Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

The Anti-MRSA Activity of Phenylthiazoles: A Comprehensive Review

Author(s): Inas G. Shahin, Khaled O. Mohamed, Azza T. Taher, Abdelrahman S. Mayhoub and Asmaa E. Kassab*

Volume 28, Issue 43, 2022

Published on: 09 December, 2022

Page: [3469 - 3477] Pages: 9

DOI: 10.2174/1381612829666221124112006

Price: $65

Abstract

Antimicrobial resistance is an aggravating global issue therefore it has been under extensive research in an attempt to reduce the number of antibiotics that are constantly reported as obsolete jeopardizing the lives of millions worldwide. Thiazoles possess a reputation as one of the most diverse biologically active nuclei, and phenylthiazoles are no less exceptional with an assorted array of biological activities such as anthelmintic, insecticidal, antimicrobial, antibacterial, and antifungal activity. Recently phenyl thiazoles came under the spotlight as a scaffold having strong potential as an anti-MRSA lead compound. It is a prominent pharmacophore in designing and synthesizing new compounds with antibacterial activity against multidrug-resistant bacteria such as MRSA, which is categorized as a serious threat pathogen, that exhibited concomitant resistance to most of the first-line antibiotics. MRSA has been associated with soft tissue and skin infections resulting in high death rates, rapid dissemination, and loss of millions of dollars of additional health care costs. In this brief review, we have focused on the advances of phenylthiazole derivatives as potential anti-MRSA from 2014 to 2021. The review encompasses the effect on biological activity due to combining this molecule with various synthetic pharmacophores. The physicochemical aspects were correlated with the pharmacokinetic properties of the reviewed compounds to reach a structure-activity relationship profile. Lead optimization of phenyl thiazole derivatives has additionally been outlined where the lipophilicity of the compounds was balanced with the metabolic stability and oral solubility to aid the researchers in medicinal chemistry, design, and synthesizing effective anti- MRSA phenylthiazoles in the future.

Next »
[1]
Frieden T. Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention 2019.
[2]
Kaur D, Chate S. Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with special reference to newer antibiotic. J Glob Infect Dis 2015; 7(2): 78-84.
[http://dx.doi.org/10.4103/0974-777X.157245] [PMID: 26069428]
[3]
Watkins R, Lemonovich TL, File T Jr. An evidence-based review of linezolid for the treatment of methicillin-resistant Staphylococcus aureus (MRSA): Place in therapy. Core Evid 2012; 7: 131-43.
[http://dx.doi.org/10.2147/CE.S33430] [PMID: 23271985]
[4]
Gupta V, Kant V. A review on biological activity of imidazole and thiazole moieties and their derivatives. Sci Int 2013; 1(7): 253-60.
[http://dx.doi.org/10.17311/sciintl.2013.253.260]
[5]
Mohammad H, Mayhoub AS, Ghafoor A, et al. Discovery and characterization of potent thiazoles versus methicillin- and vancomycin-resistant Staphylococcus aureus. J Med Chem 2014; 57(4): 1609-15.
[http://dx.doi.org/10.1021/jm401905m] [PMID: 24387054]
[6]
Ergenç N, Çapan G, Günay NS, et al. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidine-dione derivatives. Arch Pharm 1999; 332(10): 343-7.
[http://dx.doi.org/10.1002/(SICI)1521-4184(199910)332:10<343:AID-ARDP343>3.0.CO;2-0] [PMID: 10575366]
[7]
Hays SJ, Rice MJ, Ortwine DF, et al. Substituted 2-benzothiazol-amines as sodium flux inhibitors: Quantitative structure-activity relationships and anticonvulsant activity. J Pharm Sci 1994; 83(10): 1425-32.
[http://dx.doi.org/10.1002/jps.2600831013] [PMID: 7884664]
[8]
Azam F, Alkskas IA, Khokra SL, Prakash O. Synthesis of some novel N4-(naphtha[1,2-d]thiazol-2-yl)semicarbazides as potential anticonvulsants. Eur J Med Chem 2009; 44(1): 203-11.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.007] [PMID: 18396352]
[9]
Siddiqui N, Ahsan W. Triazole incorporated thiazoles as a new class of anticonvulsants: Design, synthesis and in vivo screening. Eur J Med Chem 2010; 45(4): 1536-43.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.062] [PMID: 20116140]
[10]
Hutchinson I, Bradshaw TD, Matthews CS, Stevens MFG, Westwell AD. Antitumour benzothiazoles. Part 20: 3′-Cyano and 3′-Alkynyl-Substituted 2-(4′-Aminophenyl)benzothiazoles as new potent and selective analogues. Bioorg Med Chem Lett 2003; 13(3): 471-4.
[http://dx.doi.org/10.1016/S0960-894X(02)00930-7] [PMID: 12565953]
[11]
El-Subbagh HI, Abadi AH, Lehmann J. 2,4-Disubstituted thiazoles, Part III. Synthesis and antitumor activity of ethyl 2-substituted-aminothiazole-4-carboxylate analogs. Arch Pharm 1999; 332(4): 137-42.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19994)332:4<137:AID-ARDP137>3.0.CO;2-0] [PMID: 10327887]
[12]
Shao L, Zhou X, Hu Y, Jin Z, Liu J, Fang J. Synthesis and evaluation of novel ferrocenyl thiazole derivatives as anticancer agents. Synth React Inorg Met-Org Nano-Met Chem 2006; 36(4): 325-30.
[http://dx.doi.org/10.1080/15533170600651405]
[13]
Dawood KM, Eldebss TMA, El-Zahabi HSA, Yousef MH. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur J Med Chem 2015; 102: 266-76.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.005] [PMID: 26291036]
[14]
Singh IP, Gupta S, Kumar S. Thiazole compounds as antiviral agents: An update. Med Chem 2020; 16(1): 4-23.
[http://dx.doi.org/10.2174/1573406415666190614101253] [PMID: 31203807]
[15]
Shelke SH, Mhaske PC, Hande P, Bobade VD. Synthesis and antimicrobial activities of novel series of 1-((4-methyl-2-substituted thiazol-5-yl)methyleneam INO)-2-substituted isothiourea derivatives. Phosphorus Sulfur Silicon Relat Elem 2013; 188(9): 1262-70.
[http://dx.doi.org/10.1080/10426507.2012.745542]
[16]
Oniga S, Araniciu C, Palage M, et al. New 2-phenylthiazoles as potential sortase A inhibitors: Synthesis, biological evaluation and molecular docking. Molecules 2017; 22(11): 1827.
[http://dx.doi.org/10.3390/molecules22111827]
[17]
El-Husseiny WM. Synthesis and biological evaluation of new 3-phenylthiazolidin-4-one and 3-phenylthiazole derivatives as antimicrobial agents. Polycycl Aromat Compd 2021; 41(9): 1988-2002.
[http://dx.doi.org/10.1080/10406638.2019.1708420]
[18]
Mohamed S. Synthesis and microbial activity of novel 3-methyl-2- pyrazolin-5-one derivatives. J Chem 2013; 2013 Available from: https://doi.org/10.1155/2013/183130
[19]
Sharshira EM, Hamada NMM. Synthesis, characterization and antimicrobial activities of some thiazole derivatives. Am J Org Chem 2012; 2: 69-73.
[http://dx.doi.org/10.5923/j.ajoc.20120203.06]
[20]
Shreenivas MT, Kumara Swamy BE, Srinivasa GR, Sherigara BS. Synthesis and antibacterial evaluation of some novel aminothiazole derivatives. Der Pharma Chem 2011; 3(2): 156-61.
[21]
Khan I, Ibrar A, Waqas M, White JM. Synthesis, X-ray crystallographic studies and antibacterial screening of 1-(5-(4-chlorophenyl) thiazol-2-yl) hydrazine hydrobromide 34. Phys Rev Res Int 2013; 3: e17.
[22]
Saravanan G, Alagarsamy V, Pavitra TG, et al. Synthesis, characterization and anti-microbial activities of novel thiazole derivatives. Int J Pharma Bio Sci 2010; 1: 1-8.
[23]
Lino CI, Gonçalves de Souza I, Borelli BM, et al. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur J Med Chem 2018; 151: 248-60.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.083] [PMID: 29626797]
[24]
Mohammad H, Eldesouky HE, Hazbun T, Mayhoub AS, Seleem MN. Identification of a phenylthiazole small molecule with dual antifungal and antibiofilm activity against Candida albicans and Candida auris. Sci Rep 2019; 9(1): 1-12.
[http://dx.doi.org/10.1038/s41598-019-55379-1]
[25]
Helal MHM, Salem MA, El-Gaby MSA, Aljahdali M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur J Med Chem 2013; 65: 517-26.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005] [PMID: 23787438]
[26]
Sharma RN, Xavier FP, Vasu KK, Chaturvedi SC, Pancholi SS. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: An analogue-based drug design approach. J Enzyme Inhib Med Chem 2009; 24(3): 890-7.
[http://dx.doi.org/10.1080/14756360802519558] [PMID: 19469712]
[27]
Kouatly O, Geronikaki A, Kamoutsis C, Hadjipavlou-Litina D, Eleftheriou P. Adamantane derivatives of thiazolyl-N-substituted amide, as possible non-steroidal anti-inflammatory agents. Eur J Med Chem 2009; 44(3): 1198-204.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.029] [PMID: 18603333]
[28]
Thore SN, Gupta SV, Baheti KG. Synthesis and pharmacological evaluation of 5-methyl-2-phenylthiazole-4-substituted heteroazoles as a potential anti-inflammatory and analgesic agents. J Saudi Chem Soc 2016; 20: S46-52.
[http://dx.doi.org/10.1016/j.jscs.2012.09.002]
[29]
Carter JS, Kramer S, Talley JJ, et al. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorg Med Chem Lett 1999; 9(8): 1171-4.
[http://dx.doi.org/10.1016/S0960-894X(99)00157-2] [PMID: 10328307]
[30]
Kumar G, Singh NP. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives. Bioorg Chem 2021; 107: 104608.
[http://dx.doi.org/10.1016/j.bioorg.2020.104608] [PMID: 33465668]
[31]
Hargrave KD, Hess FK, Oliver JT. N-(4-Substituted-thiazolyl)-oxamic acid derivatives, new series of potent, orally active antiallergy agents. J Med Chem 1983; 26(8): 1158-63.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[32]
Patt WC, Hamilton HW, Taylor MD, et al. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J Med Chem 1992; 35(14): 2562-72.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[33]
Ma L, Wang T, Shi M, Ye H. Synthesis, activity, and docking study of phenylthiazole acids as potential agonists of PPARγ. Drug Des Devel Ther 2016; 10: 1807-15.
[http://dx.doi.org/10.2147/DDDT.S106406] [PMID: 27313447]
[34]
Khatik GL, Datusalia AK, Ahsan W, et al. A retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Curr Drug Discov Technol 2018; 15(3): 163-77.
[http://dx.doi.org/10.2174/1570163814666170915134018] [PMID: 28914188]
[35]
Mohammad H, Mayhoub AS, Cushman M, Seleem MN. Anti-biofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant Staphylococci. J Antibiot 2015; 68(4): 259-66.
[http://dx.doi.org/10.1038/ja.2014.142] [PMID: 25315757]
[36]
Mohammad H, Reddy PVN, Monteleone D, et al. Antibacterial characterization of novel synthetic thiazole compounds against methicillin-resistant Staphylococcus pseudintermedius. PLoS One 2015; 10(6): e0130385.
[http://dx.doi.org/10.1371/journal.pone.0130385] [PMID: 26086336]
[37]
Seleem MA, Disouky AM, Mohammad H, et al. Second-generation phenylthiazole antibiotics with enhanced pharmacokinetic properties. J Med Chem 2016; 59(10): 4900-12.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00233] [PMID: 27187739]
[38]
Hagras M, Hegazy YA, Elkabbany AH, et al. Biphenylthiazole antibiotics with an oxadiazole linker: An approach to improve physicochemical properties and oral bioavailability. Eur J Med Chem 2018; 143: 1448-56.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.048] [PMID: 29126738]
[39]
Global Antimicrobial Resistance Surveillance System (GLASS) Report. Geneva World Health Organization 2017.
[40]
Chambers HF. Community-associated MRSA-resistance and virulence converge. N Engl J Med 2005; 352(14): 1485-7.
[http://dx.doi.org/10.1056/NEJMe058023] [PMID: 15814886]
[41]
Peacock SJ, Paterson GK. Mechanisms of Methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 2015; 84(1): 577-601.
[http://dx.doi.org/10.1146/annurev-biochem-060614-034516] [PMID: 26034890]
[42]
Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: A new model of antibiotic resistance. Lancet Infect Dis 2001; 1(3): 147-55.
[http://dx.doi.org/10.1016/S1473-3099(01)00091-3] [PMID: 11871491]
[43]
Shekhar C. Bacteria: Drug resistance spreads, but few new drugs emerge. Chem Biol 2010; 17(5): 413-4.
[http://dx.doi.org/10.1016/j.chembiol.2010.05.006] [PMID: 20534337]
[44]
Wilson P, Andrews JA, Charlesworth R, et al. Linezolid resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 2003; 51(1): 186-8.
[http://dx.doi.org/10.1093/jac/dkg104] [PMID: 12493812]
[45]
Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 2012; 56(2): 603-12.
[http://dx.doi.org/10.1128/AAC.05702-11] [PMID: 22143525]
[46]
Stryjewski ME, Corey GR. Methicillin-resistant Staphylococcus aureus: An evolving pathogen. Clin Infect Dis 2014; 58 (Suppl. 1): S10-9.
[http://dx.doi.org/10.1093/cid/cit613] [PMID: 24343827]
[47]
Bassetti M, Merelli M, Temperoni C, Astilean A. New antibiotics for bad bugs: Where are we? Ann Clin Microbiol Antimicrob 2013; 12(1): 22.
[http://dx.doi.org/10.1186/1476-0711-12-22] [PMID: 23984642]
[48]
Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis 2008; 197(8): 1079-81.
[http://dx.doi.org/10.1086/533452] [PMID: 18419525]
[49]
Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 2009; 48(1): 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[50]
World Health Organization. Antibacterial agents in clinical development: An analysis of the antibacterial clinical development pipeline, including tuberculosis Geneva World Heal Organ. 2017. Available from: https://apps.who.int/iris/handle/10665/258965 License: CC BY-NC-SA 3.0 IGO
[51]
Zhang TY, Zheng CJ, Wu J, Sun LP, Piao HR. Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorg Med Chem Lett 2019; 29(9): 1079-84.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.033] [PMID: 30842033]
[52]
Zha GF, Wang SM, Rakesh KP, et al. Discovery of novel arylethenesulfonyl fluorides as potential candidates against methicillin-resistant of Staphylococcus aureus (MRSA) for overcoming multidrug resistance of bacterial infections. Eur J Med Chem 2019; 162: 364-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.012] [PMID: 30453245]
[53]
Yang YS, Lu X, Zeng QX, et al. Synthesis and biological evaluation of 7-substituted cycloberberine derivatives as potent antibacterial agents against MRSA. Eur J Med Chem 2019; 168: 283-92.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.058] [PMID: 30825723]
[54]
Tiz DB, Skok Ž, Durcik M, et al. An optimised series of substituted N-phenylpyrrolamides as DNA gyrase B inhibitors. Eur J Med Chem 2019; 167: 269-90.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.004] [PMID: 30776691]
[55]
Cai S, Yuan W, Li Y, et al. Antibacterial activity of indolyl-quinolinium derivatives and study their mode of action. Bioorg Med Chem 2019; 27(7): 1274-82.
[http://dx.doi.org/10.1016/j.bmc.2019.02.024] [PMID: 30792100]
[56]
Fang Z, Zheng S, Chan KF, et al. Design, synthesis and antibacterial evaluation of 2,4-disubstituted-6-thiophenyl-pyrimidines. Eur J Med Chem 2019; 161: 141-53.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.039] [PMID: 30347327]
[57]
Wu Y, Ding X, Ding L, et al. Synthesis and antibacterial activity evaluation of novel biaryloxazolidinone analogues containing a hydrazone moiety as promising antibacterial agents. Eur J Med Chem 2018; 158: 247-58.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.004] [PMID: 30218910]
[58]
Wang Y, Chen F, Di H, et al. Discovery of potent benzofuran-derived diapophytoene desaturase (CrtN) inhibitors with enhanced oral bioavailability for the treatment of methicillin- resistant Staphylococcus aureus (MRSA) infections. J Med Chem 2016; 59(7): 3215-30.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01984] [PMID: 26999509]
[59]
Bouley R, Ding D, Peng Z, et al. Structure-activity relationship for the 4(3H)-quinazolinone antibacterials. J Med Chem 2016; 59(10): 5011-21.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00372] [PMID: 27088777]
[60]
Zhang L, Kumar KV, Rasheed S, Zhang SL, Geng RX, Zhou CH. Correction: Design, synthesis, and antibacterial evaluation of novel azolylthioether quinolones as MRSA DNA intercalators. MedChemComm 2015; 6(7): 1405-6.
[http://dx.doi.org/10.1039/C5MD90029H]
[61]
O’Daniel PI, Peng Z, Pi H, et al. Discovery of a new class of non-β-lactam inhibitors of penicillin-binding proteins with Gram-positive antibacterial activity. J Am Chem Soc 2014; 136(9): 3664-72.
[http://dx.doi.org/10.1021/ja500053x] [PMID: 24517363]
[62]
Jevons MP, Parker MT. The evolution of new hospital strains of Staphylococcus aureus. J Clin Pathol 1964; 17(3): 243-50.
[http://dx.doi.org/10.1136/jcp.17.3.243] [PMID: 14159451]
[63]
Hiramatsu K, Cui L, Kuroda M, Ito T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol 2001; 9(10): 486-93.
[http://dx.doi.org/10.1016/S0966-842X(01)02175-8] [PMID: 11597450]
[64]
Levine DP. Vancomycin: A history. Clin Infect Dis 2006; 42 (Suppl. 1): S5-S12.
[http://dx.doi.org/10.1086/491709] [PMID: 16323120]
[65]
Schmidtchen A, Pasupuleti M, Malmsten M. Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interface Sci 2014; 205: 265-74.
[http://dx.doi.org/10.1016/j.cis.2013.06.009] [PMID: 23910480]
[66]
Hosny Y, Abutaleb NS, Omara M, et al. Modifying the lipophilic part of phenylthiazole antibiotics to control their drug-likeness. Eur J Med Chem 2020; 185: 111830.
[http://dx.doi.org/10.1016/j.ejmech.2019.111830] [PMID: 31718945]
[67]
Yahia E, Mohammad H, Abdelghany TM, Fayed E, Seleem MN, Mayhoub AS. Phenylthiazole antibiotics: A metabolism-guided approach to overcome short duration of action. Eur J Med Chem 2017; 126: 604-13.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.042] [PMID: 27918995]
[68]
Eid I, Elsebaei MM, Mohammad H, et al. Arylthiazole antibiotics targeting intracellular methicillin-resistant Staphylococcus aureus (MRSA) that interfere with bacterial cell wall synthesis. Eur J Med Chem 2017; 139: 665-73.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.039] [PMID: 28846967]
[69]
Shahin IG, Abutaleb NS, Alhashimi M, et al. Evaluation of N-phenyl-2-aminothiazoles for treatment of multi-drug resistant and intracellular Staphylococcus aureus infections. Eur J Med Chem 2020; 202: 112497.
[http://dx.doi.org/10.1016/j.ejmech.2020.112497] [PMID: 32707373]
[70]
Hagras M, Mohammad H, Mandour MS, et al. Investigating the antibacterial activity of biphenylthiazoles against methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). J Med Chem 2017; 60(9): 4074-85.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00392] [PMID: 28436655]
[71]
ElAwamy M, Mohammad H, Hussien A, et al. Alkoxyphenylthiazoles with broad-spectrum activity against multidrug-resistant gram-positive bacterial pathogens. Eur J Med Chem 2018; 152: 318-28.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.049] [PMID: 29734000]
[72]
Hagras M, Abutaleb NS, Ali AO, et al. Naphthylthiazoles: Targeting multidrug-resistant and intracellular Staphylococcus aureus with biofilm disruption activity. ACS Infect Dis 2018; 4(12): 1679-91.
[http://dx.doi.org/10.1021/acsinfecdis.8b00172] [PMID: 30247876]
[73]
Kotb A, Abutaleb NS, Seleem MA, et al. Phenylthiazoles with tert-Butyl side chain: Metabolically stable with anti-biofilm activity. Eur J Med Chem 2018; 151: 110-20.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.044] [PMID: 29605807]
[74]
Hagras M, Abutaleb NS, Elhosseiny NM, et al. Development of biphenylthiazoles exhibiting improved pharmacokinetics and potent activity against intracellular Staphylococcus aureus. ACS Infect Dis 2020; 6(11): 2887-900.
[http://dx.doi.org/10.1021/acsinfecdis.0c00137] [PMID: 32897045]
[75]
Kotb A, Abutaleb NS, Hagras M, et al. tert-butylphenylthiazoles with an oxadiazole linker: A novel orally bioavailable class of antibiotics exhibiting antibiofilm activity. RSC Advances 2019; 9(12): 6770-8.
[http://dx.doi.org/10.1039/C8RA10525A] [PMID: 35518469]
[76]
Hannoun MH, Hagras M, Kotb A, El-Attar AAMM, Abulkhair HS. Synthesis and antibacterial evaluation of a novel library of 2-(thiazol-5-yl)-1,3,4-oxadiazole derivatives against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg Chem 2020; 94: 103364.
[http://dx.doi.org/10.1016/j.bioorg.2019.103364] [PMID: 31668461]
[77]
Elsebaei MM, Mohammad H, Abouf M, et al. Alkynyl-containing phenylthiazoles: Systemically active antibacterial agents effective against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2018; 148: 195-209.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.031] [PMID: 29459278]
[78]
Elsebaei MM, Mohammad H, Samir A, et al. Lipophilic efficient phenylthiazoles with potent undecaprenyl pyrophosphatase inhibitory activity. Eur J Med Chem 2019; 175: 49-62.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.063] [PMID: 31075608]
[79]
Patel B, Zunk M, Grant G, Rudrawar S. Design, synthesis and bioactivity evaluation of novel pyrazole linked phenylthiazole derivatives in context of antibacterial activity. Bioorg Med Chem Lett 2021; 39: 127853.
[http://dx.doi.org/10.1016/j.bmcl.2021.127853] [PMID: 33609657]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy