as a new route of administration of fibrinolytic agents. In: Way JL, Sprandel U, Eds. Erythrocytes as drug carriers in medicine. Boston, MA: Springer US 1997; pp. 35-42.
[http://dx.doi.org/10.1007/978-1-4899-0044-9_5]
[167]
Murciano JC, Medinilla S, Eslin D, Atochina E, Cines DB, Muzykantov VR. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 2003; 21(8): 891-6.
[http://dx.doi.org/10.1038/nbt846] [PMID: 12845330]
[168]
Villa CH, Seghatchian J, Muzykantov V. Drug delivery by erythrocytes: “Primum non nocere”. Transfus Apheresis Sci 2016; 55(3): 275-80.
[169]
Dai J, Chen Z, Wang S, Xia F, Lou X. Erythrocyte membrane-camouflaged nanoparticles as effective and biocompatible platform: Either autologous or allogeneic erythrocyte-derived. Mater Today Bio 2022; 15: 100279.
[http://dx.doi.org/10.1016/j.mtbio.2022.100279] [PMID: 35601893]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy