Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Perspective

Clinical Trials of Non-Coding RNAs as Diagnostic and Therapeutic Biomarkers for Central Nervous System Injuries

Author(s): Huiqing Wang, Qiang Wang, Xiao Xiao, Xiaolei Luo and Linbo Gao*

Volume 21, Issue 11, 2023

Published on: 20 February, 2023

Page: [2237 - 2246] Pages: 10

DOI: 10.2174/1570159X21666221128090025

Price: $65

conference banner
Graphical Abstract

[1]
James, S.L.; Theadom, A.; Ellenbogen, R.G.; Bannick, M.S.; Montjoy-Venning, W.; Lucchesi, L.R.; Abbasi, N.; Abdulkader, R.; Abraha, H.N.; Adsuar, J.C.; Afarideh, M.; Agrawal, S.; Ahmadi, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Akseer, N.; Alahdab, F.; Alebel, A.; Alghnam, S.A.; Ali, B.A.; Alsharif, U.; Altirkawi, K.; Andrei, C.L.; Anjomshoa, M.; Ansari, H.; Ansha, M.G.; Antonio, C.A.T.; Appiah, S.C.Y.; Ariani, F.; Asefa, N.G.; Asgedom, S.W.; Atique, S.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayuk, T.B.; Azzopardi, P.S.; Badali, H.; Badawi, A.; Balalla, S.; Banstola, A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Bedi, N.; Behzadifar, M.; Behzadifar, M.; Bekele, B.B.; Belachew, A.B.; Belay, Y.A.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Beuran, M.; Bhalla, A.; Bhaumik, S.; Bhutta, Z.A.; Biadgo, B.; Biffino, M.; Bijani, A.; Bililign, N.; Birungi, C.; Boufous, S.; Brazinova, A.; Brown, A.W.; Car, M.; Cárdenas, R.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Chaiah, Y.; Champs, A.P.; Chang, J-C.; Choi, JY.J.; Christopher, D.J.; Cooper, C.; Crowe, C.S.; Dandona, L.; Dandona, R.; Daryani, A.; Davitoiu, D.V.; Degefa, M.G.; Demoz, G.T.; Deribe, K.; Djalalinia, S.; Do, H.P.; Doku, D.T.; Drake, T.M.; Dubey, M.; Dubljanin, E.; El-Khatib, Z.; Ofori-Asenso, R.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Faro, A.; Farzadfar, F.; Farzaei, M.H.; Fereshtehnejad, S-M.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fukumoto, T.; Ganji, M.; Gankpe, F.G.; Gebre, A.K.; Gebrehiwot, T.T.; Gezae, K.E.; Gopalkrishna, G.; Goulart, A.C.; Haagsma, J.A.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hawley, C.; Hay, S.I.; Hegazy, M.I.; Hendrie, D.; Henok, A.; Hibstu, D.T.; Hoffman, H.J.; Hole, M.K.; Homaie Rad, E.; Hosseini, S.M.; Hostiuc, S.; Hu, G.; Hussen, M.A.; Ilesanmi, O.S.; Irvani, S.S.N.; Jakovljevic, M.; Jayaraman, S.; Jha, R.P.; Jonas, J.B.; Jones, K.M.; Jorjoran Shushtari, Z.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahsay, A.; Kahssay, M.; Kalani, R.; Karch, A.; Kasaeian, A.; Kassa, G.M.; Kassa, T.D.; Kassa, Z.Y.; Kengne, A.P.; Khader, Y.S.; Khafaie, M.A.; Khalid, N.; Khalil, I.; Khan, E.A.; Khan, M.S.; Khang, Y-H.; Khazaie, H.; Khoja, A.T.; Khubchandani, J.; Kiadaliri, A.A.; Kim, D.; Kim, YE.; Kisa, A.; Koyanagi, A.; Krohn, K.J.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Lalloo, R.; Lami, F.H.; Lansingh, V.C.; Laryea, D.O.; Latifi, A.; Leshargie, C.T.; Levi, M.; Li, S.; Liben, M.L.; Lotufo, P.A.; Lunevicius, R.; Mahotra, N.B.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Manda, A-L.; Mansournia, M.A.; Massenburg, B.B.; Mate, K.K.V.; Mehndiratta, M.M.; Mehta, V.; Meles, H.; Melese, A.; Memiah, P.T.N.; Mendoza, W.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirica, A.; Mirrakhimov, E.M.; Moazen, B.; Mohammadi, M.; Mohammed, S.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Mondello, S.; Moosazadeh, M.; Moradi, G.; Moradi, M.; Moradi-Lakeh, M.; Moradinazar, M.; Morrison, S.D.; Moschos, M.M.; Mousavi, S.M.; Murthy, S.; Musa, K.I.; Mustafa, G.; Naghavi, M.; Naik, G.; Najafi, F.; Nangia, V.; Nascimento, B.R.; Negoi, I.; Nguyen, T.H.; Nichols, E.; Ningrum, D.N.A.; Nirayo, Y.L.; Nyasulu, P.S.; Ogbo, F.A.; Oh, I-H.; Okoro, A.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Otstavnov, S.S.; Owolabi, M.O.; P A, M.; Pakhale, S.; Pandey, A.R.; Pesudovs, K.; Pinilla-Monsalve, G.D.; Polinder, S.; Poustchi, H.; Prakash, S.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahimi-Movaghar, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.A.; Rai, R.K.; Rajati, F.; Ram, U.; Rawaf, D.L.; Rawaf, S.; Reiner, R.C.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, S.; Rezaeian, S.; Roever, L.; Ronfani, L.; Roshandel, G.; Roy, N.; Ruhago, G.M.; Saddik, B.; Safari, H.; Safiri, S.; Sahraian, M.A.; Salamati, P.; Saldanha, R.F.; Samy, A.M.; Sanabria, J.; Santos, J.V.; Santric Milicevic, M.M.M.; Sartorius, B.; Satpathy, M.; Savuon, K.; Schneider, I.J.C.; Schwebel, D.C.; Sepanlou, S.G.; Shabaninejad, H.; Shaikh, M.A.A.; Shams-Beyranvand, M.; Sharif, M.; Sharif-Alhoseini, M.; Shariful Islam, S.M.; She, J.; Sheikh, A.; Shen, J.; Sheth, K.N.; Shibuya, K.; Shiferaw, M.S.; Shigematsu, M.; Shiri, R.; Shiue, I.; Shoman, H.; Siabani, S.; Siddiqi, T.J.; Silva, J.P.; Silveira, D.G.A.; Sinha, D.N.; Smith, M.; Soares Filho, A.M.; Sobhani, S.; Soofi, M.; Soriano, J.B.; Soyiri, I.N.; Stein, D.J.; Stokes, M.A.; Sufiyan, M.B.; Sunguya, B.F.; Sunshine, J.E.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Tekle, M.G.; Temsah, M-H.; Temsah, O.; Topor-Madry, R.; Tortajada-Girbés, M.; Tran, B.X.; Tran, K.B.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Venketasubramanian, N.; Violante, F.S.; Wagnew, F.W.S.; Waheed, Y.; Wang, Y-P.; Weldegwergs, K.G.; Werdecker, A.; Wijeratne, T.; Winkler, A.S.; Wyper, G.M.A.; Yano, Y.; Yaseri, M.; Yasin, Y.J.; Ye, P.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yoon, S-J.; Yost, M.G.; Younis, M.Z.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zenebe, Z.M.; Zodpey, S.; Feigin, V.L.; Vos, T.; Murray, C.J.L. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol., 2019, 18(1), 56-87.
[http://dx.doi.org/10.1016/S1474-4422(18)30415-0] [PMID: 30497965]
[2]
Täubel, J.; Hauke, W.; Rump, S.; Viereck, J.; Batkai, S.; Poetzsch, J.; Rode, L.; Weigt, H.; Genschel, C.; Lorch, U.; Theek, C.; Levin, A.A.; Bauersachs, J.; Solomon, S.D.; Thum, T. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J., 2021, 42(2), 178-188.
[http://dx.doi.org/10.1093/eurheartj/ehaa898] [PMID: 33245749]
[3]
Zhou, H.; Sun, F.; Ou, M.; Zhang, Y.; Lin, M.; Song, L.; Yu, Y.; Liao, H.; Fan, W.; Xing, H.; Li, M.; Zhao, K.; Wu, X.; Sun, Y.; Liang, C.; Cai, Y.; Cui, L. Prior nasal delivery of antagomiR-122 prevents radiation-induced brain injury. Mol. Therap. J. Am. Soc. Gene Therap., 2021, 29(12), 3465-3483.
[http://dx.doi.org/10.1016/j.ymthe.2021.06.019]
[4]
Zhang, H.; Chen, G.; Qiu, W.; Pan, Q.; Chen, Y.; Chen, Y.; Ma, X. Plasma endothelial microvesicles and their carrying miRNA‐155 serve as biomarkers for ischemic stroke. J. Neurosci. Res., 2020, 98(11), 2290-2301.
[http://dx.doi.org/10.1002/jnr.24696] [PMID: 32725652]
[5]
Long, G.; Wang, F.; Li, H.; Yin, Z.; Sandip, C.; Lou, Y.; Wang, Y.; Chen, C.; Wang, D.W. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol., 2013, 13(1), 178.
[http://dx.doi.org/10.1186/1471-2377-13-178] [PMID: 24237608]
[6]
Yang, Z.B.; Li, T.B.; Zhang, Z.; Ren, K.D.; Zheng, Z.F.; Peng, J.; Luo, X.J. The diagnostic value of circulating brain-specific microRNAs for ischemic stroke. Intern. Med., 2016, 55(10), 1279-1286.
[http://dx.doi.org/10.2169/internalmedicine.55.5925] [PMID: 27181533]
[7]
Bejleri, J.; Jirström, E.; Donovan, P.; Williams, D.J.; Pfeiffer, S. Diagnostic and prognostic circulating MicroRNA in acute stroke: A Systematic and bioinformatic analysis of current evidence. J. Stroke, 2021, 23(2), 162-182.
[http://dx.doi.org/10.5853/jos.2020.05085] [PMID: 34102753]
[8]
Wang, Y.; Ma, Z.; Kan, P.; Zhang, B. The diagnostic value of serum miRNA-221-3p, miRNA-382-5p, and miRNA-4271 in Ischemic stroke. J. Stroke Cerebrovasc. Dis., 2017, 26(5), 1055-1060.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.019] [PMID: 28111007]
[9]
Tiedt, S.; Prestel, M.; Malik, R.; Schieferdecker, N.; Duering, M.; Kautzky, V.; Stoycheva, I.; Böck, J.; Northoff, B.H.; Klein, M.; Dorn, F.; Krohn, K.; Teupser, D.; Liesz, A.; Plesnila, N.; Holdt, L.M.; Dichgans, M. RNA-Seq Identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ. Res., 2017, 121(8), 970-980.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311572] [PMID: 28724745]
[10]
Redell, J.B.; Moore, A.N.; Ward, N.H., III; Hergenroeder, G.W.; Dash, P.K. Human traumatic brain injury alters plasma microRNA levels. J. Neurotrauma, 2010, 27(12), 2147-2156.
[http://dx.doi.org/10.1089/neu.2010.1481] [PMID: 20883153]
[11]
Tigchelaar, S.; Gupta, R.; Shannon, C.P.; Streijger, F.; Sinha, S.; Flibotte, S.; Rizzuto, M.A.; Street, J.; Paquette, S.; Ailon, T.; Charest-Morin, R.; Dea, N.; Fisher, C.; Dvorak, M.F.; Dhall, S.; Mac-Thiong, J.M.; Parent, S.; Bailey, C.; Christie, S.; Van Keuren-Jensen, K.; Nislow, C.; Kwon, B.K. MicroRNA biomarkers in cerebrospinal fluid and serum reflect injury severity in human acute traumatic spinal cord injury. J. Neurotrauma, 2019, 36(15), 2358-2371.
[http://dx.doi.org/10.1089/neu.2018.6256] [PMID: 30827169]
[12]
Deng, Q.W.; Li, S.; Wang, H.; Sun, H.L.; Zuo, L.; Gu, Z.T.; Lu, G.; Sun, C.Z.; Zhang, H.Q.; Yan, F.L. Differential long noncoding RNA expressions in peripheral blood mononuclear cells for detection of acute ischemic stroke. Clin. Sci. (Lond.), 2018, 132(14), 1597-1614.
[http://dx.doi.org/10.1042/CS20180411] [PMID: 29997237]
[13]
He, X.W.; Shi, Y.H.; Zhao, R.; Liu, Y.S.; Li, G.F.; Hu, Y.; Chen, W.; Cui, G.H.; Su, J.J.; Liu, J.R. Plasma levels of miR-125b-5p and miR-206 in acute ischemic stroke patients after recanalization treatment: A prospective observational study. J Stroke Cerebrovasc Dis., 2019, 28(6), 1654-1661.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2019.02.026] [PMID: 30878364]
[14]
He, X.W.; Shi, Y.H.; Liu, Y.S.; Li, G.F.; Zhao, R.; Hu, Y.; Lin, C.C.; Zhuang, M.T.; Su, J.J.; Liu, J.R. Increased plasma levels of miR-124-3p, miR-125b-5p and miR-192-5p are associated with outcomes in acute ischaemic stroke patients receiving thrombolysis. Atherosclerosis, 2019, 289, 36-43.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.08.002] [PMID: 31450012]
[15]
Bache, S.; Rasmussen, R.; Rossing, M.; Laigaard, F.P.; Nielsen, F.C.; Møller, K. MicroRNA changes in cerebrospinal fluid after subarachnoid hemorrhage. Stroke, 2017, 48(9), 2391-2398.
[http://dx.doi.org/10.1161/STROKEAHA.117.017804] [PMID: 28768799]
[16]
Lu, G.; Wong, M.S.; Xiong, M.Z.Q.; Leung, C.K.; Su, X.W.; Zhou, J.Y.; Poon, W.S.; Zheng, V.Z.Y.; Chan, W.Y.; Wong, G.K.C. Circulating microRNAs in delayed cerebral infarction after aneurysmal subarachnoid hemorrhage. J. Am. Heart Assoc., 2017, 6(4), e005363.
[http://dx.doi.org/10.1161/JAHA.116.005363] [PMID: 28442458]
[17]
Hicks, S.D.; Onks, C.; Kim, R.Y.; Zhen, K.J.; Loeffert, J.; Loeffert, A.C.; Olympia, R.P.; Fedorchak, G.; DeVita, S.; Rangnekar, A.; Leddy, J.; Haider, M.N.; Gagnon, Z.; McLoughlin, C.D.; Badia, M.; Randall, J.; Madeira, M.; Yengo-Kahn, A.M.; Wenzel, J.; Heller, M.; Zwibel, H.; Roberts, A.; Johnson, S.; Monteith, C.; Dretsch, M.N.; Campbell, T.R.; Mannix, R.; Neville, C.; Middleton, F. Diagnosing mild traumatic brain injury using saliva RNA compared to cognitive and balance testing. Clin. Transl. Med., 2020, 10(6), e197.
[http://dx.doi.org/10.1002/ctm2.197] [PMID: 33135344]
[18]
Fedorchak, G.; Rangnekar, A.; Onks, C.; Loeffert, A.C.; Loeffert, J.; Olympia, R.P.; DeVita, S.; Leddy, J.; Haider, M.N.; Roberts, A.; Rieger, J.; Uhlig, T.; Monteith, C.; Middleton, F.; Zuckerman, S.L.; Lee, T.; Yeates, K.O.; Mannix, R.; Hicks, S. Saliva RNA biomarkers predict concussion duration and detect symptom recovery: A comparison with balance and cognitive testing. J. Neurol., 2021, 268(11), 4349-4361.
[http://dx.doi.org/10.1007/s00415-021-10566-x] [PMID: 34028616]
[19]
Gupta, R.; Sen, N. Traumatic brain injury: A risk factor for neurodegenerative diseases. Rev. Neurosci., 2016, 27(1), 93-100.
[http://dx.doi.org/10.1515/revneuro-2015-0017] [PMID: 26352199]
[20]
Pegoraro, V.; Merico, A.; Angelini, C. MyomiRNAs dysregulation in ALS rehabilitation. Brain Sci., 2019, 9(1), 8.
[http://dx.doi.org/10.3390/brainsci9010008] [PMID: 30634563]
[21]
Tasca, E.; Pegoraro, V.; Merico, A.; Angelini, C. Circulating microRNAs as biomarkers of muscle differentiation and atrophy in ALS. Clin. Neuropathol., 2016, 35(1), 22-30.
[http://dx.doi.org/10.5414/NP300889] [PMID: 26588026]
[22]
An, N.; Zhao, W.; Liu, Y.; Yang, X.; Chen, P. Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy. Epilepsy Res., 2016, 127, 311-316.
[http://dx.doi.org/10.1016/j.eplepsyres.2016.09.019] [PMID: 27694013]
[23]
Wang, J.; Yu, J.T.; Tan, L.; Tian, Y.; Ma, J.; Tan, C.C.; Wang, H.F.; Liu, Y.; Tan, M.S.; Jiang, T.; Tan, L. Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci. Rep., 2015, 5(1), 9522.
[http://dx.doi.org/10.1038/srep09522] [PMID: 25825351]
[24]
Magen, I.; Yacovzada, N.S.; Yanowski, E.; Coenen-Stass, A.; Grosskreutz, J.; Lu, C.H.; Greensmith, L.; Malaspina, A.; Fratta, P.; Hornstein, E. Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat. Neurosci., 2021, 24(11), 1534-1541.
[http://dx.doi.org/10.1038/s41593-021-00936-z] [PMID: 34711961]
[25]
Stein, C.S.; McLendon, J.M.; Witmer, N.H.; Boudreau, R.L. Modulation of miR-181 influences dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease. Mol. Ther. Nucleic Acids, 2022, 28, 1-15.
[http://dx.doi.org/10.1016/j.omtn.2022.02.007] [PMID: 35280925]
[26]
Ghibaudi, M.; Boido, M.; Vercelli, A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog. Neurobiol., 2017, 158, 69-93.
[http://dx.doi.org/10.1016/j.pneurobio.2017.07.005] [PMID: 28779869]
[27]
Silvestro, S.; Mazzon, E. MiRNAs as promising translational strategies for neuronal repair and regeneration in spinal cord injury. Cells, 2022, 11(14), 2177.
[http://dx.doi.org/10.3390/cells11142177] [PMID: 35883621]
[28]
Su, L.; Song, X.; Xue, Z.; Zheng, C.; Yin, H.; Wei, H. Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration. J. Zhejiang Univ. Sci. B, 2018, 19(4), 293-304.
[http://dx.doi.org/10.1631/jzus.B1700179] [PMID: 29616505]
[29]
Walker, S.; Spencer, G.; Necakov, A.; Carlone, R. Identification and characterization of microRNAs during retinoic acid-induced regeneration of a molluscan central nervous system. Int. J. Mol. Sci., 2018, 19(9), 2741.
[http://dx.doi.org/10.3390/ijms19092741] [PMID: 30217012]
[30]
Sasidharan, V.; Marepally, S.; Elliott, S.A.; Baid, S.; Lakshmanan, V.; Nayyar, N.; Bansal, D.; Sánchez, A.A.; Vemula, P.K.; Palakodeti, D. The miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea. Development, 2017, 144(18), 3211-3223.
[PMID: 28807895]
[31]
Walker, S.E.; Senatore, A.; Carlone, R.L.; Spencer, G.E. Context-dependent role of miR-124 in retinoic acid-induced growth cone attraction of regenerating motorneurons. Cell. Mol. Neurobiol., 2022, 42(3), 847-869.
[http://dx.doi.org/10.1007/s10571-020-00982-4] [PMID: 33094464]
[32]
Franke, K.; Otto, W.; Johannes, S.; Baumgart, J.; Nitsch, R.; Schumacher, S. miR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling. EMBO J., 2012, 31(13), 2908-2921.
[http://dx.doi.org/10.1038/emboj.2012.130] [PMID: 22588079]
[33]
Yu, J.Y.; Chung, K.H.; Deo, M.; Thompson, R.C.; Turner, D.L. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell Res., 2008, 314(14), 2618-2633.
[http://dx.doi.org/10.1016/j.yexcr.2008.06.002] [PMID: 18619591]
[34]
Sanuki, R.; Onishi, A.; Koike, C.; Muramatsu, R.; Watanabe, S.; Muranishi, Y.; Irie, S.; Uneo, S.; Koyasu, T.; Matsui, R.; Chérasse, Y.; Urade, Y.; Watanabe, D.; Kondo, M.; Yamashita, T.; Furukawa, T. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat. Neurosci., 2011, 14(9), 1125-1134.
[http://dx.doi.org/10.1038/nn.2897] [PMID: 21857657]
[35]
Huang, S.; Ge, X.; Yu, J.; Han, Z.; Yin, Z.; Li, Y.; Chen, F.; Wang, H.; Zhang, J.; Lei, P. Increased miR‐124‐3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J., 2018, 32(1), 512-528.
[http://dx.doi.org/10.1096/fj.201700673r] [PMID: 28935818]
[36]
Gu, X.; Meng, S.; Liu, S.; Jia, C.; Fang, Y.; Li, S.; Fu, C.; Song, Q.; Lin, L.; Wang, X. miR-124 represses ROCK1 expression to promote neurite elongation through activation of the PI3K/Akt signal pathway. J. Mol. Neurosci., 2014, 52(1), 156-165.
[http://dx.doi.org/10.1007/s12031-013-0190-6] [PMID: 24338057]
[37]
Gu, X.; Li, A.; Liu, S.; Lin, L.; Xu, S.; Zhang, P.; Li, S.; Li, X.; Tian, B.; Zhu, X.; Wang, X. MicroRNA124 regulated neurite elongation by targeting OSBP. Mol. Neurobiol., 2016, 53(9), 6388-6396.
[http://dx.doi.org/10.1007/s12035-015-9540-4] [PMID: 26576957]
[38]
Su, X.; Gu, X.; Zhang, Z.; Li, W.; Wang, X. Retinoic acid receptor gamma is targeted by microRNA-124 and inhibits neurite outgrowth. Neuropharmacology, 2020, 163, 107657.
[http://dx.doi.org/10.1016/j.neuropharm.2019.05.034] [PMID: 31170403]
[39]
Hartmann, H.; Hoehne, K.; Rist, E.; Louw, A.M.; Schlosshauer, B. miR-124 disinhibits neurite outgrowth in an inflammatory environment. Cell Tissue Res., 2015, 362(1), 9-20.
[http://dx.doi.org/10.1007/s00441-015-2183-y] [PMID: 25920589]
[40]
Yu, Y.M.; Gibbs, K.M.; Davila, J.; Campbell, N.; Sung, S.; Todorova, T.I.; Otsuka, S.; Sabaawy, H.E.; Hart, R.P.; Schachner, M. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur. J. Neurosci., 2011, 33(9), 1587-1597.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07643.x] [PMID: 21447094]
[41]
Theis, T.; Yoo, M.; Park, C.S.; Chen, J.; Kügler, S.; Gibbs, K.M.; Schachner, M. Lentiviral delivery of miR-133b improves functional recovery after spinal cord injury in mice. Mol. Neurobiol., 2017, 54(6), 4659-4671.
[http://dx.doi.org/10.1007/s12035-016-0007-z] [PMID: 27412702]
[42]
Li, D.; Zhang, P.; Yao, X.; Li, H.; Shen, H.; Li, X.; Wu, J.; Lu, X. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front. Neurosci., 2018, 12, 845.
[http://dx.doi.org/10.3389/fnins.2018.00845] [PMID: 30524227]
[43]
Xin, H.; Li, Y.; Buller, B.; Katakowski, M.; Zhang, Y.; Wang, X.; Shang, X.; Zhang, Z.G.; Chopp, M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 2012, 30(7), 1556-1564.
[http://dx.doi.org/10.1002/stem.1129] [PMID: 22605481]
[44]
Niu, M.; Xu, R.; Wang, J.; Hou, B.; Xie, A. MiR-133b ameliorates axon degeneration induced by MPP+ via targeting RhoA. Neuroscience, 2016, 325, 39-49.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.042] [PMID: 27012608]
[45]
Huang, R.; Chen, M.; Yang, L.; Wagle, M.; Guo, S.; Hu, B. MicroRNA-133b negatively regulates zebrafish single mauthner-cell axon regeneration through targeting tppp3 in vivo. Front. Mol. Neurosci., 2017, 10, 375.
[http://dx.doi.org/10.3389/fnmol.2017.00375] [PMID: 29209165]
[46]
Kar, A.N.; Lee, S.J.; Sahoo, P.K.; Thames, E.; Yoo, S.; Houle, J.D.; Twiss, J.L. MicroRNAs 21 and 199a-3p regulate axon growth potential through modulation of Pten and mTo r mRNAs. eNeuro, 2021, 8(4), ENEURO.0155-21.2021.
[http://dx.doi.org/10.1523/ENEURO.0155-21.2021] [PMID: 34326064]
[47]
Bhalala, O.G.; Pan, L.; Sahni, V.; McGuire, T.L.; Gruner, K.; Tourtellotte, W.G.; Kessler, J.A. microRNA-21 regulates astrocytic response following spinal cord injury. J. Neurosci., 2012, 32(50), 17935-17947.
[http://dx.doi.org/10.1523/JNEUROSCI.3860-12.2012] [PMID: 23238710]
[48]
Sabin, K.Z.; Jiang, P.; Gearhart, M.D.; Stewart, R.; Echeverri, K. AP-1cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Commun. Biol., 2019, 2(1), 91.
[http://dx.doi.org/10.1038/s42003-019-0335-4] [PMID: 30854483]
[49]
Walker, S.E.; Sabin, K.Z.; Gearhart, M.D.; Yamamoto, K.; Echeverri, K. Regulation of stem cell identity by miR-200a during spinal cord regeneration. Development, 2022, 149(3), dev200033.
[http://dx.doi.org/10.1242/dev.200033] [PMID: 35156681]
[50]
Agostini, M.; Tucci, P.; Steinert, J.R.; Shalom-Feuerstein, R.; Rouleau, M.; Aberdam, D.; Forsythe, I.D.; Young, K.W.; Ventura, A.; Concepcion, C.P.; Han, Y.C.; Candi, E.; Knight, R.A.; Mak, T.W.; Melino, G. microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 21099-21104.
[http://dx.doi.org/10.1073/pnas.1112063108] [PMID: 22160706]
[51]
Ma, Y.; Ye, J.; Zhao, L.; Pan, D. MicroRNA-146a inhibition promotes total neurite outgrowth and suppresses cell apoptosis, inflammation, and STAT1/MYC pathway in PC12 and cortical neuron cellular Alzheimer’s disease models. Braz. J. Med. Biol. Res., 2021, 54(5), e9665.
[http://dx.doi.org/10.1590/1414-431x20209665] [PMID: 33729395]
[52]
Zhang, Y.; Chen, M.; Qiu, Z.; Hu, K.; McGee, W.; Chen, X.; Liu, J.; Zhu, L.; Wu, J.Y. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2. Protein Cell, 2016, 7(7), 489-500.
[http://dx.doi.org/10.1007/s13238-016-0272-7] [PMID: 27245166]
[53]
Diaz Quiroz, J.F.; Tsai, E.; Coyle, M.; Sehm, T.; Echeverri, K. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: A cross-species comparison between salamander and rat. Dis. Model. Mech., 2014, 7(6), 601-611.
[PMID: 24719025]
[54]
Oinuma, I.; Ito, Y.; Katoh, H.; Negishi, M. Semaphorin 4D/Plexin-B1 stimulates PTEN activity through R-Ras GTPase-activating protein activity, inducing growth cone collapse in hippocampal neurons. J. Biol. Chem., 2010, 285(36), 28200-28209.
[http://dx.doi.org/10.1074/jbc.M110.147546] [PMID: 20610402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy