Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Wistar Kyoto Rat: A Model of Depression Traits

Author(s): Eva E. Redei*, Mallory E. Udell, Leah C. Solberg Woods and Hao Chen

Volume 21, Issue 9, 2023

Published on: 09 March, 2023

Page: [1884 - 1905] Pages: 22

DOI: 10.2174/1570159X21666221129120902

Price: $65

Abstract

There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.

Graphical Abstract

[1]
Focus on psychiatric disorders. Nat. Neurosci., 2016, 19(11), 1381-1382.
[http://dx.doi.org/10.1038/nn.4434] [PMID: 27786178]
[2]
Monteggia, L.M.; Heimer, H.; Nestler, E.J. Meeting Report: Can We Make Animal Models of Human Mental Illness? Biol. Psychiatry, 2018, 84(7), 542-545.
[http://dx.doi.org/10.1016/j.biopsych.2018.02.010] [PMID: 29606372]
[3]
Pajer, K.; Andrus, B.M.; Gardner, W.; Lourie, A.; Strange, B.; Campo, J.; Bridge, J.; Blizinsky, K.; Dennis, K.; Vedell, P.; Churchill, G.A.; Redei, E.E. Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression. Transl. Psychiatry, 2012, 2(4), e101.
[http://dx.doi.org/10.1038/tp.2012.26] [PMID: 22832901]
[4]
Redei, E.E.; Ciolino, J.D.; Wert, S.L.; Yang, A.; Kim, S.; Clark, C.; Zumpf, K.B.; Wisner, K.L. Pilot validation of blood-based biomarkers during pregnancy and postpartum in women with prior or current depression. Transl. Psychiatry, 2021, 11(1), 68.
[http://dx.doi.org/10.1038/s41398-020-01188-4] [PMID: 33479202]
[5]
Redei, E.E.; Andrus, B.M.; Kwasny, M.J.; Seok, J.; Cai, X.; Ho, J.; Mohr, D.C. Blood transcriptomic biomarkers in adult primary care patients with major depressive disorder undergoing cognitive behavioral therapy. Transl. Psychiatry, 2014, 4(9), e442.
[http://dx.doi.org/10.1038/tp.2014.66] [PMID: 25226551]
[6]
Okamoto, K.; Aoki, K. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J., 1963, 27(3), 282-293.
[http://dx.doi.org/10.1253/jcj.27.282] [PMID: 13939773]
[7]
Kurtz, T.W.; Montano, M.; Chan, L.; Kabra, P. Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: implications for research with the spontaneously hypertensive rat. Hypertension, 1989, 13(2), 188-192.
[http://dx.doi.org/10.1161/01.HYP.13.2.188] [PMID: 2914738]
[8]
Louis, W.J.; Howes, L.G. Genealogy of the spontaneously hypertensive rat and Wistar-Kyoto rat strains: implications for studies of inherited hypertension. J. Cardiovasc. Pharmacol., 1990, 16(Suppl. 7), S1-S5.
[http://dx.doi.org/10.1097/00005344-199006167-00002] [PMID: 1708002]
[9]
Paré, W.P.; Kluczynski, J. Differences in the stress response of Wistar-Kyoto (WKY) rats from different vendors. Physiol. Behav., 1997, 62(3), 643-648.
[http://dx.doi.org/10.1016/S0031-9384(97)00191-1] [PMID: 9272677]
[10]
Sousa, N.; Almeida, O.F.X.; Wotjak, C.T. A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav., 2006, 5(Suppl. 2), 5-24.
[http://dx.doi.org/10.1111/j.1601-183X.2006.00228.x] [PMID: 16681797]
[11]
Willner, P. Reliability of the chronic mild stress model of depression: A user survey. Neurobiol. Stress, 2017, 6, 68-77.
[http://dx.doi.org/10.1016/j.ynstr.2016.08.001] [PMID: 28229110]
[12]
Tõnissaar, M.; Herm, L.; Rinken, A.; Harro, J. Individual differences in sucrose intake and preference in the rat: Circadian variation and association with dopamine D2 receptor function in striatum and nucleus accumbens. Neurosci. Lett., 2006, 403(1-2), 119-124.
[http://dx.doi.org/10.1016/j.neulet.2006.04.023] [PMID: 16682119]
[13]
Keskitalo, K.; Tuorila, H.; Spector, T.D.; Cherkas, L.F.; Knaapila, A.; Silventoinen, K.; Perola, M. Same genetic components underlie different measures of sweet taste preference. Am. J. Clin. Nutr., 2007, 86(6), 1663-1669.
[http://dx.doi.org/10.1093/ajcn/86.5.1663] [PMID: 18065584]
[14]
Diószegi, J.; Llanaj, E.; Ádány, R. Genetic background of taste perception, taste preferences, and its nutritional implications: A systematic review. Front. Genet., 2019, 10, 1272.
[http://dx.doi.org/10.3389/fgene.2019.01272] [PMID: 31921309]
[15]
Scheggi, S.; De Montis, M.G.; Gambarana, C. Making sense of rodent models of anhedonia. Int. J. Neuropsychopharmacol., 2018, 21(11), 1049-1065.
[http://dx.doi.org/10.1093/ijnp/pyy083] [PMID: 30239762]
[16]
Li, Q.; Gao, Y.; Li, H.; Liu, H.; Wang, D.; Pan, W.; Liu, S.; Xu, Y. Brain structure and synaptic protein expression alterations after antidepressant treatment in a Wistar–Kyoto rat model of depression. J. Affect. Disord., 2022, 314, 293-302.
[http://dx.doi.org/10.1016/j.jad.2022.07.037] [PMID: 35878834]
[17]
Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature, 1977, 266(5604), 730-732.
[http://dx.doi.org/10.1038/266730a0] [PMID: 559941]
[18]
Millard, S.J.; Weston-Green, K.; Newell, K.A. The Wistar-Kyoto rat model of endogenous depression: A tool for exploring treatment resistance with an urgent need to focus on sex differences. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 101, 109908.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109908] [PMID: 32145362]
[19]
Cryan, J.F.; Mombereau, C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol. Psychiatry, 2004, 9(4), 326-357.
[http://dx.doi.org/10.1038/sj.mp.4001457] [PMID: 14743184]
[20]
Detke, M.J.; Johnson, J.; Lucki, I. Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp. Clin. Psychopharmacol., 1997, 5(2), 107-112.
[http://dx.doi.org/10.1037/1064-1297.5.2.107] [PMID: 9234045]
[21]
Rénéric, J.P.; Bouvard, M.; Stinus, L. In the rat forced swimming test, chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behav. Brain Res., 2002, 136(2), 521-532.
[http://dx.doi.org/10.1016/S0166-4328(02)00203-6] [PMID: 12429415]
[22]
Commons, K.G.; Cholanians, A.B.; Babb, J.A.; Ehlinger, D.G. The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chem. Neurosci., 2017, 8(5), 955-960.
[http://dx.doi.org/10.1021/acschemneuro.7b00042] [PMID: 28287253]
[23]
Molendijk, M.L.; de Kloet, E.R. Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology, 2015, 62, 389-391.
[http://dx.doi.org/10.1016/j.psyneuen.2015.08.028] [PMID: 26386543]
[24]
Campus, P.; Colelli, V.; Orsini, C.; Sarra, D.; Cabib, S. Evidence for the involvement of extinction-associated inhibitory learning in the forced swimming test. Behav. Brain Res., 2015, 278, 348-355.
[http://dx.doi.org/10.1016/j.bbr.2014.10.009] [PMID: 25448432]
[25]
Armario, A. The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neurosci. Biobehav. Rev., 2021, 128, 74-86.
[http://dx.doi.org/10.1016/j.neubiorev.2021.06.014] [PMID: 34118295]
[26]
Paré, W.P. The performance of WKY rats on three tests of emotional behavior. Physiol. Behav., 1992, 51(5), 1051-1056.
[http://dx.doi.org/10.1016/0031-9384(92)90091-F] [PMID: 1615043]
[27]
Rosellini, A.J.; Bourgeois, M.L.; Correa, J.; Tung, E.S.; Goncharenko, S.; Brown, T.A. Anxious distress in depressed outpatients: Prevalence, comorbidity, and incremental validity. J. Psychiatr. Res., 2018, 103, 54-60.
[http://dx.doi.org/10.1016/j.jpsychires.2018.05.006] [PMID: 29778071]
[28]
Task Force on Nomenclature and Statistics. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association, 1980.
[29]
Wang, T.; Han, W.; Chitre, A.S.; Polesskaya, O.; Solberg Woods, L.C.; Palmer, A.A.; Chen, H. Social and anxiety-like behaviors contribute to nicotine self-administration in adolescent outbred rats. Sci. Rep., 2018, 8(1), 18069.
[http://dx.doi.org/10.1038/s41598-018-36263-w] [PMID: 30584246]
[30]
Paré, W.P. “Behavioral despair” test predicts stress ulcer in WKY rats. Physiol. Behav., 1989, 46(3), 483-487.
[http://dx.doi.org/10.1016/0031-9384(89)90025-5] [PMID: 2623074]
[31]
Paré, W.P. Stress ulcer susceptibility and depression in Wistar Kyoto (WKY) rats. Physiol. Behav., 1989, 46(6), 993-998.
[http://dx.doi.org/10.1016/0031-9384(89)90203-5] [PMID: 2634265]
[32]
Pardon, M.C.; Gould, G.G.; Garcia, A.; Phillips, L.; Cook, M.C.; Miller, S.A.; Mason, P.A.; Morilak, D.A. Stress reactivity of the brain noradrenergic system in three rat strains differing in their neuroendocrine and behavioral responses to stress: implications for susceptibility to stress-related neuropsychiatric disorders. Neuroscience, 2002, 115(1), 229-242.
[http://dx.doi.org/10.1016/S0306-4522(02)00364-0] [PMID: 12401336]
[33]
Treit, D.; Pinel, J.P.J.; Fibiger, H.C. Conditioned defensive burying: A new paradigm for the study of anxiolytic agents. Pharmacol. Biochem. Behav., 1981, 15(4), 619-626.
[http://dx.doi.org/10.1016/0091-3057(81)90219-7] [PMID: 6117086]
[34]
Ahmadiyeh, N.; Churchill, G.A.; Solberg, L.C.; Baum, A.E.; Shimonura, K.; Takahashi, J.S.; Redei, E.E. Lineage is an epigenetic modifier of QTL influencing behavioral coping with stress. Behav. Genet., 2005, 35(2), 189-198.
[http://dx.doi.org/10.1007/s10519-004-1018-5] [PMID: 15685431]
[35]
Paré, W.P. Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol. Behav., 1994, 55(3), 433-439.
[http://dx.doi.org/10.1016/0031-9384(94)90097-3] [PMID: 8190758]
[36]
Baum, A.E.; Solberg, L.C.; Churchill, G.A.; Ahmadiyeh, N.; Takahashi, J.S.; Redei, E.E. Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality. Behav. Brain Res., 2006, 169(2), 220-230.
[http://dx.doi.org/10.1016/j.bbr.2006.01.007] [PMID: 16490266]
[37]
Johannesson, M.; Lopez-Aumatell, R.; Stridh, P.; Diez, M.; Tuncel, J.; Blázquez, G.; Martinez-Membrives, E.; Cañete, T.; Vicens-Costa, E.; Graham, D.; Copley, R.R.; Hernandez-Pliego, P.; Beyeen, A.D.; Öckinger, J.; Fernández-Santamaría, C.; Gulko, P.S.; Brenner, M.; Tobeña, A.; Guitart-Masip, M.; Giménez-Llort, L.; Dominiczak, A.; Holmdahl, R.; Gauguier, D.; Olsson, T.; Mott, R.; Valdar, W.; Redei, E.E.; Fernández-Teruel, A.; Flint, J. A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: The NIH heterogeneous stock. Genome Res., 2009, 19(1), 150-158.
[http://dx.doi.org/10.1101/gr.081497.108] [PMID: 18971309]
[38]
Ráez, A.; Oliveras, I.; Río-Álamos, C.; Díaz-Morán, S.; Cañete, T.; Blázquez, G.; Tobeña, A.; Fernández-Teruel, A. A missing link between depression models: Forced swimming test, helplessness and passive coping in genetically heterogeneous NIH-HS rats. Behav. Processes, 2020, 177, 104142.
[http://dx.doi.org/10.1016/j.beproc.2020.104142] [PMID: 32454181]
[39]
Du, L.; Luo, S.; Liu, G.; Wang, H.; Zheng, L.; Zhang, Y. The 100 top-cited studies about pain and depression. Front. Psychol., 2020, 10, 3072.
[http://dx.doi.org/10.3389/fpsyg.2019.03072] [PMID: 32116876]
[40]
Widy-Tyszkiewicz, E.; Mierzejewski, P.; Kohutnicka, M. Członkowski, A. Cold water stress induced analgesia in unilateral inflammation of the hindpaw in hypertensive and normotensive rats. Pol. J. Pharmacol., 1995, 47(4), 313-320.
[PMID: 8616510]
[41]
Sitsen, J.M.; de Jong, W. Hypoalgesia in genetically hypertensive rats (SHR) is absent in rats with experimental hypertension. Hypertension, 1983, 5(2), 185-190.
[http://dx.doi.org/10.1161/01.HYP.5.2.185] [PMID: 6826214]
[42]
Calpin, P.; Burke, N.; Finn, D.P.; Roche, M.P. 2.b.010 Evaluating nociceptive behaviour in the Wistar Kyoto rat model of depression. Eur. Neuropsychopharmacol., 2009, 19, S396-S397. [Internet]
[http://dx.doi.org/10.1016/S0924-977X(09)70611-X]
[43]
Gunter, W.D.; Shepard, J.D.; Foreman, R.D.; Myers, D.A. Beverley, Evidence for visceral hypersensitivity in high-anxiety rats. Physiol. Behav., 2000, 69(3), 379-382.
[http://dx.doi.org/10.1016/S0031-9384(99)00254-1] [PMID: 10869605]
[44]
Burke, N.N.; Hayes, E.; Calpin, P.; Kerr, D.M.; Moriarty, O.; Finn, D.P.; Roche, M. Enhanced nociceptive responding in two rat models of depression is associated with alterations in monoamine levels in discrete brain regions. Neuroscience, 2010, 171(4), 1300-1313.
[http://dx.doi.org/10.1016/j.neuroscience.2010.10.030] [PMID: 20955767]
[45]
Kosiorek-Witek, A.; Makulska-Nowak, H.E. Morphine analgesia modification in normotensive and hypertensive female rats after repeated fluoxetine administration. Basic Clin. Pharmacol. Toxicol., 2016, 118(1), 45-52.
[http://dx.doi.org/10.1111/bcpt.12438] [PMID: 26131918]
[46]
Ferdousi, M.I.; Calcagno, P.; Clarke, M.; Aggarwal, S.; Sanchez, C.; Smith, K.L.; Eyerman, D.J.; Kelly, J.P.; Roche, M.; Finn, D.P. Hyporesponsivity to mu-opioid receptor agonism in the Wistar-Kyoto rat model of altered nociceptive responding associated with negative affective state. Pain, 2021, 162(2), 405-420.
[http://dx.doi.org/10.1097/j.pain.0000000000002039] [PMID: 32826755]
[47]
Hestehave, S.; Abelson, K.S.P.; Brønnum Pedersen, T.; Munro, G. The analgesic efficacy of morphine varies with rat strain and experimental pain model: implications for target validation efforts in pain drug discovery. Eur. J. Pain, 2019, 23(3), 539-554.
[http://dx.doi.org/10.1002/ejp.1327] [PMID: 30318662]
[48]
Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and pain comorbidity: a literature review. Arch. Intern. Med., 2003, 163(20), 2433-2445.
[http://dx.doi.org/10.1001/archinte.163.20.2433] [PMID: 14609780]
[49]
Holahan, C.J.; Moos, R.H.; Holahan, C.K.; Cronkite, R.C.; Randall, P.K. Drinking to cope, emotional distress and alcohol use and abuse: a ten-year model. J. Stud. Alcohol, 2001, 62(2), 190-198.
[http://dx.doi.org/10.15288/jsa.2001.62.190] [PMID: 11327185]
[50]
Holahan, C.J.; Moos, R.H.; Holahan, C.K.; Cronkite, R.C.; Randall, P.K. Drinking to cope and alcohol use and abuse in unipolar depression: A 10-year model. J. Abnorm. Psychol., 2003, 112(1), 159-165.
[http://dx.doi.org/10.1037/0021-843X.112.1.159] [PMID: 12653424]
[51]
Khanna, J.M.; Kalant, H.; Chau, A.K.; Sharma, H. Initial sensitivity, acute tolerance and alcohol consumption in four inbred strains of rats. Psychopharmacology (Berl.), 1990, 101(3), 390-395.
[http://dx.doi.org/10.1007/BF02244059] [PMID: 2362956]
[52]
El-Mas, M.M.; Abdel-Rahman, A.A. Radiotelemetric evaluation of hemodynamic effects of long-term ethanol in spontaneously hypertensive and Wistar-Kyoto rats. J. Pharmacol. Exp. Ther., 2000, 292(3), 944-951.
[PMID: 10688608]
[53]
Goodwin, F.L.W.; Bergeron, N.; Amit, Z. Differences in the consumption of ethanol and flavored solutions in three strains of rats. Pharmacol. Biochem. Behav., 2000, 65(3), 357-362.
[http://dx.doi.org/10.1016/S0091-3057(99)00222-1] [PMID: 10683473]
[54]
Lodge, D.J.; Lawrence, A.J. Comparative analysis of hepatic ethanol metabolism in Fawn-Hooded and Wistar-Kyoto rats. Alcohol, 2003, 30(1), 75-79.
[http://dx.doi.org/10.1016/S0741-8329(03)00097-1] [PMID: 12878277]
[55]
Chen, F.; Rezvani, A.; Jarrott, B.; Lawrence, A.J. [3H]Zolpidem binding in alcohol-preferring and non-preferring rat brain. Neurosci. Lett., 1997, 238(3), 103-106.
[http://dx.doi.org/10.1016/S0304-3940(97)00867-7] [PMID: 9464630]
[56]
Paré, A.M.T.; Paré, W.P.; Kluczynski, J. Negative affect and voluntary alcohol consumption in Wistar-Kyoto (WKY) and Sprague-Dawley rats. Physiol. Behav., 1999, 67(2), 219-225.
[http://dx.doi.org/10.1016/S0031-9384(99)00054-2] [PMID: 10477053]
[57]
Soeters, H.S.; Howells, F.M.; Russell, V.A. Methylphenidate does not increase ethanol consumption in a rat model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Metab. Brain Dis., 2008, 23(3), 303-314.
[http://dx.doi.org/10.1007/s11011-008-9098-1] [PMID: 18665438]
[58]
Jiao, X.; Paré, W.P.; Tejani-Butt, S.M. Alcohol consumption alters dopamine transporter sites in Wistar–Kyoto rat brain. Brain Res., 2006, 1073-1074, 175-182.
[http://dx.doi.org/10.1016/j.brainres.2005.12.009] [PMID: 16457790]
[59]
Morganstern, I.; Tejani-Butt, S. Differential patterns of alcohol consumption and dopamine-2 receptor binding in Wistar-Kyoto and Wistar rats. Neurochem. Res., 2010, 35(11), 1708-1715.
[http://dx.doi.org/10.1007/s11064-010-0233-0] [PMID: 20680460]
[60]
Yaroslavsky, I.; Tejani-Butt, S.M. Voluntary alcohol consumption alters stress-induced changes in dopamine-2 receptor binding in Wistar–Kyoto rat brain. Pharmacol. Biochem. Behav., 2010, 94(3), 471-476.
[http://dx.doi.org/10.1016/j.pbb.2009.10.010] [PMID: 19896970]
[61]
Fromme, K.; Rivet, K. Young adults’ coping style as a predictor of their alcohol use and response to daily events. J. Youth Adolesc., 1994, 23(1), 85-97.
[http://dx.doi.org/10.1007/BF01537143]
[62]
Jury, N.J.; DiBerto, J.F.; Kash, T.L.; Holmes, A. Sex differences in the behavioral sequelae of chronic ethanol exposure. Alcohol, 2017, 58, 53-60.
[http://dx.doi.org/10.1016/j.alcohol.2016.07.007] [PMID: 27624846]
[63]
Li, J.; Chen, P.; Han, X.; Zuo, W.; Mei, Q.; Bian, E.Y.; Umeugo, J.; Ye, J. Differences between male and female rats in alcohol drinking, negative affects and neuronal activity after acute and prolonged abstinence. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(4), 163-176.
[PMID: 31523363]
[64]
Priddy, B.M.; Carmack, S.A.; Thomas, L.C.; Vendruscolo, J.C.M.; Koob, G.F.; Vendruscolo, L.F. Sex, strain, and estrous cycle influences on alcohol drinking in rats. Pharmacol. Biochem. Behav., 2017, 152, 61-67.
[http://dx.doi.org/10.1016/j.pbb.2016.08.001] [PMID: 27498303]
[65]
Cailhol, S.; Mormède, P. Sex and strain differences in ethanol drinking: effects of gonadectomy. Alcohol. Clin. Exp. Res., 2001, 25(4), 594-599.
[http://dx.doi.org/10.1111/j.1530-0277.2001.tb02255.x] [PMID: 11329501]
[66]
Razafimanalina, R.; Mormède, P.; Velley, L. Alcohol consumption and gustatory hedonic profiles in Wistar-Kyoto hyper- and normoactive rat strains. Alcohol Alcohol., 1997, 32(4), 485-491.
[http://dx.doi.org/10.1093/oxfordjournals.alcalc.a008283] [PMID: 9269856]
[67]
Gil-Ibáñez, P.; Bernal, J.; Morte, B. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PLoS One, 2014, 9(3), e91692.
[http://dx.doi.org/10.1371/journal.pone.0091692] [PMID: 24618783]
[68]
Kulkarni, S.S.; Buchholz, D.R. Beyond synergy: corticosterone and thyroid hormone have numerous interaction effects on gene regulation in Xenopus tropicalis tadpoles. Endocrinology, 2012, 153(11), 5309-5324.
[http://dx.doi.org/10.1210/en.2012-1432] [PMID: 22968645]
[69]
Bagamasbad, P.D.; Espina, J.E.C.; Knoedler, J.R.; Subramani, A.; Harden, A.J.; Denver, R.J. Coordinated transcriptional regulation by thyroid hormone and glucocorticoid interaction in adult mouse hippocampus-derived neuronal cells. PLoS One, 2019, 14(7), e0220378.
[http://dx.doi.org/10.1371/journal.pone.0220378] [PMID: 31348800]
[70]
Tempel, D.L.; Leibowitz, S.F. Adrenal steroid receptors: interactions with brain neuropeptide systems in relation to nutrient intake and metabolism. J. Neuroendocrinol., 1994, 6(5), 479-501.
[http://dx.doi.org/10.1111/j.1365-2826.1994.tb00611.x] [PMID: 7827618]
[71]
Elenkov, I.J.; Webster, E.L.; Torpy, D.J.; Chrousos, G.P. Stress, corticotropin-releasing hormone, glucocorticoids, and the immune/ inflammatory response: acute and chronic effects. Ann. N. Y. Acad. Sci., 1999, 876(1 NEUROENDOCRIN), 1-13.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb07618.x] [PMID: 10415589]
[72]
Tsigos, C.; Chrousos, G.P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res., 2002, 53(4), 865-871.
[http://dx.doi.org/10.1016/S0022-3999(02)00429-4] [PMID: 12377295]
[73]
McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav., 2003, 43(1), 2-15.
[http://dx.doi.org/10.1016/S0018-506X(02)00024-7] [PMID: 12614627]
[74]
Rosmond, R.; Dallman, M.F.; Björntorp, P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J. Clin. Endocrinol. Metab., 1998, 83(6), 1853-1859.
[http://dx.doi.org/10.1210/jc.83.6.1853] [PMID: 9626108]
[75]
Kendler, K.S.; Karkowski, L.M.; Prescott, C.A. Causal relationship between stressful life events and the onset of major depression. Am. J. Psychiatry, 1999, 156(6), 837-841.
[http://dx.doi.org/10.1176/ajp.156.6.837] [PMID: 10360120]
[76]
Kendler, K.S.; Thornton, L.M.; Prescott, C.A. Gender differences in the rates of exposure to stressful life events and sensitivity to their depressogenic effects. Am. J. Psychiatry, 2001, 158(4), 587-593.
[http://dx.doi.org/10.1176/appi.ajp.158.4.587] [PMID: 11282693]
[77]
Eggert, M.; Schulz, M.; Neeck, G. Molecular mechanisms of glucocorticoid action in rheumatic autoimmune diseases. J. Steroid Biochem. Mol. Biol., 2001, 77(4-5), 185-191.
[http://dx.doi.org/10.1016/S0960-0760(01)00058-9] [PMID: 11457656]
[78]
Piazza, P.V.; Le Moal, M. The role of stress in drug self-administration. Trends Pharmacol. Sci., 1998, 19(2), 67-74.
[http://dx.doi.org/10.1016/S0165-6147(97)01115-2] [PMID: 9550944]
[79]
Rittenhouse, P.A.; López-Rubalcava, C.; Stanwood, G.D.; Lucki, I. Amplified behavioral and endocrine responses to forced swim stress in the Wistar–Kyoto rat. Psychoneuroendocrinology, 2002, 27(3), 303-318.
[http://dx.doi.org/10.1016/S0306-4530(01)00052-X] [PMID: 11818168]
[80]
Paré, W.P.; Redei, E. Sex differences and stress response of WKY rats. Physiol. Behav., 1993, 54(6), 1179-1185.
[http://dx.doi.org/10.1016/0031-9384(93)90345-G] [PMID: 8295961]
[81]
Gómez, F.; Lahmame, A.; de Kloet, R.; Armario, A. Hypothalamic-pituitary-adrenal response to chronic stress in five inbred rat strains: differential responses are mainly located at the adrenocortical level. Neuroendocrinology, 1996, 63(4), 327-337.
[http://dx.doi.org/10.1159/000126973] [PMID: 8739888]
[82]
Durand, M.; Berton, O.; Aguerre, S.; Edno, L.; Combourieu, I.; Mormède, P.; Chaouloff, F. Effects of repeated fluoxetine on anxiety-related behaviours, central serotonergic systems, and the corticotropic axis in SHR and WKY rats. Neuropharmacology, 1999, 38(6), 893-907.
[http://dx.doi.org/10.1016/S0028-3908(99)00009-X] [PMID: 10465693]
[83]
Gilad, G.M.; Li, R.; Wyatt, R.J.; Tizabi, Y. Effects of genotype on age-related alterations in the concentrations of stress hormones in plasma and hypothalamic monoamines in rats. J. Reprod. Fertil. Suppl., 1993, 46, 119-130.
[PMID: 7686229]
[84]
Vreeburg, S.A.; Hoogendijk, W.J.G.; van Pelt, J.; DeRijk, R.H.; Verhagen, J.C.M.; van Dyck, R.; Smit, J.H.; Zitman, F.G.; Penninx, B.W.J.H. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch. Gen. Psychiatry, 2009, 66(6), 617-626.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.50] [PMID: 19487626]
[85]
Solberg, L.C.; Olson, S.L.; Turek, F.W.; Redei, E. Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 281, R786-R794.
[http://dx.doi.org/10.1152/ajpregu.2001.281.3.R786]
[86]
Solberg, L.C.; Ahmadiyeh, N.; Baum, A.E.; Vitaterna, M.H.; Takahashi, J.S.; Turek, F.W.; Redei, E.E. Depressive-like behavior and stress reactivity are independent traits in a Wistar Kyoto × Fisher 344 cross. Mol. Psychiatry, 2003, 8(4), 423-433.
[http://dx.doi.org/10.1038/sj.mp.4001255] [PMID: 12740600]
[87]
Nam, H.; Clinton, S.M.; Jackson, N.L.; Kerman, I.A. Learned helplessness and social avoidance in the Wistar-Kyoto rat. Front. Behav. Neurosci., 2014, 8, 109.
[http://dx.doi.org/10.3389/fnbeh.2014.00109] [PMID: 24744709]
[88]
Rubin, R.T.; Phillips, J.J.; Sadow, T.F.; McCracken, J.T. Adrenal gland volume in major depression. Increase during the depressive episode and decrease with successful treatment. Arch. Gen. Psychiatry, 1995, 52(3), 213-218.
[http://dx.doi.org/10.1001/archpsyc.1995.03950150045009] [PMID: 7872849]
[89]
Daviu, N.; Rabasa, C.; Nadal, R.; Armario, A. Comparison of the effects of single and daily repeated immobilization stress on resting activity and heterotypic sensitization of the hypothalamic–pituitary–adrenal axis. Stress, 2014, 17(2), 176-185.
[http://dx.doi.org/10.3109/10253890.2014.880834] [PMID: 24397592]
[90]
Ferland, C.L.; Harris, E.P.; Lam, M.; Schrader, L.A. Facilitation of the HPA axis to a novel acute stress following chronic stress exposure modulates histone acetylation and the ERK/MAPK pathway in the dentate gyrus of male rats. Endocrinology, 2014, 155(8), 2942-2952.
[http://dx.doi.org/10.1210/en.2013-1918] [PMID: 24693964]
[91]
De La Garza, R., II; Mahoney, J.J. III A distinct neurochemical profile in WKY rats at baseline and in response to acute stress: implications for animal models of anxiety and depression. Brain Res., 2004, 1021(2), 209-218.
[http://dx.doi.org/10.1016/j.brainres.2004.06.052] [PMID: 15342269]
[92]
Redei, E.; Li, L.; Halasz, I.; McGivern, R.F.; Aird, F. Fast glucocorticoid feedback inhibition of ACTH secretion in the ovariectomized rat: effect of chronic estrogen and progesterone. Neuroendocrinology, 1994, 60(2), 113-123.
[http://dx.doi.org/10.1159/000126741] [PMID: 7969768]
[93]
Mileva, G.R.; Rooke, J.; Ismail, N.; Bielajew, C. Corticosterone and immune cytokine characterization following environmental manipulation in female WKY rats. Behav. Brain Res., 2017, 316, 197-204.
[http://dx.doi.org/10.1016/j.bbr.2016.09.004] [PMID: 27596379]
[94]
Andrus, B.M.; Blizinsky, K.; Vedell, P.T.; Dennis, K.; Shukla, P.K.; Schaffer, D.J.; Radulovic, J.; Churchill, G.A.; Redei, E.E. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry, 2012, 17(1), 49-61.
[http://dx.doi.org/10.1038/mp.2010.119] [PMID: 21079605]
[96]
Kokras, N.; Dalla, C.; Sideris, A.C.; Dendi, A.; Mikail, H.G.; Antoniou, K.; Papadopoulou-Daifoti, Z. Behavioral sexual dimorphism in models of anxiety and depression due to changes in HPA axis activity. Neuropharmacology, 2012, 62(1), 436-445.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.025] [PMID: 21884710]
[97]
Gómez, F.; De Kloet, E.R.; Armario, A. Glucocorticoid negative feedback on the HPA axis in five inbred rat strains. Am. J. Physiol., 1998, 274(2), R420-R427.
[PMID: 9486300]
[98]
Young, E.A.; Haskett, R.F.; Murphy-Weinberg, V.; Watson, S.J.; Akil, H. Loss of glucocorticoid fast feedback in depression. Arch. Gen. Psychiatry, 1991, 48(8), 693-699.
[http://dx.doi.org/10.1001/archpsyc.1991.01810320017003] [PMID: 1652926]
[99]
Pariante, C.M.; Miller, A.H. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatry, 2001, 49(5), 391-404.
[http://dx.doi.org/10.1016/S0006-3223(00)01088-X] [PMID: 11274650]
[100]
Pariante, C.M. The glucocorticoid receptor: part of the solution or part of the problem? J. Psychopharmacol., 2006, 20(4)(Suppl.), 79-84.
[http://dx.doi.org/10.1177/1359786806066063] [PMID: 16785275]
[101]
Schaffer, D.J.; Tunc-Ozcan, E.; Shukla, P.K.; Volenec, A.; Redei, E.E. Nuclear orphan receptor Nor-1 contributes to depressive behavior in the Wistar–Kyoto rat model of depression. Brain Res., 2010, 1362, 32-39.
[http://dx.doi.org/10.1016/j.brainres.2010.09.041] [PMID: 20851110]
[102]
Mileva, G.R.; Moyes, C.; Syed, S.; Bielajew, C. Strain Differences and Effects of Environmental Manipulation on Astrocytes (Glial Fibrillary Acidic Protein), Glucocorticoid Receptor, and Microglia (Iba1) Immunoreactivity between Wistar-Kyoto and Wistar Females. Neuropsychobiology, 2017, 75(1), 1-11.
[http://dx.doi.org/10.1159/000476035] [PMID: 28700991]
[103]
Belanoff, J.K.; Rothschild, A.J.; Cassidy, F.; DeBattista, C.; Baulieu, E.E.; Schold, C.; Schatzberg, A.F. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol. Psychiatry, 2002, 52(5), 386-392.
[http://dx.doi.org/10.1016/S0006-3223(02)01432-4] [PMID: 12242054]
[104]
DeBattista, C.; Belanoff, J. The use of mifepristone in the treatment of neuropsychiatric disorders. Trends Endocrinol. Metab., 2006, 17(3), 117-121.
[http://dx.doi.org/10.1016/j.tem.2006.02.006] [PMID: 16530421]
[105]
Jahn, H.; Schick, M.; Kiefer, F.; Kellner, M.; Yassouridis, A.; Wiedemann, K. Metyrapone as additive treatment in major depression: a double-blind and placebo-controlled trial. Arch. Gen. Psychiatry, 2004, 61(12), 1235-1244.
[http://dx.doi.org/10.1001/archpsyc.61.12.1235] [PMID: 15583115]
[106]
Hauger, R.L.; Shelat, S.G.; Redei, E.E. Decreased corticotropin-releasing factor receptor expression and adrenocorticotropic hormone responsiveness in anterior pituitary cells of Wistar-Kyoto rats. J. Neuroendocrinol., 2002, 14, 126-134.
[107]
Marin, M.T.; Cruz, F.C.; Planeta, C.S. Chronic restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats. Physiol. Behav., 2007, 90(1), 29-35.
[http://dx.doi.org/10.1016/j.physbeh.2006.08.021] [PMID: 17023009]
[108]
Grissom, N.; Bhatnagar, S. Habituation to repeated stress: Get used to it. Neurobiol. Learn. Mem., 2009, 92(2), 215-224.
[http://dx.doi.org/10.1016/j.nlm.2008.07.001] [PMID: 18667167]
[109]
Jung, S.H.; Meckes, J.K.; Schipma, M.J.; Lim, P.H.; Jenz, S.T.; Przybyl, K.; Wert, S.L.; Kim, S.; Luo, W.; Gacek, S.A.; Jankord, R.; Hatcher-Solis, C.; Redei, E.E. Strain Differences in Responsiveness to Repeated Restraint Stress Affect Remote Contextual Fear Memory and Blood Transcriptomics. Neuroscience, 2020, 444, 76-91.
[http://dx.doi.org/10.1016/j.neuroscience.2020.07.052] [PMID: 32768618]
[110]
Dupuy, A.G.; Caron, E. Integrin-dependent phagocytosis - spreading from microadhesion to new concepts. J. Cell Sci., 2008, 121(11), 1773-1783.
[http://dx.doi.org/10.1242/jcs.018036] [PMID: 18492791]
[111]
Jenz, S.T.; Goodyear, C.D. TSgt Graves, P.R.; Goldstein, S.; Shia, M.R.; Redei, E.E. Blood and affective markers of stress in Elite Airmen during a preparatory training course: A pilot study. Neurobiol. Stress, 2021, 14, 100323.
[http://dx.doi.org/10.1016/j.ynstr.2021.100323] [PMID: 33912629]
[112]
Hage, M.P.; Azar, S.T. The Link between Thyroid Function and Depression. J. Thyroid Res., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/590648] [PMID: 22220285]
[113]
Bathla, M.; Singh, M.; Relan, P. Prevalence of anxiety and depressive symptoms among patients with hypothyroidism. Indian J. Endocrinol. Metab., 2016, 20(4), 468-474.
[http://dx.doi.org/10.4103/2230-8210.183476] [PMID: 27366712]
[114]
Yu, J.; Tian, A.J.; Yuan, X.; Cheng, X.X. Subclinical hypothyroidism after 131I-treatment of graves’ disease: A risk factor for depression? PLoS One, 2016, 11(5), e0154846.
[http://dx.doi.org/10.1371/journal.pone.0154846] [PMID: 27135245]
[115]
Bauer, M.; Goetz, T.; Glenn, T.; Whybrow, P.C. The thyroid-brain interaction in thyroid disorders and mood disorders. J. Neuroendocrinol., 2008, 20(10), 1101-1114.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01774.x] [PMID: 18673409]
[116]
Morley, J.E.; Shafer, R.B. Thyroid function screening in new psychiatric admissions. Arch. Intern. Med., 1982, 142(3), 591-593.
[http://dx.doi.org/10.1001/archinte.1982.00340160171030] [PMID: 7065794]
[117]
Fraser, S.A.; Kroenke, K.; Callahan, C.M.; Hui, S.L.; Williams, J.W., Jr; Unützer, J. Low yield of thyroid-stimulating hormone testing in elderly patients with depression. Gen. Hosp. Psychiatry, 2004, 26(4), 302-309.
[http://dx.doi.org/10.1016/j.genhosppsych.2004.03.007] [PMID: 15234826]
[118]
Alkemade, A.; Unmehopa, U.A.; Brouwer, J.P.; Hoogendijk, W.J.G.; Wiersinga, W.M.; Swaab, D.F.; Fliers, E. Decreased thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus of patients with major depression. Mol. Psychiatry, 2003, 8(10), 838-839.
[http://dx.doi.org/10.1038/sj.mp.4001364] [PMID: 14515134]
[119]
Weeke, A.; Weeke, J. The 24-hour pattern of serum TSH in patients with endogenous depression. Acta Psychiatr. Scand., 1980, 62(1), 69-74.
[http://dx.doi.org/10.1111/j.1600-0447.1980.tb00594.x] [PMID: 7446193]
[120]
Kjellman, B.F.; Beck-Friis, J.; Ljunggren, J.G.; Wetterberg, L. Twenty-four-hour serum levels of TSH in affective disorders. Acta Psychiatr. Scand., 1984, 69(6), 491-502.
[http://dx.doi.org/10.1111/j.1600-0447.1984.tb02524.x] [PMID: 6741599]
[121]
Roelfsema, F.; Veldhuis, J.D. Thyrotropin secretion patterns in health and disease. Endocr. Rev., 2013, 34(5), 619-657.
[http://dx.doi.org/10.1210/er.2012-1076] [PMID: 23575764]
[122]
Jackson, I.M.D. The thyroid axis and depression. Thyroid, 1998, 8(10), 951-956.
[http://dx.doi.org/10.1089/thy.1998.8.951] [PMID: 9827665]
[123]
Hidal, J.T.; Kaplan, M.M. Inhibition of thyroxine 5′-deiodination type II in cultured human placental cells by cortisol, insulin, 3′,5′- cyclic adenosine monophosphate, and butyrate. Metabolism, 1988, 37(7), 664-668.
[http://dx.doi.org/10.1016/0026-0495(88)90087-X] [PMID: 2838733]
[124]
Kirkegaard, C.; Faber, J. The role of thyroid hormones in depression. Eur. J. Endocrinol., 1998, 138(1), 1-9.
[http://dx.doi.org/10.1530/eje.0.1380001] [PMID: 9461307]
[125]
Marquesdeak, A.; Neto, F.; Dominguez, W.; Solis, A.; Kurcgant, D.; Sato, F.; Ross, J.; Prado, E. Cytokine profiles in women with different subtypes of major depressive disorder. J. Psychiatr. Res., 2007, 41(1-2), 152-159.
[http://dx.doi.org/10.1016/j.jpsychires.2005.11.003] [PMID: 16375926]
[126]
Parmentier, T.; Sienaert, P. The use of triiodothyronine (T3) in the treatment of bipolar depression: A review of the literature. J. Affect. Disord., 2018, 229, 410-414.
[http://dx.doi.org/10.1016/j.jad.2017.12.071] [PMID: 29331701]
[127]
Kelly, T.; Lieberman, D.Z. The use of triiodothyronine as an augmentation agent in treatment-resistant bipolar II and bipolar disorder NOS. J. Affect. Disord., 2009, 116(3), 222-226.
[http://dx.doi.org/10.1016/j.jad.2008.12.010] [PMID: 19215985]
[128]
Bauer, M. Thyroid hormone augmentation with levothyroxine in bipolar depression. Bipolar Disord., 2002, 4(Suppl. 1), 109-110.
[http://dx.doi.org/10.1034/j.1399-5618.4.s1.59.x] [PMID: 12479694]
[129]
Prange, A.J., Jr Novel uses of thyroid hormones in patients with affective disorders. Thyroid, 1996, 6(5), 537-543.
[http://dx.doi.org/10.1089/thy.1996.6.537] [PMID: 8936685]
[130]
Whybrow, P.C. The therapeutic use of triiodothyronine and high dose thyroxine in psychiatric disorder. Acta Med. Austriaca, 1994, 21(2), 47-52.
[PMID: 7998482]
[131]
Pilhatsch, M.J.; Stamm, T.; Stahl, P.; Lewitzka, U.; Berghöfer, A.; Sauer, C.; Gitlin, M.; Frye, M.A.; Whybrow, P.C.; Bauer, M. Treatment of bipolar depression with supraphysiologic doses of levothyroxine: a randomized, placebo-controlled study of comorbid anxiety symptoms. Int. J. Bipolar Disord., 2019, 7(1), 21.
[http://dx.doi.org/10.1186/s40345-019-0155-y] [PMID: 31583561]
[132]
Walshaw, P.D.; Gyulai, L.; Bauer, M.; Bauer, M.S.; Calimlim, B.; Sugar, C.A.; Whybrow, P.C. Adjunctive thyroid hormone treatment in rapid cycling bipolar disorder: A double-blind placebo-controlled trial of levothyroxine (L-T 4) and triiodothyronine (T 3). Bipolar Disord., 2018, 20(7), 594-603.
[http://dx.doi.org/10.1111/bdi.12657] [PMID: 29869405]
[133]
Mokrani, M.C.; Duval, F.; Erb, A.; Gonzalez Lopera, F.; Danila, V. Are the thyroid and adrenal system alterations linked in depression? Psychoneuroendocrinology, 2020, 122104831.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104831] [PMID: 33068950]
[134]
Bauer, M.; Whybrow, P.C. Thyroid hormone, neural tissue and mood modulation. World J. Biol. Psychiatry, 2001, 2(2), 59-69.
[http://dx.doi.org/10.3109/15622970109027495] [PMID: 12587187]
[135]
Bauer, M.; Whybrow, P.C. Role of thyroid hormone therapy in depressive disorders. J. Endocrinol. Invest., 2021, 44(11), 2341-2347.
[http://dx.doi.org/10.1007/s40618-021-01600-w] [PMID: 34129186]
[136]
Redei, E.; Solberg, L.C.; Kluczynski, J.M.; Pare, W.P. Paradoxical hormonal and behavioral responses to hypothyroid and hyperthyroid states in the Wistar-Kyoto rat. Neuropsychopharmacology, 2001, 24(6), 632-639.
[http://dx.doi.org/10.1016/S0893-133X(00)00229-3] [PMID: 11331143]
[137]
Baum, A.E.; Solberg, L.C.; Kopp, P.; Ahmadiyeh, N.; Churchill, G.; Takahashi, J.S.; Jameson, J.L.; Redei, E.E. Quantitative trait loci associated with elevated thyroid-stimulating hormone in the Wistar-Kyoto rat. Endocrinology, 2005, 146(2), 870-878.
[http://dx.doi.org/10.1210/en.2004-0948] [PMID: 15514085]
[138]
Suzuki, S.; Solberg, L.C.; Redei, E.E.; Handa, R.J. Prepro-thyrotropin releasing hormone 178-199 immunoreactivity is altered in the hypothalamus of the Wistar–Kyoto strain of rat. Brain Res., 2001, 913(2), 224-233.
[http://dx.doi.org/10.1016/S0006-8993(01)02853-0] [PMID: 11549391]
[139]
Yu, S.L.; Chu, S.S.T.; Chien, M.H.; Kuo, P.H.; Yang, P.C.; Su, K.Y. Transthyretin as a biomarker to predict and monitor major depressive disorder identified by whole-genome transcriptomic analysis in mouse models. Biomedicines, 2021, 9(9), 1124.
[http://dx.doi.org/10.3390/biomedicines9091124] [PMID: 34572310]
[140]
Semenkovich, K.; Brown, M.E.; Svrakic, D.M.; Lustman, P.J. Depression in type 2 diabetes mellitus: Prevalence, impact, and treatment. Drugs, 2015, 75(6), 577-587.
[http://dx.doi.org/10.1007/s40265-015-0347-4] [PMID: 25851098]
[141]
Anderson, R.J.; Freedland, K.E.; Clouse, R.E.; Lustman, P.J. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care, 2001, 24(6), 1069-1078.
[http://dx.doi.org/10.2337/diacare.24.6.1069] [PMID: 11375373]
[142]
Wang, F.; Wang, S.; Zong, Q.Q.; Zhang, Q.; Ng, C.H.; Ungvari, G.S.; Xiang, Y.T. Prevalence of comorbid major depressive disorder in type 2 diabetes: A meta-analysis of comparative and epidemiological studies. Diabet. Med., 2019, 36(8), 961-969.
[http://dx.doi.org/10.1111/dme.14042] [PMID: 31127631]
[143]
Joseph, J.J.; Golden, S.H. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci., 2017, 1391(1), 20-34.
[http://dx.doi.org/10.1111/nyas.13217] [PMID: 27750377]
[144]
Anagnostis, P.; Athyros, V.G.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J. Clin. Endocrinol. Metab., 2009, 94(8), 2692-2701.
[http://dx.doi.org/10.1210/jc.2009-0370] [PMID: 19470627]
[145]
Postolache, T.T.; Bosque-Plata, L.; Jabbour, S.; Vergare, M.; Wu, R.; Gragnoli, C. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2019, 180(3), 186-203.
[http://dx.doi.org/10.1002/ajmg.b.32712] [PMID: 30729689]
[146]
Solberg Woods, L.C.; Ahmadiyeh, N.; Baum, A.; Shimomura, K.; Li, Q.; Steiner, D.F.; Turek, F.W.; Takahashi, J.S.; Churchill, G.A.; Redei, E.E. Identification of genetic loci involved in diabetes using a rat model of depression. Mamm. Genome, 2009, 20(8), 486-497.
[http://dx.doi.org/10.1007/s00335-009-9211-8] [PMID: 19697080]
[147]
Katayama, S.; Inaba, M.; Maruno, Y.; Morita, T.; Awata, T.; Oka, Y. Glucose intolerance in spontaneously hypertensive and Wistar-Kyoto rats: enhanced gene expression and synthesis of skeletal muscle glucose transporter 4. Hypertens. Res., 1997, 20(4), 279-286.
[http://dx.doi.org/10.1291/hypres.20.279] [PMID: 9453263]
[148]
Woods, L.C.S.; Holl, K.; Tschannen, M.; Valdar, W. Fine-mapping a locus for glucose tolerance using heterogeneous stock rats. Physiol. Genomics, 2010, 41(1), 102-108.
[http://dx.doi.org/10.1152/physiolgenomics.00178.2009] [PMID: 20068026]
[149]
Ikeda, H.; Shino, A.; Matsuo, T.; Iwatsuka, H.; Suzuoki, Z. A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes, 1981, 30(12), 1045-1050.
[http://dx.doi.org/10.2337/diab.30.12.1045] [PMID: 7030830]
[150]
Meckes, J.K.; Lim, P.H.; Wert, S.L.; Luo, W.; Gacek, S.A.; Platt, D.; Jankord, R.; Saar, K.; Redei, E.E. Brain region-specific expression of genes mapped within quantitative trait loci for behavioral responsiveness to acute stress in Fisher 344 and Wistar Kyoto male rats. PLoS One, 2018, 13(3), e0194293.
[http://dx.doi.org/10.1371/journal.pone.0194293] [PMID: 29529077]
[151]
Solberg, L.C.; Baum, A.E.; Ahmadiyeh, N.; Shimomura, K.; Li, R.; Turek, F.W.; Takahashi, J.S.; Churchill, G.A.; Redei, E.E. Genetic analysis of the stress-responsive adrenocortical axis. Physiol. Genomics, 2006, 27(3), 362-369.
[http://dx.doi.org/10.1152/physiolgenomics.00052.2006] [PMID: 16895972]
[152]
Solberg, L.C.; Baum, A.E.; Ahmadiyeh, N.; Shimomura, K.; Li, R.; Turek, F.W.; Churchill, G.A.; Takahashi, J.S.; Redei, E.E. Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm. Genome, 2004, 15(8), 648-662.
[http://dx.doi.org/10.1007/s00335-004-2326-z] [PMID: 15457344]
[153]
Ahmadiyeh, N.; Churchill, G.A.; Shimomura, K.; Solberg, L.C.; Takahashi, J.S.; Redei, E.E. X-linked and lineage-dependent inheritance of coping responses to stress. Mamm. Genome, 2003, 14(11), 748-757.
[http://dx.doi.org/10.1007/s00335-003-2292-x] [PMID: 14722724]
[154]
Kinlein, S.; Karatsoreos, I. Contributions of prefrontal cortex and hippocampal neuronal populations to altered behavioral responses to acute stress following HPA-axis disruption. Psychoneuroendocrinology, 2015, 61, 63.
[http://dx.doi.org/10.1016/j.psyneuen.2015.07.563]
[155]
Kinlein, S.A.; Phillips, D.J.; Keller, C.R.; Karatsoreos, I.N. Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology, 2019, 102, 248-255.
[http://dx.doi.org/10.1016/j.psyneuen.2018.12.010] [PMID: 30594817]
[156]
Will, C.C.; Aird, F.; Redei, E.E. Selectively bred Wistar–Kyoto rats: an animal model of depression and hyper-responsiveness to antidepressants. Mol. Psychiatry, 2003, 8(11), 925-932.
[http://dx.doi.org/10.1038/sj.mp.4001345] [PMID: 14593430]
[157]
Hasler, G.; Northoff, G. Discovering imaging endophenotypes for major depression. Mol. Psychiatry, 2011, 16(6), 604-619.
[http://dx.doi.org/10.1038/mp.2011.23] [PMID: 21602829]
[158]
Williams, K.A.; Mehta, N.S.; Redei, E.E.; Wang, L.; Procissi, D. Aberrant resting-state functional connectivity in a genetic rat model of depression. Psychiatry Res. Neuroimaging, 2014, 222(1-2), 111-113.
[http://dx.doi.org/10.1016/j.pscychresns.2014.02.001] [PMID: 24613017]
[159]
Mehta, N.S.; Wang, L.; Redei, E.E. Sex differences in depressive, anxious behaviors and hippocampal transcript levels in a genetic rat model. Genes Brain Behav., 2013, 12(7)
[http://dx.doi.org/10.1111/gbb.12063] [PMID: 23876038]
[160]
Halbreich, U.; Kahn, L.S. Atypical depression, somatic depression and anxious depression in women: Are they gender-preferred phenotypes? J. Affect. Disord., 2007, 102(1-3), 245-258.
[http://dx.doi.org/10.1016/j.jad.2006.09.023] [PMID: 17092565]
[161]
LeMoult, J.; Humphreys, K.L.; Tracy, A.; Hoffmeister, J.A.; Ip, E.; Gotlib, I.H. Meta-analysis: Exposure to early life stress and risk for depression in childhood and adolescence. J. Am. Acad. Child Adolesc. Psychiatry, 2020, 59(7), 842-855.
[http://dx.doi.org/10.1016/j.jaac.2019.10.011] [PMID: 31676392]
[162]
Kim, S.; Gacek, S.A.; Mocchi, M.M.; Redei, E.E. Sex-specific behavioral response to early adolescent stress in the genetically more stress-reactive wistar kyoto more immobile, and its nearly isogenic wistar kyoto less immobile control strain. Front. Behav. Neurosci., 2021, 15, 779036.
[http://dx.doi.org/10.3389/fnbeh.2021.779036] [PMID: 34970127]
[163]
Flory, J.D.; Yehuda, R. Comorbidity between post-traumatic stress disorder and major depressive disorder: alternative explanations and treatment considerations. Dialogues Clin. Neurosci., 2015, 17(2), 141-150.
[http://dx.doi.org/10.31887/DCNS.2015.17.2/jflory] [PMID: 26246789]
[164]
Spinhoven, P.; Penninx, B.W.; van Hemert, A.M.; de Rooij, M.; Elzinga, B.M. Comorbidity of PTSD in anxiety and depressive disorders: Prevalence and shared risk factors. Child Abuse Negl., 2014, 38(8), 1320-1330.
[http://dx.doi.org/10.1016/j.chiabu.2014.01.017] [PMID: 24629482]
[165]
Breslau, N. The epidemiology of trauma, PTSD, and other posttrauma disorders. Trauma Violence Abuse, 2009, 10(3), 198-210.
[http://dx.doi.org/10.1177/1524838009334448] [PMID: 19406860]
[166]
Rau, V.; DeCola, J.P.; Fanselow, M.S. Stress-induced enhancement of fear learning: An animal model of posttraumatic stress disorder. Neurosci. Biobehav. Rev., 2005, 29(8), 1207-1223.
[http://dx.doi.org/10.1016/j.neubiorev.2005.04.010] [PMID: 16095698]
[167]
Blouin, A.M.; Sillivan, S.E.; Joseph, N.F.; Miller, C.A. The potential of epigenetics in stress-enhanced fear learning models of PTSD. Learn. Mem., 2016, 23(10), 576-586.
[http://dx.doi.org/10.1101/lm.040485.115] [PMID: 27634148]
[168]
Skelton, K.; Ressler, K.J.; Norrholm, S.D.; Jovanovic, T.; Bradley-Davino, B. PTSD and gene variants: New pathways and new thinking. Neuropharmacology, 2012, 62(2), 628-637.
[http://dx.doi.org/10.1016/j.neuropharm.2011.02.013] [PMID: 21356219]
[169]
Przybyl, K.J.; Jenz, S.T.; Lim, P.H.; Ji, M.T.; Wert, S.L.; Luo, W.; Gacek, S.A.; Schaack, A.K.; Redei, E.E. Genetic stress-reactivity, sex, and conditioning intensity affect stress-enhanced fear learning. Neurobiol. Learn. Mem., 2021, 185, 107523.
[http://dx.doi.org/10.1016/j.nlm.2021.107523] [PMID: 34562618]
[170]
Lim, P.H.; Wert, S.L.; Tunc-Ozcan, E.; Marr, R.; Ferreira, A.; Redei, E.E. Premature hippocampus-dependent memory decline in middle-aged females of a genetic rat model of depression. Behav. Brain Res., 2018, 353, 242-249.
[http://dx.doi.org/10.1016/j.bbr.2018.02.030] [PMID: 29490235]
[171]
Herbert, J.; Lucassen, P.J. Depression as a risk factor for Alzheimer’s disease: Genes, steroids, cytokines and neurogenesis – What do we need to know? Front. Neuroendocrinol., 2016, 41, 153-171.
[http://dx.doi.org/10.1016/j.yfrne.2015.12.001] [PMID: 26746105]
[172]
Leonard, B.E. Major depression as a neuroprogressive prelude to dementia: What is the evidence? Modern Trends in Psychiatry, 2017, 31, 56-66.
[http://dx.doi.org/10.1159/000470807] [PMID: 28738351]
[173]
Yaffe, K.; Yaffe, K.; Byers, A.L.; McCormick, M.; Schaefer, C.; Whitmer, R.A. Midlife vs. late-life depressive symptoms and risk of dementia: differential effects for Alzheimer disease and vascular dementia. Arch. Gen. Psychiatry, 2012, 69(5), 493-498.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.1481] [PMID: 22566581]
[174]
Ismail, Z.; Elbayoumi, H.; Fischer, C.E.; Hogan, D.B.; Millikin, C.P.; Schweizer, T.; Mortby, M.E.; Smith, E.E.; Patten, S.B.; Fiest, K.M. Prevalence of depression in patients with mild cognitive impairment. JAMA Psychiatry, 2017, 74(1), 58-67.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.3162] [PMID: 27893026]
[175]
Kaur, D.; Bucholc, M.; Finn, D.P.; Todd, S.; Wong-Lin, K.; McClean, P.L. Multi-time-point data preparation robustly reveals MCI and dementia risk factors. Alzheimers Dement. (Amst.), 2020, 12(1), e12116.
[http://dx.doi.org/10.1002/dad2.12116] [PMID: 33088897]
[176]
Luo, W.; Pryzbyl, K.J.; Bigio, E.H.; Weintraub, S.; Mesulam, M.M.; Redei, E.E. Reduced Hippocampal and Anterior Cingulate Expression of Antioxidant Enzymes and Membrane Progesterone Receptors in Alzheimer’s Disease with Depression. J. Alzheimers Dis., 2022, 89(1), 309-321.
[http://dx.doi.org/10.3233/JAD-220574] [PMID: 35871353]
[177]
Redei, E.E.; Mehta, N.S. Blood transcriptomic markers for major depression: from animal models to clinical settings. Ann. N. Y. Acad. Sci., 2015, 1344(1), 37-49.
[http://dx.doi.org/10.1111/nyas.12748] [PMID: 25823952]
[178]
Redei, E.E.; Mehta, N.S. The promise of biomarkers in diagnosing major depression in primary care: the present and future. Curr. Psychiatry Rep., 2015, 17(8), 64.
[http://dx.doi.org/10.1007/s11920-015-0601-1] [PMID: 26081681]
[179]
Yu, J.S.; Xue, A.Y.; Redei, E.E.; Bagheri, N. A support vector machine model provides an accurate transcript-level-based diagnostic for major depressive disorder. Transl. Psychiatry, 2016, 6(10), e931.
[http://dx.doi.org/10.1038/tp.2016.198] [PMID: 27779627]
[180]
Schaack, A.K.; Mocchi, M.; Przybyl, K.J.; Redei, E.E. Immediate stress alters social and object interaction and recognition memory in nearly isogenic rat strains with differing stress reactivity. Stress, 2021, 24(6), 911-919.
[http://dx.doi.org/10.1080/10253890.2021.1958203] [PMID: 34374625]
[181]
Lim, P.H.; Shi, G.; Wang, T.; Jenz, S.T.; Mulligan, M.K.; Redei, E.E.; Chen, H. Genetic model to study the co-morbid phenotypes of increased alcohol intake and prior stress-induced enhanced fear memory. Front. Genet., 2018, 9, 566.
[http://dx.doi.org/10.3389/fgene.2018.00566] [PMID: 30538720]
[182]
Udell, M.E.; Ni, J.; Garcia Martinez, A.; Mulligan, M.K.; Redei, E.E.; Chen, H. TailTimer: A device for automating data collection in the rodent tail immersion assay. PLoS One, 2021, 16(8), e0256264.
[http://dx.doi.org/10.1371/journal.pone.0256264] [PMID: 34411163]
[183]
Zambito Marsala, S.; Pistacchi, M.; Tocco, P.; Gioulis, M.; Fabris, F.; Brigo, F.; Tinazzi, M. Pain perception in major depressive disorder: A neurophysiological case–control study. J. Neurol. Sci., 2015, 357(1-2), 19-21.
[http://dx.doi.org/10.1016/j.jns.2015.06.051] [PMID: 26233807]
[184]
Hermesdorf, M.; Berger, K.; Baune, B.T.; Wellmann, J.; Ruscheweyh, R.; Wersching, H. Pain sensitivity in patients with major depression: Differential effect of pain sensitivity measures, somatic cofactors, and disease characteristics. J. Pain, 2016, 17(5), 606-616.
[http://dx.doi.org/10.1016/j.jpain.2016.01.474] [PMID: 26867484]
[185]
Serafini, R.A.; Pryce, K.D.; Zachariou, V. The mesolimbic dopamine system in chronic pain and associated affective comorbidities. Biol. Psychiatry, 2020, 87(1), 64-73.
[http://dx.doi.org/10.1016/j.biopsych.2019.10.018] [PMID: 31806085]
[186]
Sharp, B.M.; Fan, X.; Redei, E.E.; Mulligan, M.K.; Chen, H. Sex and heredity are determinants of drug intake in a novel model of rat oral oxycodone self-administration. Genes Brain Behav., 2021, 20(8), e12770.
[http://dx.doi.org/10.1111/gbb.12770] [PMID: 34459088]
[187]
García-Lecumberri, C.; Torres, I.; Martín, S.; Crespo, J.A.; Miguéns, M.; Nicanor, C.; Higuera-Matas, A.; Ambrosio, E. Strain differences in the dose–response relationship for morphine self-administration and impulsive choice between Lewis and Fischer 344 rats. J. Psychopharmacol., 2011, 25(6), 783-791.
[http://dx.doi.org/10.1177/0269881110367444] [PMID: 20488829]
[188]
de Jong, T.V.; Kim, P.; Guryev, V.; Mulligan, M.K.; Williams, R.W.; Redei, E.E.; Chen, H. Whole genome sequencing of nearly isogenic WMI and WLI inbred rats identifies genes potentially involved in depression and stress reactivity. Sci. Rep., 2021, 11(1), 14774.
[http://dx.doi.org/10.1038/s41598-021-92993-4] [PMID: 34285244]
[189]
Ramdas, S.; Ozel, A.B.; Treutelaar, M.K.; Holl, K.; Mandel, M.; Woods, L.C.S.; Li, J.Z. Extended regions of suspected mis-assembly in the rat reference genome. Sci. Data, 2019, 6(1), 39.
[http://dx.doi.org/10.1038/s41597-019-0041-6] [PMID: 31015470]
[190]
Baud, A.; Hermsen, R.; Guryev, V.; Stridh, P.; Graham, D.; McBride, M.W.; Foroud, T.; Calderari, S.; Diez, M.; Ockinger, J.; Beyeen, A.D.; Gillett, A.; Abdelmagid, N.; Guerreiro-Cacais, A.O.; Jagodic, M.; Tuncel, J.; Norin, U.; Beattie, E.; Huynh, N.; Miller, W.H.; Koller, D.L.; Alam, I.; Falak, S.; Osborne-Pellegrin, M.; Martinez-Membrives, E.; Canete, T.; Blazquez, G.; Vicens-Costa, E.; Mont-Cardona, C.; Diaz-Moran, S.; Tobena, A.; Hummel, O.; Zelenika, D.; Saar, K.; Patone, G.; Bauerfeind, A.; Bihoreau, M.T.; Heinig, M.; Lee, Y.A.; Rintisch, C.; Schulz, H.; Wheeler, D.A.; Worley, K.C.; Muzny, D.M.; Gibbs, R.A.; Lathrop, M.; Lansu, N.; Toonen, P.; Ruzius, F.P.; de Bruijn, E.; Hauser, H.; Adams, D.J.; Keane, T.; Atanur, S.S.; Aitman, T.J.; Flicek, P.; Malinauskas, T.; Jones, E.Y.; Ekman, D.; Lopez-Aumatell, R.; Dominiczak, A.F.; Johannesson, M.; Holmdahl, R.; Olsson, T.; Gauguier, D.; Hubner, N.; Fernandez-Teruel, A.; Cuppen, E.; Mott, R.; Flint, J. Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nat. Genet., 2013, 45(7), 767-775.
[http://dx.doi.org/10.1038/ng.2644] [PMID: 23708188]
[191]
Atanur, S.S.; Diaz, A.G.; Maratou, K.; Sarkis, A.; Rotival, M.; Game, L.; Tschannen, M.R.; Kaisaki, P.J.; Otto, G.W.; Ma, M.C.J.; Keane, T.M.; Hummel, O.; Saar, K.; Chen, W.; Guryev, V.; Gopalakrishnan, K.; Garrett, M.R.; Joe, B.; Citterio, L.; Bianchi, G.; McBride, M.; Dominiczak, A.; Adams, D.J.; Serikawa, T.; Flicek, P.; Cuppen, E.; Hubner, N.; Petretto, E.; Gauguier, D.; Kwitek, A.; Jacob, H.; Aitman, T.J. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell, 2013, 154(3), 691-703.
[http://dx.doi.org/10.1016/j.cell.2013.06.040] [PMID: 23890820]
[192]
Howe, K.; Dwinell, M.; Shimoyama, M.; Corton, C.; Betteridge, E. Dove, A The genome sequence of the Norway rat, Rattus norvegicus Berkenhout 1769. Wellcome Open Res., 2021, 6, 118.
[193]
Yun, T.; Li, H.; Chang, P-C.; Lin, M.F.; Carroll, A.; McLean, C.Y. Accurate, scalable cohort variant calls using DeepVariant and GLnexus 2020. 2020. https://www.biorxiv.org/content/10.1101/2020.02.10.942086v2.full Internet
[http://dx.doi.org/10.1101/2020.02.10.942086]
[194]
Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 2012, 28(24), 3326-3328.
[http://dx.doi.org/10.1093/bioinformatics/bts606] [PMID: 23060615]
[195]
Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; Suveges, D.; Vrousgou, O.; Whetzel, P.L.; Amode, R.; Guillen, J.A.; Riat, H.S.; Trevanion, S.J.; Hall, P.; Junkins, H.; Flicek, P.; Burdett, T.; Hindorff, L.A.; Cunningham, F.; Parkinson, H. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res., 2019, 47(D1), D1005-D1012.
[http://dx.doi.org/10.1093/nar/gky1120] [PMID: 30445434]
[196]
Gunturkun, M.H.; Flashner, E.; Wang, T.; Mulligan, M.K.; Williams, R.W.; Prins, P.; Chen, H. Gene Cup: mining PubMed and GWAS catalog for gene-keyword relationships. G3 (Bethesda), 2022, 12(5), ikac059.
[197]
Dao, D.T.; Mahon, P.B.; Cai, X.; Kovacsics, C.E.; Blackwell, R.A.; Arad, M.; Shi, J.; Zandi, P.P.; O’Donnell, P.; Knowles, J.A.; Weissman, M.M.; Coryell, W.; Scheftner, W.A.; Lawson, W.B.; Levinson, D.F.; Thompson, S.M.; Potash, J.B.; Gould, T.D. Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol. Psychiatry, 2010, 68(9), 801-810.
[http://dx.doi.org/10.1016/j.biopsych.2010.06.019] [PMID: 20723887]
[198]
Kabir, Z.D.; Lee, A.S.; Burgdorf, C.E.; Fischer, D.K.; Rajadhyaksha, A.M.; Mok, E.; Rizzo, B.; Rice, R.C.; Singh, K.; Ota, K.T.; Gerhard, D.M.; Schierberl, K.C.; Glass, M.J.; Duman, R.S.; Rajadhyaksha, A.M. Cacna1c in the Prefrontal Cortex Regulates Depression-Related Behaviors via REDD1. Neuropsychopharmacology, 2017, 42(10), 2032-2042.
[http://dx.doi.org/10.1038/npp.2016.271] [PMID: 27922594]
[199]
Peter, S.; ten Brinke, M.M.; Stedehouder, J.; Reinelt, C.M.; Wu, B.; Zhou, H.; Zhou, K.; Boele, H.J.; Kushner, S.A.; Lee, M.G.; Schmeisser, M.J.; Boeckers, T.M.; Schonewille, M.; Hoebeek, F.E.; De Zeeuw, C.I. Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nat. Commun., 2016, 7(1), 12627.
[http://dx.doi.org/10.1038/ncomms12627] [PMID: 27581745]
[200]
Mossa, A.; Giona, F.; Pagano, J.; Sala, C.; Verpelli, C. SHANK genes in autism: Defining therapeutic targets. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 84(Pt B), 416-423.
[http://dx.doi.org/10.1016/j.pnpbp.2017.11.019] [PMID: 29175319]
[201]
Caumes, R.; Smol, T.; Thuillier, C.; Balerdi, M.; Lestienne-Roche, C.; Manouvrier-Hanu, S.; Ghoumid, J. Phenotypic spectrum of SHANK2-related neurodevelopmental disorder. Eur. J. Med. Genet., 2020, 63(12), 104072.
[http://dx.doi.org/10.1016/j.ejmg.2020.104072] [PMID: 32987185]
[202]
Ortiz, A.N.; Oien, D.B.; Moskovitz, J.; Johnson, M.A. Quantification of reserve pool dopamine in methionine sulfoxide reductase A null mice. Neuroscience, 2011, 177, 223-229.
[http://dx.doi.org/10.1016/j.neuroscience.2011.01.001] [PMID: 21219974]
[203]
Savio, M.G.; Rotondo, G.; Maglie, S.; Rossetti, G.; Bender, J.R.; Pardi, R. COP1D, an alternatively spliced constitutive photomorphogenic-1 (COP1) product, stabilizes UV stress-induced c-Jun through inhibition of full-length COP1. Oncogene, 2008, 27(17), 2401-2411.
[http://dx.doi.org/10.1038/sj.onc.1210892] [PMID: 17968316]
[204]
Jusic, A.; Vujic, M.; Fronjek, N. Normal sensory nerve conduction in the feet nerves. New method. Electromyogr. Clin. Neurophysiol., 1983, 23(6), 535-543.
[PMID: 6641608]
[205]
Zhao, L.; Zhang, C.; Cao, G.; Dong, X.; Li, D.; Jiang, L. Higher Circulating Trimethylamine N-oxide Sensitizes Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Probably by Downregulating Hippocampal Methionine Sulfoxide Reductase A. Neurochem. Res., 2019, 44(11), 2506-2516.
[http://dx.doi.org/10.1007/s11064-019-02868-4] [PMID: 31486012]
[206]
Bello-Medina, P.C.; González-Franco, D.A.; Vargas-Rodríguez, I.; Díaz-Cintra, S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. Neurologia, 2022, 37(8), 682-690.
[http://dx.doi.org/10.1016/j.nrleng.2019.06.008] [PMID: 34509401]
[207]
Palta, P.; Samuel, L.J.; Miller, E.R., III; Szanton, S.L. Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom. Med., 2014, 76(1), 12-19.
[http://dx.doi.org/10.1097/PSY.0000000000000009] [PMID: 24336428]
[208]
Ciuculete, D.M.; Voisin, S.; Kular, L.; Jonsson, J.; Rask-Andersen, M.; Mwinyi, J.; Schiöth, H.B. meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 and SHANK2 genes. Clin. Epigenetics, 2020, 12(1), 99.
[http://dx.doi.org/10.1186/s13148-020-00884-8] [PMID: 32616021]
[209]
Shafiee, M.; Ahmadnezhad, M.; Tayefi, M.; Arekhi, S.; Vatanparast, H.; Esmaeili, H.; Moohebati, M.; Ferns, G.A.; Mokhber, N.; Arefhosseini, S.R.; Ghayour-Mobarhan, M. Depression and anxiety symptoms are associated with prooxidant-antioxidant balance: A population-based study. J. Affect. Disord., 2018, 238, 491-498.
[http://dx.doi.org/10.1016/j.jad.2018.05.079] [PMID: 29935471]
[210]
Bryant, C.D.; Smith, D.J.; Kantak, K.M.; Nowak, T.S., Jr; Williams, R.W.; Damaj, M.I.; Redei, E.E.; Chen, H.; Mulligan, M.K. Facilitating complex trait analysis via reduced complexity crosses. Trends Genet., 2020, 36(8), 549-562.
[http://dx.doi.org/10.1016/j.tig.2020.05.003] [PMID: 32482413]
[211]
Molendijk, M.L.; de Kloet, E.R. Coping with the forced swim stressor: Current state-of-the-art. Behav. Brain Res., 2019, 364, 1-10.
[http://dx.doi.org/10.1016/j.bbr.2019.02.005] [PMID: 30738104]
[212]
de Kloet, E.R.; Molendijk, M.L. Coping with the forced swim stressor: Towards understanding an adaptive mechanism. Neural Plast., 2016, 2016, 1-13.
[http://dx.doi.org/10.1155/2016/6503162] [PMID: 27034848]
[213]
Maier, S.F.; Watkins, L.R. Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev., 2005, 29(4-5), 829-841.
[http://dx.doi.org/10.1016/j.neubiorev.2005.03.021] [PMID: 15893820]
[214]
Darwin, C.; Cain, J. The Expression of the Emotions in Man and Animals (Penguin Classics). Original edition; Messenger, S., Ed.; Penguin, 2009.
[http://dx.doi.org/10.1017/CBO9780511694110]
[215]
Dolensek, N.; Gehrlach, D.A.; Klein, A.S.; Gogolla, N. Facial expressions of emotion states and their neuronal correlates in mice. Science, 2020, 368(6486), 89-94.
[http://dx.doi.org/10.1126/science.aaz9468] [PMID: 32241948]
[216]
Planchez, B.; Surget, A.; Belzung, C. Animal models of major depression: drawbacks and challenges. J. Neural Transm. (Vienna), 2019, 126(11), 1383-1408.
[http://dx.doi.org/10.1007/s00702-019-02084-y] [PMID: 31584111]
[217]
Willner, P.; Towell, A.; Sampson, D.; Sophokleous, S.; Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl.), 1987, 93(3), 358-364.
[http://dx.doi.org/10.1007/BF00187257] [PMID: 3124165]
[218]
Henry, J.P.; Cassel, J.C. Psychosocial factors in essential hypertension. Recent epidemiologic and animal experimental evidence. Am. J. Epidemiol., 1969, 90(3), 171-200.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a121062] [PMID: 4899564]
[219]
Bjørndal, L.D.; Kendler, K.S.; Reichborn-Kjennerud, T.; Ystrom, E. Stressful life events increase the risk of major depressive episodes: A population-based twin study. Psychol. Med., 2022, 1-9.
[http://dx.doi.org/10.1017/S0033291722002227] [PMID: 35920242]
[220]
Overstreet, D.H. The flinders sensitive line rats: A genetic animal model of depression. Neurosci. Biobehav. Rev., 1993, 17(1), 51-68.
[http://dx.doi.org/10.1016/S0149-7634(05)80230-1] [PMID: 8455816]
[221]
Stead, J.D.H.; Clinton, S.; Neal, C.; Schneider, J.; Jama, A.; Miller, S.; Vazquez, D.M.; Watson, S.J.; Akil, H. Selective breeding for divergence in novelty-seeking traits: heritability and enrichment in spontaneous anxiety-related behaviors. Behav. Genet., 2006, 36(5), 697-712.
[http://dx.doi.org/10.1007/s10519-006-9058-7] [PMID: 16502134]
[222]
Fernández-Teruel, A.; Escorihuela, R.M. Modeling emotional reactivity and sensation/novelty seeking with the Roman/Verh rat lines/strains: an introduction. Behav. Genet., 1997, 27(6), 499-501.
[http://dx.doi.org/10.1023/A:1021496629595] [PMID: 9476358]
[223]
Braw, Y.; Malkesman, O.; Merlender, A.; Bercovich, A.; Dagan, M.; Maayan, R.; Weizman, A.; Weller, A. Stress hormones and emotion-regulation in two genetic animal models of depression. Psychoneuroendocrinology, 2006, 31(9), 1105-1116.
[http://dx.doi.org/10.1016/j.psyneuen.2006.07.003] [PMID: 16982157]
[224]
Malkesman, O.; Maayan, R.; Weizman, A.; Weller, A. Aggressive behavior and HPA axis hormones after social isolation in adult rats of two different genetic animal models for depression. Behav. Brain Res., 2006, 175(2), 408-414.
[http://dx.doi.org/10.1016/j.bbr.2006.09.017] [PMID: 17069898]
[225]
Malkesman, O.; Weller, A. Two different putative genetic animal models of childhood depression—A review. Prog. Neurobiol., 2009, 88(3), 153-169.
[http://dx.doi.org/10.1016/j.pneurobio.2009.03.003] [PMID: 19545781]
[226]
Prater, K.E.; Aurbach, E.L.; Larcinese, H.K.; Smith, T.N.; Turner, C.A.; Blandino, P., Jr; Watson, S.J.; Maren, S.; Akil, H. Selectively bred rats provide a unique model of vulnerability to PTSD-like behavior and respond differentially to FGF2 augmentation early in life. Neuropsychopharmacology, 2017, 42(8), 1706-1714.
[http://dx.doi.org/10.1038/npp.2017.37] [PMID: 28205604]
[227]
Giorgi, O.; Corda, M.G.; Fernández-Teruel, A. A genetic model of impulsivity, vulnerability to drug abuse and schizophrenia-relevant symptoms with translational potential: the roman high- vs. low-avoidance rats. Front. Behav. Neurosci., 2019, 13, 145.
[http://dx.doi.org/10.3389/fnbeh.2019.00145] [PMID: 31333426]
[228]
De La Garza, R. II Wistar Kyoto rats exhibit reduced sucrose pellet reinforcement behavior and intravenous nicotine self-administration. Pharmacol. Biochem. Behav., 2005, 82(2), 330-337.
[http://dx.doi.org/10.1016/j.pbb.2005.09.002] [PMID: 16226802]
[229]
Wright, R.L.; Gilmour, G.; Dwyer, D.M. Wistar kyoto rats display anhedonia in consumption but retain some sensitivity to the anticipation of palatable solutions. Front. Behav. Neurosci., 2020, 14, 70.
[http://dx.doi.org/10.3389/fnbeh.2020.00070] [PMID: 32581735]
[230]
Burke, N.N.; Coppinger, J.; Deaver, D.R.; Roche, M.; Finn, D.P.; Kelly, J. Sex differences and similarities in depressive- and anxiety-like behaviour in the Wistar-Kyoto rat. Physiol. Behav., 2016, 167, 28-34.
[http://dx.doi.org/10.1016/j.physbeh.2016.08.031] [PMID: 27591842]
[231]
Paré, W.P. Hyponeophagia in Wistar Kyoto (WKY) rats. Physiol. Behav., 1994, 55(5), 975-978.
[http://dx.doi.org/10.1016/0031-9384(94)90090-6] [PMID: 8022922]
[232]
Ferguson, S.A.; Cada, A.M. Spatial learning/memory and social and nonsocial behaviors in the Spontaneously Hypertensive, Wistar–Kyoto and Sprague–Dawley rat strains. Pharmacol. Biochem. Behav., 2004, 77(3), 583-594.
[http://dx.doi.org/10.1016/j.pbb.2003.12.014] [PMID: 15006470]
[233]
Paré, W.P. Investigatory behavior of a novel conspecific by wistar kyoto, wistar and sprague-dawley rats. Brain Res. Bull., 2000, 53(6), 759-765.
[http://dx.doi.org/10.1016/S0361-9230(00)00362-2] [PMID: 11179840]
[234]
Willner, P.; Gruca, P.; Lason, M.; Tota-Glowczyk, K.; Litwa, E.; Niemczyk, M.; Papp, M. Validation of chronic mild stress in the Wistar-Kyoto rat as an animal model of treatment-resistant depression. Behav. Pharmacol., 2019, 30(2 and 3), 239-250.
[http://dx.doi.org/10.1097/FBP.0000000000000431] [PMID: 30204592]
[235]
Dugovic, C.; Solberg, L.C.; Redei, E.; Reeth, O.V.; Turek, F.W. Sleep in the Wistar-Kyoto rat, a putative genetic animal model for depression. Neuroreport, 2000, 11(3), 627-631.
[http://dx.doi.org/10.1097/00001756-200002280-00038] [PMID: 10718326]
[236]
DaSilva, J.K.; Husain, E.; Lei, Y.; Mann, G.L.; Tejani-Butt, S.; Morrison, A.R. Social partnering significantly reduced rapid eye movement sleep fragmentation in fear-conditioned, stress-sensitive Wistar-Kyoto rats. Neuroscience, 2011, 199, 193-204.
[http://dx.doi.org/10.1016/j.neuroscience.2011.09.066] [PMID: 22015926]
[237]
Ivarsson, M.; Paterson, L.M.; Hutson, P.H. Antidepressants and REM sleep in Wistar–Kyoto and Sprague–Dawley rats. Eur. J. Pharmacol., 2005, 522(1-3), 63-71.
[http://dx.doi.org/10.1016/j.ejphar.2005.08.050] [PMID: 16223479]
[238]
Nosek, K.; Dennis, K.; Andrus, B.M.; Ahmadiyeh, N.; Baum, A.E.; Woods, L.C.S.; Redei, E.E. Context and strain-dependent behavioral response to stress. Behav. Brain Funct., 2008, 4(1), 23.
[http://dx.doi.org/10.1186/1744-9081-4-23] [PMID: 18518967]
[239]
Grauer, E.; Kapon, Y. Wistar-Kyoto rats in the Morris water maze: Impaired working memory and hyper-reactivity to stress. Behav. Brain Res., 1993, 59(1-2), 147-151.
[http://dx.doi.org/10.1016/0166-4328(93)90161-I] [PMID: 8155282]
[240]
Sontag, T.A.; Fuermaier, A.B.M.; Hauser, J.; Kaunzinger, I.; Tucha, O.; Lange, K.W. Spatial memory in spontaneously hypertensive rats (SHR). PLoS One, 2013, 8(8), e74660.
[http://dx.doi.org/10.1371/journal.pone.0074660] [PMID: 24009775]
[241]
Nemeroff, C.B. Prevalence and management of treatment-resistant depression. J. Clin. Psychiatry, 2007, 68(Suppl. 8), 17-25.
[PMID: 17640154]
[242]
Thomas, L.; Kessler, D.; Campbell, J.; Morrison, J.; Peters, T.J.; Williams, C.; Lewis, G.; Wiles, N. Prevalence of treatment-resistant depression in primary care: cross-sectional data. Br. J. Gen. Pract., 2013, 63(617), e852-e858.
[http://dx.doi.org/10.3399/bjgp13X675430] [PMID: 24351501]
[243]
Thase, M.E. Treatment-Resistant Depression. J. Clin. Psychiatry, 2011, 72(5), e18.
[http://dx.doi.org/10.4088/JCP.8133tx4c] [PMID: 21658343]
[244]
Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol. Psychiatry, 2022. [E-pub ahead of print]
[http://dx.doi.org/10.1038/s41380-022-01661-0] [PMID: 35854107]
[245]
Kyeremanteng, C.; MacKay, J.C.; James, J.S.; Kent, P.; Cayer, C.; Anisman, H.; Merali, Z. Effects of electroconvulsive seizures on depression-related behavior, memory and neurochemical changes in Wistar and Wistar–Kyoto rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 54, 170-178.
[http://dx.doi.org/10.1016/j.pnpbp.2014.05.012] [PMID: 24871798]
[246]
Luo, J.; Min, S.; Wei, K.; Cao, J.; Wang, B.; Li, P.; Dong, J.; Liu, Y. Behavioral and molecular responses to electroconvulsive shock differ between genetic and environmental rat models of depression. Psychiatry Res., 2015, 226(2-3), 451-460.
[http://dx.doi.org/10.1016/j.psychres.2014.12.068] [PMID: 25708608]
[247]
Papp, M.; Gruca, P.; Lason, M.; Tota-Glowczyk, K.; Niemczyk, M.; Litwa, E.; Willner, P. Rapid antidepressant effects of deep brain stimulation of the pre-frontal cortex in an animal model of treatment-resistant depression. J. Psychopharmacol., 2018, 32(10), 1133-1140.
[http://dx.doi.org/10.1177/0269881118791737] [PMID: 30182787]
[248]
Papp, M.; Gruca, P.; Lason, M.; Niemczyk, M.; Willner, P. The role of prefrontal cortex dopamine D2 and D3 receptors in the mechanism of action of venlafaxine and deep brain stimulation in animal models of treatment-responsive and treatment-resistant depression. J. Psychopharmacol., 2019, 33, 748-756.
[249]
McDonnell, C.W.; Dunphy-Doherty, F.; Rouine, J.; Bianchi, M.; Upton, N.; Sokolowska, E.; Prenderville, J.A. The antidepressant-like effects of a clinically relevant dose of ketamine are accompanied by biphasic alterations in working memory in the wistar kyoto rat model of depression. Front. Psychiatry, 2021, 11, 599588.
[http://dx.doi.org/10.3389/fpsyt.2020.599588] [PMID: 33551869]
[250]
Tizabi, Y.; Bhatti, B.H.; Manaye, K.F.; Das, J.R.; Akinfiresoye, L. 2012. https://www.sciencedirect.com/science/article/pii/S0306452212003296
[251]
Aleksandrova, L.R.; Wang, Y.T.; Phillips, A.G. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol. Brain, 2020, 13(1), 92.
[http://dx.doi.org/10.1186/s13041-020-00627-z] [PMID: 32546197]
[252]
Wu, Y.; Mo, J.; Sui, L.; Zhang, J.; Hu, W.; Zhang, C.; Wang, Y.; Liu, C.; Zhao, B.; Wang, X.; Zhang, K.; Xie, X. Deep brain stimulation in treatment-resistant depression: A systematic review and meta-analysis on efficacy and safety. Front. Neurosci., 2021, 15, 655412.
[http://dx.doi.org/10.3389/fnins.2021.655412] [PMID: 33867929]
[253]
Vazquez, G.H.; Zarate, C.A.; Brietzke, E. Ketamine for treatment-resistant depression: Neurobiology and applications; Academic Press, 2020.
[254]
Aleksandrova, L.R.; Wang, Y.T.; Phillips, A.G. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci. Biobehav. Rev., 2019, 105, 1-23.
[http://dx.doi.org/10.1016/j.neubiorev.2019.07.007] [PMID: 31336112]
[255]
Colodro-Conde, L.; Couvy-Duchesne, B.; Zhu, G.; Coventry, W.L.; Byrne, E.M.; Gordon, S.; Wright, M.J.; Montgomery, G.W.; Madden, P A F.; Ripke, S.; Eaves, L.J.; Heath, A.C.; Wray, N.R.; Medland, S.E.; Martin, N.G. A direct test of the diathesis–stress model for depression. Mol. Psychiatry, 2018, 23(7), 1590-1596.
[http://dx.doi.org/10.1038/mp.2017.130] [PMID: 28696435]
[256]
Goeders, N.E. The impact of stress on addiction. Eur. Neuropsychopharmacol., 2003, 13(6), 435-441.
[http://dx.doi.org/10.1016/j.euroneuro.2003.08.004] [PMID: 14636959]
[257]
Volkow, N.D. The reality of comorbidity: Depression and drug abuse. Biol. Psychiatry, 2004, 56(10), 714-717.
[http://dx.doi.org/10.1016/j.biopsych.2004.07.007] [PMID: 15556111]
[258]
Sinha, R. Stress and addiction: a dynamic interplay of genes, environment, and drug intake. Biol. Psychiatry, 2009, 66(2), 100-101.
[http://dx.doi.org/10.1016/j.biopsych.2009.05.003] [PMID: 19555787]
[259]
Chavkin, C.; Koob, G.F. Dynorphin, dysphoria, and dependence: The stress of addiction. Neuropsychopharmacology, 2016, 41(1), 373-374.
[http://dx.doi.org/10.1038/npp.2015.258] [PMID: 26657953]
[260]
Han, M.H.; Nestler, E.J. Neural substrates of depression and resilience. Neurotherapeutics, 2017, 14(3), 677-686.
[http://dx.doi.org/10.1007/s13311-017-0527-x] [PMID: 28397115]
[261]
Cadet, J.L. Epigenetics of stress, addiction, and resilience: Therapeutic implications. Mol. Neurobiol., 2016, 53(1), 545-560.
[http://dx.doi.org/10.1007/s12035-014-9040-y] [PMID: 25502297]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy