Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Protease Inhibitors (PIs): Candidate Molecules for Crop Protection Formulations against Necrotrophs

Author(s): Aswati R. Nair*, Padmesh Pillai and Sharmila Raj

Volume 30, Issue 1, 2023

Published on: 16 December, 2022

Page: [13 - 24] Pages: 12

DOI: 10.2174/0929866530666221124123905

Price: $65

Abstract

Necrotrophic phytopathogens pose a serious challenge to the productivity of several crops causing seedling damage, pre- and post-emergence damping-off and root rot thus reducing plant growth and yield. They are known to gain nutrition by secreting a diverse array of hydrolytic enzymes and thereby causing extensive host plant tissue maceration. Amongst the diverse hydrolases, proteases play a pivotal role in the necrotrophic mode of nutrition and thereby in determining pathogenic virulence. Host plants often counteract the necrotrophic proteolysis events by proteins (peptides), particularly through protease inhibitors (PIs). PIs play an important role in host innate immunity function by functioning as anti-metabolic proteins inhibiting the activity of phytopathogenic secretory proteases. Their abundance in plant storage organs explains their anti-nutritional interaction which stalls pathogenic invasion. PIs, therefore, constitute potential candidates that can be deployed as effective antimicrobials in agriculture, particularly against necrotrophic soil-borne pathogens. The present review traces the progress made in the identification of PIs from plants, and their inhibitory potential against necrotrophic phytopathogens and explores prospects of utilizing these molecules as effective anti-necrotrophic formulations for disease management.

Graphical Abstract

[1]
Hunter, P. Common defences. EMBO Rep., 2005, 6(6), 504-507.
[http://dx.doi.org/10.1038/sj.embor.7400439] [PMID: 15940281]
[2]
Spoel, S.H.; Dong, X. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol., 2012, 12(2), 89-100.
[http://dx.doi.org/10.1038/nri3141] [PMID: 22273771]
[3]
Muthamilarasan, M.; Prasad, M. Plant innate immunity: An updated insight into defense mechanism. J. Biosci., 2013, 38(2), 433-449.
[http://dx.doi.org/10.1007/s12038-013-9302-2] [PMID: 23660678]
[4]
Bari, R.; Jones, J.D.G. Role of plant hormones in plant defence responses. Plant Mol. Biol., 2009, 69(4), 473-488.
[http://dx.doi.org/10.1007/s11103-008-9435-0] [PMID: 19083153]
[5]
Grennan, A.K. Plant response to bacterial pathogens. Overlap between innate and gene-for-gene defense response. Plant Physiol., 2006, 142(3), 809-811.
[http://dx.doi.org/10.1104/pp.106.900207] [PMID: 17093133]
[6]
Freeman, B.C.; Beattie, G.A. An overview of plant defenses against pathogens and herbivores; The Plant Health Instructor, 2008.
[http://dx.doi.org/10.1094/PHI-I-2008-0226-01]
[7]
Kantyka, T.; Rawlings, N.D.; Potempa, J. Prokaryote-derived protein inhibitors of peptidases: A sketchy occurrence and mostly unknown function. Biochimie, 2010, 92(11), 1644-1656.
[http://dx.doi.org/10.1016/j.biochi.2010.06.004] [PMID: 20558234]
[8]
Valueva, T.A.; Mosolov, V.V. Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochemistry, 2004, 69(11), 1305-1309.
[http://dx.doi.org/10.1007/s10541-005-0015-5] [PMID: 15627384]
[9]
Li, J.; Hu, S.; Jian, W.; Xie, C.; Yang, X. Plant antimicrobial peptides: Structures, functions, and applications. Bot. Stud., 2021, 62(1), 5.
[http://dx.doi.org/10.1186/s40529-021-00312-x] [PMID: 33914180]
[10]
Müntz, K. Deposition of storage proteins. Plant Mol. Biol., 1998, 38(1/2), 77-99.
[http://dx.doi.org/10.1023/A:1006020208380] [PMID: 9738961]
[11]
Souza Cândido, E.; Pinto, M.F.S.; Pelegrini, P.B.; Lima, T.B.; Silva, O.N.; Pogue, R.; Grossi-de-Sá, M.F.; Franco, O.L. Plant storage proteins with antimicrobial activity: Novel insights into plant defense mechanisms. FASEB J., 2011, 25(10), 3290-3305.
[http://dx.doi.org/10.1096/fj.11-184291] [PMID: 21746866]
[12]
Shutov, A.D.; Bäumlein, H.; Blattner, F.R.; Müntz, K. Storage and mobilization as antagonistic functional constraints on seed storage globulin evolution. J. Exp. Bot., 2003, 54(388), 1645-1654.
[http://dx.doi.org/10.1093/jxb/erg165] [PMID: 12754262]
[13]
Marla, S.; Bharatiya, D.; Bala, M.; Singh, V.; Kumar, A. Classification of rice seed storage proteins using neural networks. J. Plant Biochem. Biotechnol., 2010, 19(1), 123-126.
[http://dx.doi.org/10.1007/BF03323450]
[14]
Müntz, K.; Belozersky, M.A.; Dunaevsky, Y.E.; Schlereth, A.; Tiedemann, J. Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. J. Exp. Bot., 2001, 52(362), 1741-1752.
[http://dx.doi.org/10.1093/jexbot/52.362.1741] [PMID: 11520862]
[15]
Dias, R.; Machado, L.; Migliolo, L.; Franco, O. Insights into animal and plant lectins with antimicrobial activities. Molecules, 2015, 20(1), 519-541.
[http://dx.doi.org/10.3390/molecules20010519] [PMID: 25569512]
[16]
Ngai, P.H.K.; Ng, T.B. A napin-like polypeptide from dwarf Chinese white cabbage seeds with translation-inhibitory, trypsin-inhibitory, and antibacterial activities. Peptides, 2004, 25(2), 171-176.
[http://dx.doi.org/10.1016/j.peptides.2003.12.012] [PMID: 15062997]
[17]
Agizzio, A.P.; Carvalho, A.O.; Ribeiro, S.F.F.; Machado, O.L.T.; Alves, E.W.; Okorokov, L.A.; Samarão, S.S.; Bloch, C., Jr; Prates, M.V.; Gomes, V.M.A. 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Arch. Biochem. Biophys., 2003, 416(2), 188-195.
[http://dx.doi.org/10.1016/S0003-9861(03)00313-8] [PMID: 12893296]
[18]
Yang, X.; Xiao, Y.; Wang, X.; Pei, Y. Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl. Environ. Microbiol., 2007, 73(3), 939-946.
[http://dx.doi.org/10.1128/AEM.02016-06] [PMID: 17158620]
[19]
Ribeiro, S.F.F.; Taveira, G.B.; Carvalho, A.O.; Dias, G.B.; Da Cunha, M.; Santa-Catarina, C.; Rodrigues, R.; Gomes, V.M. Antifungal and other biological activities of two 2S albumin-homologous proteins against pathogenic fungi. Protein J., 2012, 31(1), 59-67.
[http://dx.doi.org/10.1007/s10930-011-9375-4] [PMID: 22120089]
[20]
Valueva, T.A.; Speranskaia, A.S.; Revina, T.A.; Shevelev, A.B. Molecular cloning and expression of genes of Kunitz-type C protease inhibitors from potato. Bioorg. Khim., 2008, 34(3), 344-352.
[PMID: 18672683]
[21]
Kim, M.H.; Park, S.C.; Kim, J.Y.; Lee, S.Y.; Lim, H.T.; Cheong, H.; Hahm, K.S.; Park, Y. Purification and characterization of a heat-stable serine protease inhibitor from the tubers of new potato variety “Golden Valley”. Biochem. Biophys. Res. Commun., 2006, 346(3), 681-686.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.186] [PMID: 16777063]
[22]
Broekaert, W.F.; Van Parijs, J.; Leyns, F.; Joos, H.; Peumans, W.J. A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science, 1989, 245(4922), 1100-1102.
[http://dx.doi.org/10.1126/science.245.4922.1100] [PMID: 17838811]
[23]
Huang, X.; Yu, R.; Li, W.; Geng, L.; Jing, X.; Zhu, C.; Liu, H. Identification and characterisation of a glycine-rich RNA-binding protein as an endogenous suppressor of RNA silencing from Nicotiana glutinosa. Planta, 2019, 249(6), 1811-1822.
[http://dx.doi.org/10.1007/s00425-019-03122-5] [PMID: 30840177]
[24]
Jimenez-Lopez, J.C.; Melser, S.; DeBoer, K.; Thatcher, L.F.; Kamphuis, L.G.; Foley, R.C.; Singh, K.B. Narrow-leafed Lupin (Lupinus angustifolius) β1- and β6-Conglutin proteins exhibit antifungal activity, protecting plants against necrotrophic pathogen induced damage from Sclerotinia sclerotiorum and Phytophthora nicotianae. Front. Plant Sci., 2016, 7, 1856.
[http://dx.doi.org/10.3389/fpls.2016.01856] [PMID: 28018392]
[25]
Wang, X.; Bunkers, G.J.; Walters, M.R.; Thoma, R.S. Purification and characterization of three antifungal proteins from cheeseweed (Malva parviflora). Biochem. Biophys. Res. Commun., 2001, 282(5), 1224-1228.
[http://dx.doi.org/10.1006/bbrc.2001.4716] [PMID: 11302747]
[26]
Singh, J.; Kamboj, S.S.; Sandhu, R.S.; Shangary, S.; Kamboj, K.K. Purification and characterization of a tuber lectin from Alocasia indica. Phytochemistry, 1993, 33(5), 979-983.
[http://dx.doi.org/10.1016/0031-9422(93)85007-E]
[27]
Silva, N.R.G.; Araújo, F.N. Antibacterial activity of plant lectins: a Review. Braz. Arch. Biol. Technol., 2021, 64, e21200631.
[http://dx.doi.org/10.1590/1678-4324-2021200631]
[28]
Gatehouse, J.A. Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr. Protein Pept. Sci., 2011, 12(5), 409-416.
[http://dx.doi.org/10.2174/138920311796391142] [PMID: 21418023]
[29]
Jamal, F.; Pandey, P.K.; Singh, D.; Khan, M.Y. Serine protease inhibitors in plants: Nature’s arsenal crafted for insect predators. Phytochem. Rev., 2013, 12(1), 1-34.
[http://dx.doi.org/10.1007/s11101-012-9231-y]
[30]
Lawrence, P.K.; Koundal, K.R. Plant protease inhibitors in control of phytophagous insects. Electron. J. Biotechnol., 2002, 5(1), 5-6.
[http://dx.doi.org/10.2225/vol5-issue1-fulltext-3]
[31]
Hellinger, R.; Gruber, C.W. Peptide-based protease inhibitors from plants. Drug Discov. Today, 2019, 24(9), 1877-1889.
[http://dx.doi.org/10.1016/j.drudis.2019.05.026] [PMID: 31170506]
[32]
Ryan, C.A. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol., 1990, 28(1), 425-449.
[http://dx.doi.org/10.1146/annurev.py.28.090190.002233]
[33]
Volpicella, M.; Leoni, C.; Costanza, A.; De Leo, F.; Gallerani, R.; Ceci, L.R. Cystatins, serpins and other families of protease inhibitors in plants. Curr. Protein Pept. Sci., 2011, 12(5), 386-398.
[http://dx.doi.org/10.2174/138920311796391098] [PMID: 21418017]
[34]
Kim, J.Y.; Park, S.C.; Hwang, I.; Cheong, H.; Nah, J.W.; Hahm, K.S.; Park, Y. Protease inhibitors from plants with antimicrobial activity. Int. J. Mol. Sci., 2009, 10(6), 2860-2872.
[http://dx.doi.org/10.3390/ijms10062860] [PMID: 19582234]
[35]
Giri, A.P.; Harsulkar, A.M.; Deshpande, V.V.; Sainani, M.N.; Gupta, V.S.; Ranjekar, P.K. Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol., 1998, 116(1), 393-401.
[http://dx.doi.org/10.1104/pp.116.1.393]
[36]
Richardson, M. Seed storage proteins: the enzyme inhibitors. Methods Plant Biochem., 1991, 5, 259-305.
[37]
Bijina, B.; Chellappan, S.; Krishna, J.G.; Basheer, S.M.; Elyas, K.K.; Bahkali, A.H.; Chandrasekaran, M. Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative. Saudi J. Biol. Sci., 2011, 18(3), 273-281.
[http://dx.doi.org/10.1016/j.sjbs.2011.04.002] [PMID: 23961135]
[38]
Bacha, A.B.; Jemel, I.; Moubayed, N.M.S.; Abdelmalek, I.B. Purification and characterization of a newly serine protease inhibitor from Rhamnus frangula with potential for use as therapeutic drug. 3 Biotech, 2017, 7, 148.
[39]
Wang, S.; Lin, J.; Ye, M.; Ng, T.B.; Rao, P.; Ye, X. Isolation and characterization of a novel mung bean protease inhibitor with antipathogenic and anti-proliferative activities. Peptides, 2006, 27(12), 3129-3136.
[http://dx.doi.org/10.1016/j.peptides.2006.07.013] [PMID: 16971020]
[40]
Scarafoni, A.; Ronchi, A.; Prinsi, B.; Espen, L.; Assante, G.; Venturini, G.; Duranti, M. The proteome of exudates from germinating Lupinus albus seeds is secreted through a selective dual-step process and contains proteins involved in plant defence. FEBS J., 2013, 280(6), 1443-1459.
[http://dx.doi.org/10.1111/febs.12140] [PMID: 23332028]
[41]
Nair, M.; Sandhu, S.S. A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts an antimicrobial effect on Fusarium oxysporum f. sp. ciceris. Agric. Sci., 2013, 4(11), 585.
[42]
Yang, X.; Li, J.; Wang, X.; Fang, W.; Bidochka, M.J.; She, R.; Xiao, Y.; Pei, Y. Psc-AFP, an antifungal protein with trypsin inhibitor activity from Psoralea corylifolia seeds. Peptides, 2006, 27(7), 1726-1731.
[http://dx.doi.org/10.1016/j.peptides.2006.01.020] [PMID: 16530884]
[43]
Laluk, K.; Mengiste, T. The Arabidopsis extracellular unusual serine protease inhibitor functions in resistance to necrotrophic fungi and insect herbivory. Plant J., 2011, 68(3), 480-494.
[http://dx.doi.org/10.1111/j.1365-313X.2011.04702.x] [PMID: 21749505]
[44]
Srikanth, S.; Chen, Z. Plant protease inhibitors in therapeutics-focus on cancer therapy. Front. Pharmacol., 2016, 7, 470.
[http://dx.doi.org/10.3389/fphar.2016.00470] [PMID: 28008315]
[45]
Connors, B.; Laun, N.; Maynard, C.; Powell, W. Molecular characterization of a gene encoding a cystatin expressed in the stems of American chestnut (Castanea dentata). Planta, 2002, 215(3), 510-514.
[http://dx.doi.org/10.1007/s00425-002-0782-9] [PMID: 12111235]
[46]
Laskowski, M., Jr; Kato, I. Protein inhibitors of proteinases. Annu. Rev. Biochem., 1980, 49(1), 593-626.
[http://dx.doi.org/10.1146/annurev.bi.49.070180.003113] [PMID: 6996568]
[47]
Clemente, M.; Corigliano, M.; Pariani, S.; Sánchez-López, E.; Sander, V.; Ramos-Duarte, V. Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming. Int. J. Mol. Sci., 2019, 20(6), 1345.
[http://dx.doi.org/10.3390/ijms20061345] [PMID: 30884891]
[48]
Paiva, P.M.G.; Pontual, E.V.; Coelho, L.C.B.B.; Napoleão, T.H. Protease inhibitors from plants: biotechnological insights with emphasis on their effects on microbial pathogens, Microbial Pathogens and strategies for combating them. Sci. Technol. Edn., 2013, 1, 641-649.
[49]
Koiwa, H.; Bressan, R.A.; Hasegawa, P.M. Regulation of protease inhibitors and plant defense. Trends Plant Sci., 1997, 2(10), 379-384.
[http://dx.doi.org/10.1016/S1360-1385(97)90052-2]
[50]
Fluhr, R.; Lampl, N.; Roberts, T.H. Serpin protease inhibitors in plant biology. Physiol. Plant., 2012, 145(1), 95-102.
[http://dx.doi.org/10.1111/j.1399-3054.2011.01540.x] [PMID: 22085334]
[51]
Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res., 2018, 46(D1), D624-D632.
[http://dx.doi.org/10.1093/nar/gkx1134] [PMID: 29145643]
[52]
Clemente, A.; Sonnante, G.; Domoney, C. Bowman-Birk inhibitors from legumes and human gastrointestinal health: current status and perspectives. Curr. Protein Pept. Sci., 2011, 12(5), 358-373.
[http://dx.doi.org/10.2174/138920311796391133] [PMID: 21418025]
[53]
Ranasinghe, S.L.; Fischer, K.; Zhang, W.; Gobert, G.N.; McManus, D.P. Cloning and characterization of two potent Kunitz type protease inhibitors from Echinococcus granulosus. PLoS Negl. Trop. Dis., 2015, 9(12), e0004268.
[http://dx.doi.org/10.1371/journal.pntd.0004268] [PMID: 26645974]
[54]
Rawlings, N.D.; Tolle, D.P.; Barrett, A.J. Evolutionary families of peptidase inhibitors. Biochem. J., 2004, 378(3), 705-716.
[http://dx.doi.org/10.1042/bj20031825] [PMID: 14705960]
[55]
McManus, M.T.; Ryan, S.; Laing, W.A. The functions of proteinase inhibitors in seeds. Seed Sympos., 1999, 199, 3-13.
[56]
Santamaría, M.E.; Diaz-Mendoza, M.; Diaz, I.; Martinez, M. Plant protein peptidase inhibitors: an evolutionary overview based on comparative genomics. BMC Genomics, 2014, 15(1), 812.
[http://dx.doi.org/10.1186/1471-2164-15-812] [PMID: 25253557]
[57]
Kamoun, S. Molecular genetics of pathogenic oomycetes. Eukaryot. Cell, 2003, 2(2), 191-199.
[http://dx.doi.org/10.1128/EC.2.2.191-199.2003] [PMID: 12684368]
[58]
Geethu, C.; Nair, R.A. Purification and biochemical characterization of an extracellular endoglucanase from the necrotrophic oomycete, Pythium myriotylum Dreschler. J. Basic Microbiol., 2014, 54(12), 1322-1330.
[http://dx.doi.org/10.1002/jobm.201400323] [PMID: 25123590]
[59]
Yarullina, L.G.; Akhatova, A.R.; Kasimova, R.I. Hydrolytic enzymes and their proteinaceous inhibitors in regulation of plant-pathogen interactions. Russ. J. Plant Physiol., 2016, 63(2), 193-203.
[http://dx.doi.org/10.1134/S1021443716020151]
[60]
Boudjeko, T.; Andème-Onzighi, C.; Vicré, M.; Balangé, A.P.; Ndoumou, D.O.; Driouich, A. Loss of pectin is an early event during infection of cocoyam roots by Pythium myriotylum. Planta, 2006, 223(2), 271-282.
[http://dx.doi.org/10.1007/s00425-005-0090-2] [PMID: 16160840]
[61]
Figaj, D.; Ambroziak, P.; Przepiora, T.; Skorko-Glonek, J. The role of proteases in the virulence of plant pathogenic bacteria. Int. J. Mol. Sci., 2019, 20(3), 672.
[http://dx.doi.org/10.3390/ijms20030672] [PMID: 30720762]
[62]
Chandrasekaran, M.; Thangavelu, B.; Chun, S.C.; Sathiyabama, M. Proteases from phytopathogenic fungi and their importance in phytopathogenicity. J. Gen. Plant Pathol., 2016, 82(5), 233-239.
[http://dx.doi.org/10.1007/s10327-016-0672-9]
[63]
Sabotič, J.; Kos, J. Microbial and fungal protease inhibitors-current and potential applications. Appl. Microbiol. Biotechnol., 2012, 93(4), 1351-1375.
[http://dx.doi.org/10.1007/s00253-011-3834-x] [PMID: 22218770]
[64]
Xia, Y. Proteases in pathogenesis and plant defence. Cell. Microbiol., 2004, 6(10), 905-913.
[http://dx.doi.org/10.1111/j.1462-5822.2004.00438.x] [PMID: 15339266]
[65]
Jashni, M.K.; Mehrabi, R.; Collemare, J.; Mesarich, C.H.; de Wit, P.J.G.M. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front. Plant Sci., 2015, 6, 584.
[http://dx.doi.org/10.3389/fpls.2015.00584] [PMID: 26284100]
[66]
Hua, L.; Yong, C.; Zhanquan, Z.; Boqiang, L.; Guozheng, Q.; Shiping, T. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Quality and Safety, 2018, 2(3), 111-119.
[http://dx.doi.org/10.1093/fqsafe/fyy016]
[67]
Olivieri, F.P.; Maldonado, S.; Tonon, C.V.; Casalongue, C.A. Hydrolytic activities of Fusarium solani and Fusarium solani f. sp. eumartii associated with the infection process of potato tubers. J. Phytopathol., 2004, 152(6), 337-344.
[http://dx.doi.org/10.1111/j.1439-0434.2004.00851.x]
[68]
Poussereau, N.; Creton, S.; Billon-Grand, G.; Rascle, C.; Fevre, M. Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology, 2001, 147(3), 717-726.
[http://dx.doi.org/10.1099/00221287-147-3-717] [PMID: 11238979]
[69]
Westrick, N.M.; Ranjan, A.; Jain, S.; Grau, C.R.; Smith, D.L.; Kabbage, M. Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis. BMC Genomics, 2019, 20(1), 157.
[http://dx.doi.org/10.1186/s12864-019-5517-4] [PMID: 30808300]
[70]
Soberanes-Gutiérrez, C.V.; Juárez-Montiel, M.; Olguín-Rodríguez, O.; Hernández-Rodríguez, C.; Ruiz-Herrera, J.; Villa-Tanaca, L. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis. Mol. Plant Pathol., 2015, 16(8), 837-846.
[http://dx.doi.org/10.1111/mpp.12240] [PMID: 25597948]
[71]
Schoina, C.; Verbeek-de Kruif, N.; Govers, F.; Bouwmeester, K. Clade 5 aspartic proteases of Phytophthora infestans are virulence factors implied in RXLR effector cleavage. Eur. J. Plant Pathol., 2019, 154(1), 17-29.
[http://dx.doi.org/10.1007/s10658-019-01713-2]
[72]
Dobinson, K.F.; Grant, S.J.; Kang, S. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transform-ation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Curr. Genet., 2004, 45(2), 104-110.
[http://dx.doi.org/10.1007/s00294-003-0464-6] [PMID: 14618375]
[73]
Landa, B.B.; Pérez, A.G.; Luaces, P.; Montes-Borrego, M.; Navas-Cortés, J.A.; Sanz, C. Insights into the effect of Verticillium dahliae defoliating-pathotype infection on the content of phenolic and volatile compounds related to the sensory properties of virgin olive oil. Front. Plant Sci., 2019, 10, 232.
[http://dx.doi.org/10.3389/fpls.2019.00232] [PMID: 30891053]
[74]
Meng, Q.; Gupta, R.; Min, C.W.; Kwon, S.W.; Wang, Y.; Je, B.I.; Kim, Y.J.; Jeon, J.S.; Agrawal, G.K.; Rakwal, R.; Kim, S.T. Proteomics of Rice-Magnaporthe oryzae interaction: what have we learned so far? Front. Plant Sci., 2019, 10, 1383.
[http://dx.doi.org/10.3389/fpls.2019.01383] [PMID: 31737011]
[75]
Movahedi, S.; Heale, J.B. Purification and characterization of an aspartic proteinase secreted by Botrytis cinerea Pers ex. Pers in culture and in infected carrots. Physiol. Mol. Plant Pathol., 1990, 36(4), 289-302.
[http://dx.doi.org/10.1016/0885-5765(90)90060-B]
[76]
Brown, M.S.; Ye, J.; Rawson, R.B.; Goldstein, J.L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell, 2000, 100(4), 391-398.
[http://dx.doi.org/10.1016/S0092-8674(00)80675-3] [PMID: 10693756]
[77]
Morris, C.E.; Bardin, M.; Kinkel, L.L.; Moury, B.; Nicot, P.C.; Sands, D.C. Expanding the paradigms of plant pathogen life history and evolution of parasitic fitness beyond agricultural boundaries. PLoS Pathog., 2009, 5(12), e1000693.
[http://dx.doi.org/10.1371/journal.ppat.1000693] [PMID: 20041212]
[78]
Lévesque, C.A.; Brouwer, H.; Cano, L.; Hamilton, J.P.; Holt, C.; Huitema, E.; Raffaele, S.; Robideau, G.P.; Thines, M.; Win, J.; Zerillo, M.M.; Beakes, G.W.; Boore, J.L.; Busam, D.; Dumas, B.; Ferriera, S.; Fuerstenberg, S.I.; Gachon, C.M.M.; Gaulin, E.; Govers, F.; Grenville-Briggs, L.; Horner, N.; Hostetler, J.; Jiang, R.H.Y.; Johnson, J.; Krajaejun, T.; Lin, H.; Meijer, H.J.G.; Moore, B.; Morris, P.; Phuntmart, V.; Puiu, D.; Shetty, J.; Stajich, J.E.; Tripathy, S.; Wawra, S.; van West, P.; Whitty, B.R.; Coutinho, P.M.; Henrissat, B.; Martin, F.; Thomas, P.D.; Tyler, B.M.; De Vries, R.P.; Kamoun, S.; Yandell, M.; Tisserat, N.; Buell, C.R. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol., 2010, 11(7), R73.
[http://dx.doi.org/10.1186/gb-2010-11-7-r73] [PMID: 20626842]
[79]
Seidl, M.F.; Van den Ackerveken, G.; Govers, F.; Snel, B. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. Plant Physiol., 2011, 155(2), 628-644.
[http://dx.doi.org/10.1104/pp.110.167841] [PMID: 21119047]
[80]
Adhikari, B.N.; Hamilton, J.P.; Zerillo, M.M.; Tisserat, N.; Lévesque, C.A.; Buell, C.R. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS One, 2013, 8(10), e75072.
[http://dx.doi.org/10.1371/journal.pone.0075072] [PMID: 24124466]
[81]
Gregori, R.; Guidarelli, M.; Mari, M. Preliminary studies on partial reduction of Colletotrichum acutatum infection by proteinase inhibitors extracted from apple skin. Physiol. Mol. Plant Pathol., 2010, 74(5-6), 303-308.
[http://dx.doi.org/10.1016/j.pmpp.2010.04.006]
[82]
Ball, A.M.; Ashby, A.M.; Daniels, M.J.; Ingram, D.S.; Johnstone, K. Evidence for the requirement of extracellular protease in the pathogenic interaction of Pyrenopeziza brassicae with oilseed rape. Physiol. Mol. Plant Pathol., 1991, 38(2), 147-161.
[http://dx.doi.org/10.1016/S0885-5765(05)80132-8]
[83]
Saitoh, H.; Fujisawa, S.; Ito, A.; Mitsuoka, C.; Berberich, T.; Tosa, Y.; Asakura, M.; Takano, Y.; Terauchi, R. SPM1 encoding a vacuole-localized protease is required for infection-related autophagy of the rice blast fungus Magnaporthe oryzae. FEMS Microbiol. Lett., 2009, 300(1), 115-121.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01769.x] [PMID: 19765082]
[84]
Okubara, P.A.; Dickman, M.B.; Blechl, A.E. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium. Plant Sci., 2014, 228, 61-70.
[http://dx.doi.org/10.1016/j.plantsci.2014.02.001] [PMID: 25438786]
[85]
Rodríguez-Sifuentes, L.; Marszalek, J.E.; Chuck-Hernández, C.; Serna-Saldívar, S.O. Legumes protease inhibitors as biopesticides and their defense mechanisms against biotic factors. Int. J. Mol. Sci., 2020, 21(9), 3322.
[http://dx.doi.org/10.3390/ijms21093322] [PMID: 32397104]
[86]
Gutierrez-Campos, R.; Torres-Acosta, J.A.; Saucedo-Arias, L.J.; Gomez-Lim, M.A. The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat. Biotechnol., 1999, 17(12), 1223-1226.
[http://dx.doi.org/10.1038/70781] [PMID: 10585723]
[87]
Perera, H.K.I.; Jayawardana, B.D.S.; Rajapakse, S. Heat Stable Protease Inhibitors from Sesbania grandiflora and Terminalia catappa. J. Pharm. Res. Int., 2016, 11, 1-9.
[88]
Cotabarren, J.; Lufrano, D.; Parisi, M.G.; Obregón, W.D. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: a systematic review. Plant Sci., 2020, 292, 110398.
[http://dx.doi.org/10.1016/j.plantsci.2019.110398] [PMID: 32005400]
[89]
Dokka, M.K.; Davuluri, S.P. Antimicrobial activity of a trypsin inhibitor from the seeds of Abelmoschus moschatus L. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(5), 184-199.
[90]
Yoshizaki, L.; Troncoso, M.F.; Lopes, J.L.S.; Hellman, U.; Beltramini, L.M.; Wolfenstein-Todel, C. Calliandra selloi Macbride trypsin inhibitor: Isolation, characterization, stability, spectroscopic analyses. Phytochemistry, 2007, 68(21), 2625-2634.
[http://dx.doi.org/10.1016/j.phytochem.2007.06.003] [PMID: 17651769]
[91]
Rodrigues Macedo, M.L.; Machado Freire, M.G.; Cabrini, E.C.; Toyama, M.H.; Novello, J.C.; Marangoni, S. A trypsin inhibitor from Peltophorum dubium seeds active against pest proteases and its effect on the survival of Anagasta kuehniella (Lepidoptera: Pyralidae). Biochim. Biophys. Acta, Gen. Subj., 2003, 1621(2), 170-182.
[http://dx.doi.org/10.1016/S0304-4165(03)00055-2] [PMID: 12726993]
[92]
Krüger, J.; Thomas, C.M.; Golstein, C.; Dixon, M.S.; Smoker, M.; Tang, S.; Mulder, L.; Jones, J.D.G. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science, 2002, 296(5568), 744-747.
[http://dx.doi.org/10.1126/science.1069288] [PMID: 11976458]
[93]
Joshi, B.N.; Sainani, M.N.; Bastawade, K.B.; Gupta, V.S.; Ranjekar, P.K. Cysteine protease inhibitor from pearl millet: a new class of antifungal protein. Biochem. Biophys. Res. Commun., 1998, 246(2), 382-387.
[http://dx.doi.org/10.1006/bbrc.1998.8625] [PMID: 9610368]
[94]
Pekkarinen, A.I.; Jones, B.L. Purification and identification of barley (Hordeum vulgare L.) proteins that inhibit the alkaline serine proteinases of Fusarium culmorum. J. Agric. Food Chem., 2003, 51(6), 1710-1717.
[http://dx.doi.org/10.1021/jf026035v] [PMID: 12617610]
[95]
Dunaevsky, Y.E.; Elpidina, E.N.; Vinokurov, K.S.; Belozersky, M.A. Protease inhibitors in improvement of plant resistance to pathogens and insects. Mol. Biol., 2005, 39(4), 608-613.
[http://dx.doi.org/10.1007/s11008-005-0076-y]
[96]
Pekkarinen, A.I.; Longstaff, C.; Jones, B.L. Kinetics of the inhibition of fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors. J. Agric. Food Chem., 2007, 55(7), 2736-2742.
[http://dx.doi.org/10.1021/jf0631777] [PMID: 17341093]
[97]
Rustgi, S.; Boex-Fontvieille, E.; Reinbothe, C.; von Wettstein, D.; Reinbothe, S. Serpin1 and WSCP differentially regulate the activity of the cysteine protease RD21 during plant development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 2017, 114(9), 2212-2217.
[http://dx.doi.org/10.1073/pnas.1621496114] [PMID: 28179567]
[98]
Arnaiz, A.; Talavera-Mateo, L.; Gonzalez-Melendi, P.; Martinez, M.; Diaz, I.; Santamaria, M.E. Arabidopsis Kunitz trypsin inhibitors in defense against spider mites. Front. Plant Sci., 2018, 9, 986.
[http://dx.doi.org/10.3389/fpls.2018.00986] [PMID: 30042779]
[99]
Turrà, D.; Bellin, D.; Lorito, M.; Gebhardt, C. Genotype-dependent expression of specific members of potato protease inhibitor gene families in different tissues and in response to wounding and nematode infection. J. Plant Physiol., 2009, 166(7), 762-774.
[http://dx.doi.org/10.1016/j.jplph.2008.10.005] [PMID: 19095329]
[100]
Qu, L.J.; Chen, J.; Liu, M.; Pan, N.; Okamoto, H.; Lin, Z.; Li, C.; Li, D.; Wang, J.; Zhu, G.; Zhao, X.; Chen, X.; Gu, H.; Chen, Z. Molecular cloning and functional analysis of a novel type of Bowman-Birk inhibitor gene family in rice. Plant Physiol., 2003, 133(2), 560-570.
[http://dx.doi.org/10.1104/pp.103.024810] [PMID: 12972663]
[101]
Wang, J.; Li, X.; Xia, X.; Li, H.; Liu, J.; Li, Q.X.; Li, J.; Xu, T. Extraction, purification, and characterization of a trypsin inhibitor from cowpea seeds (Vigna unguiculata). Prep. Biochem. Biotechnol., 2014, 44(1), 1-15.
[http://dx.doi.org/10.1080/10826068.2013.782041] [PMID: 24117148]
[102]
Quilis, J.; Meynard, D.; Vila, L.; Avilés, F.X.; Guiderdoni, E.; San Segundo, B. A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnol. J., 2007, 5(4), 537-553.
[http://dx.doi.org/10.1111/j.1467-7652.2007.00264.x] [PMID: 17547659]
[103]
Vila, L.; Quilis, J.; Meynard, D.; Breitler, J.C.; Marfà, V.; Murillo, I.; Vassal, J.M.; Messeguer, J.; Guiderdoni, E.; San Segundo, B. Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases. Plant Biotechnol. J., 2005, 3(2), 187-202.
[http://dx.doi.org/10.1111/j.1467-7652.2004.00117.x] [PMID: 17173619]
[104]
Azzouz, H.; Cherqui, A.; Campan, E.D.M.; Rahbé, Y.; Duport, G.; Jouanin, L.; Kaiser, L.; Giordanengo, P. Effects of plant protease inhibitors, oryzacystatin I and soybean Bowman-Birk inhibitor, on the aphid Macrosiphum euphorbiae (Homoptera, Aphididae) and its parasitoid Aphelinus abdominalis (Hymenoptera, Aphelinidae). J. Insect Physiol., 2005, 51(1), 75-86.
[http://dx.doi.org/10.1016/j.jinsphys.2004.11.010] [PMID: 15686649]
[105]
Migliolo, L.; de Oliveira, A.S.; Santos, E.A.; Franco, O.L.; de Sales, M.P. Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases. J. Mol. Graph. Model., 2010, 29(2), 148-156.
[http://dx.doi.org/10.1016/j.jmgm.2010.05.006] [PMID: 20816329]
[106]
Smigocki, A.C.; Ivic-Haymes, S.; Li, H.; Savić, J. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene. PLoS One, 2013, 8(2), e57303.
[http://dx.doi.org/10.1371/journal.pone.0057303] [PMID: 23468963]
[107]
Altpeter, F.; Diaz, I.; McAuslane, H.; Gaddour, K.; Carbonero, P.; Vasil, I.K. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol. Breed., 1999, 5(1), 53-63.
[http://dx.doi.org/10.1023/A:1009659911798]
[108]
Dunse, K.M.; Stevens, J.A.; Lay, F.T.; Gaspar, Y.M.; Heath, R.L.; Anderson, M.A. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc. Natl. Acad. Sci. USA, 2010, 107(34), 15011-15015.
[http://dx.doi.org/10.1073/pnas.1009241107] [PMID: 20696895]
[109]
Hartl, M.; Giri, A.P.; Kaur, H.; Baldwin, I.T. Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development. Plant Cell, 2011, 22(12), 4158-4175.
[http://dx.doi.org/10.1105/tpc.109.073395] [PMID: 21177479]
[110]
Luo, M.; Ding, L.W.; Ge, Z.J.; Wang, Z.Y.; Hu, B.L.; Yang, X.B.; Sun, Q.Y.; Xu, Z.F. The characterization of SaPIN2b, a plant trichome-localized proteinase inhibitor from Solanum americanum. Int. J. Mol. Sci., 2012, 13(12), 15162-15176.
[http://dx.doi.org/10.3390/ijms131115162] [PMID: 23203117]
[111]
Dunaevsky, Y.E.; Gladysheva, I.P.; Pavlukova, E.B.; Beliakova, G.A.; Gladyshev, D.P.; Papisova, A.I.; Larionova, N.I.; Belozersky, M.A. The anionic protease inhibitor BWI-1 from buckwheat seeds. Kinetic properties and possible biological role. Physiol. Plant., 1997, 101(3), 483-488.
[http://dx.doi.org/10.1111/j.1399-3054.1997.tb01027.x]
[112]
Valueva, T.A.; Revina, T.A.; Kladnitskaya, G.V.; Mosolov, V.V. Kunitz-type proteinase inhibitors from intact and Phytophthora-infected potato tubers. FEBS Lett., 1998, 426(1), 131-134.
[http://dx.doi.org/10.1016/S0014-5793(98)00321-4] [PMID: 9598993]
[113]
Pariani, S.; Contreras, M.; Rossi, F.R.; Sander, V.; Corigliano, M.G.; Simón, F.; Busi, M.V.; Gomez-Casati, D.F.; Pieckenstain, F.L.; Duschak, V.G.; Clemente, M. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana. Biochimie, 2016, 123, 85-94.
[http://dx.doi.org/10.1016/j.biochi.2016.02.002] [PMID: 26853817]
[114]
Brunelle, F.; Cloutier, C.; Michaud, D. Colorado potato beetles compensate for tomato cathepsin D inhibitor expressed in transgenic potato. Arch. Insect Biochem. Physiol., 2004, 55(3), 103-113.
[http://dx.doi.org/10.1002/arch.10135] [PMID: 14981655]
[115]
Huang, H.; Qi, S.D.; Qi, F.; Wu, C.A.; Yang, G.D.; Zheng, C.C. NtKTI1, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco’s defense response. FEBS J., 2010, 277(19), 4076-4088.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07803.x] [PMID: 20735473]
[116]
Soares-Costa, A.; Beltramini, L.M.; Thiemann, O.H.; Henrique-Silva, F. A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem. Biophys. Res. Commun., 2002, 296(5), 1194-1199.
[http://dx.doi.org/10.1016/S0006-291X(02)02046-6] [PMID: 12207900]
[117]
Samiksha; Singh, D.; Kesavan, A.K.; Sohal, S.K. Purification of a trypsin inhibitor from Psoralea corylifolia seeds and its influence on developmental physiology of Bactrocera cucurbitae. Int. J. Biol. Macromol., 2019, 139, 1141-1150.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.063] [PMID: 31404603]
[118]
Marcela Giudici, A.; Clelia Regente, M.; de la Canal, L. A potent antifungal protein from Helianthus annuus flowersis a trypsin inhibitor. Plant Physiol. Biochem., 2000, 38(11), 881-888.
[http://dx.doi.org/10.1016/S0981-9428(00)01191-8]
[119]
Arulpandi, I.; Sangeetha, R. Antibacterial activity of fistulin: a protease inhibitor purified from the leaves of Cassia fistula. ISRN Pharm., 2012, 2012, 584073.
[http://dx.doi.org/10.5402/2012/584073] [PMID: 22779011]
[120]
Pontual, E.V.; Napoleão, T.H.; de Assis, C.R.D.; Bezerra, R.; Xavier, H.S. doA Navarro, F.D.M.; Coelho, L.C.B.B; Paiva, P.M.G Effect of Moringa oleifera flower extract on larval trypsin and acethylcholinesterase activities in Aedes aegypti. Arch. Insect Biochem. Physiol., 2012, 79, 135-152.
[http://dx.doi.org/10.1002/arch.21012] [PMID: 22392801]
[121]
Lingling, L.; Lei, J.; Song, M.; Li, L.; Cao, B. Study on transformation of cowpea trypsin inhibitor gene into cauli flower (Brassica oleracea L. var. botrytis). Afr. J. Biotechnol., 2005, 4, 45-49.
[122]
Pujol, M.; Hernandez, C.A.; Armas, R.; Coll, Y.; Alfonso-Rubi, J.; Perez, M.; Ayra, C.; González, A. Inhibition of Heliothis virescens larvae growth in transgenic tobacco plants expressing cowpea trypsin inhibitor. Biotecnol. Apl., 2005, 22, 27-130.
[123]
Quilis, J.; López-García, B.; Meynard, D.; Guiderdoni, E.; San Segundo, B. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol. J., 2014, 12(3), 367-377.
[http://dx.doi.org/10.1111/pbi.12143] [PMID: 24237606]
[124]
Shamsi, T.N.; Parveen, R.; Amir, M.; Baig, M.A.; Qureshi, M.I.; Ali, S.; Fatima, S. Allium sativum protease inhibitor: a novel kunitz trypsin inhibitor from garlic is a new comrade of the serpin family. PLoS One, 2016, 11(11), e0165572.
[http://dx.doi.org/10.1371/journal.pone.0165572] [PMID: 27846232]
[125]
Hilder, V.A.; Gatehouse, A.M.R.; Sheerman, S.E.; Barker, R.F.; Boulter, D.; Barker, R.F.; Boulter, D. A novel mechanism of insect resistance engineered into tobacco. Nature, 1987, 330(6144), 160-163.
[http://dx.doi.org/10.1038/330160a0]
[126]
Johnson, R.; Narvaez, J.; An, G.; Ryan, C. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc. Natl. Acad. Sci. USA, 1989, 86(24), 9871-9875.
[http://dx.doi.org/10.1073/pnas.86.24.9871] [PMID: 2602379]
[127]
Boulter, D.; Edwards, G.A.; Gatehouse, A.M.R.; Gatehouse, J.A.; Hilde, V.A. Additive protective effects of incorporating two different higher plant derived insect resistance genes in transgenic tobacco plants. Crop Prot., 1990, 9, 351-354.
[http://dx.doi.org/10.1016/0261-2194(90)90005-R]
[128]
Cingel, A.; Savić, J.; Lazarević, J.; Ćosić, T.; Raspor, M.; Smigocki, A.; Ninković, S. Co-expression of the proteinase inhibitors oryzacystatin I and oryzacystatin II in transgenic potato alters Colorado potato beetle larval development. Insect Sci., 2017, 24(5), 768-780.
[http://dx.doi.org/10.1111/1744-7917.12364] [PMID: 27265305]
[129]
Senthilkumar, R.; Cheng, C.P.; Yeh, K.W. Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol. J., 2010, 8(1), 65-75.
[http://dx.doi.org/10.1111/j.1467-7652.2009.00466.x] [PMID: 20055959]
[130]
Koundal, K.R.; Rajendran, P. Plant insecticidal proteins and their potential for developing transgenics resistant to insect pests. Indian J. Biotechnol., 2003, 2, 110-120.
[131]
Mohanraj, S.S.; Tetali, S.D.; Mallikarjuna, N.; Dutta-Gupta, A.; Padmasree, K. Biochemical properties of a bacterially-expressed Bowman-Birk inhibitor from Rhynchosia sublobata (Schumach.) Meikle seeds and its activity against gut proteases of Achaea janata. Phytochemistry, 2018, 151, 78-90.
[http://dx.doi.org/10.1016/j.phytochem.2018.02.009] [PMID: 29674106]
[132]
Luo, X.M.; Xie, C.J.; Wang, D.; Wei, Y.M.; Cai, J.; Cheng, S.S.; Yang, X.Y.; Sui, A.P. Psc-AFP from Psoralea corylifolia L. overexpressed in Pichia pastoris increases antimicrobial activity and enhances disease resistance of transgenic tobacco. Appl. Microbiol. Biotechnol., 2017, 101(3), 1073-1084.
[http://dx.doi.org/10.1007/s00253-016-7768-1] [PMID: 27587300]
[133]
Jongsma, M.A.; Bakker, P.L.; Peters, J.; Bosch, D.; Stiekema, W.J. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc. Natl. Acad. Sci. USA, 1995, 92(17), 8041-8045.
[http://dx.doi.org/10.1073/pnas.92.17.8041] [PMID: 7644535]
[134]
Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabalan, S.; Venkataraman, G. CRISPR for crop improvement: an update review. Front. Plant Sci., 2018, 9, 985.
[http://dx.doi.org/10.3389/fpls.2018.00985] [PMID: 30065734]
[135]
Felber, F.; Kozlowski, G.; Arrigo, N.; Guadagnuolo, R. Genetic and ecological consequences of transgene flow to the wild flora. Adv. Biochem. Eng. Biotechnol., 2007, 107, 173-205.
[http://dx.doi.org/10.1007/10_2007_050] [PMID: 17522826]
[136]
Voytas, D.F.; Gao, C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol., 2014, 12(6), e1001877.
[http://dx.doi.org/10.1371/journal.pbio.1001877] [PMID: 24915127]
[137]
Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res., 2013, 41(20), e188.
[http://dx.doi.org/10.1093/nar/gkt780] [PMID: 23999092]
[138]
Shew, A.M.; Nalley, L.L.; Snell, H.A.; Nayga, R.M., Jr; Dixon, B.L. CRISPR versus GMOs: Public acceptance and valuation. Glob. Food Secur., 2018, 19, 71-80.
[http://dx.doi.org/10.1016/j.gfs.2018.10.005]
[139]
Fenibo, E.O.; Ijoma, G.N.; Matambo, T. Biopesticides in sustainable agriculture: a critical sustainable development driver governed by green chemistry principles. Front. Sustain. Food Syst., 2021, 5, 619058.
[http://dx.doi.org/10.3389/fsufs.2021.619058]
[140]
Harsulkar, A.M.; Giri, A.P.; Patankar, A.G.; Gupta, V.S.; Sainani, M.N.; Ranjekar, P.K.; Deshpande, V.V. Successive use of non-host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinases and larval growth. Plant Physiol., 1999, 121(2), 497-506.
[http://dx.doi.org/10.1104/pp.121.2.497] [PMID: 10517841]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy