Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Surface Functionalization of Extracellular Vesicles with Nucleic Acids towards Biomedical Applications

Author(s): Rui Xu, Qian Tang, Yiwen Ying and Da Han*

Volume 23, Issue 14, 2023

Published on: 18 January, 2023

Page: [1307 - 1318] Pages: 12

DOI: 10.2174/1568026623666221124110016

Price: $65

conference banner
Abstract

Extracellular vesicles (EVs) are lipid bilayer-delimited particles secreted by cells and are regarded as a promising class of nanocarriers for biomedical applications such as disease diagnosis, drug delivery, and immunomodulation, as they carry biomarkers from the parental cells and can also transport diverse cargo molecules between cells. Surface functionalization of EVs can help obtain detectable signals for their quantification and also add various properties for EV-based delivery. Aptamers are specific oligonucleotides selected as artificial antibodies that could serve as ‘cruise missiles’ to target EVs for diagnosis or as navigators to bring EVs to lesions for treatment. DNA logic devices or nanostructures based on aptamers are intelligent designs to endow EVs with additional features, such as multi-target disease diagnosis in one pot and promoting retention of EVs in complex disease microenvironments. Oligonucleotides or DNA nanostructures composed of natural nucleic acids can be easily degraded by nuclease in the biological sample which limits their applications. Thus, the oligonucleotides composed of artificial nucleic acids which are synthesized against degradation would be a potential strategy to improve their stability in vitro or in vivo. Herein, we review the methods for surface functionalization of EVs by nucleic acids and highlight their applications in quantification and targeted delivery towards disease diagnosis and therapy.

Next »
Graphical Abstract

[1]
Momen-Heravi, F.; Getting, S.J.; Moschos, S.A. Extracellular vesicles and their nucleic acids for biomarker discovery. Pharmacol. Ther., 2018, 192, 170-187.
[http://dx.doi.org/10.1016/j.pharmthera.2018.08.002] [PMID: 30081050]
[2]
van der Pol, E.; Böing, A.N.; Harrison, P.; Sturk, A.; Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev., 2012, 64(3), 676-705.
[http://dx.doi.org/10.1124/pr.112.005983] [PMID: 22722893]
[3]
Schneider, A.; Simons, M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res., 2013, 352(1), 33-47.
[http://dx.doi.org/10.1007/s00441-012-1428-2] [PMID: 22610588]
[4]
Yáñez-Mó, M.; Siljander, P.R.M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; Colás, E.; Cordeiro-da Silva, A.; Fais, S.; Falcon-Perez, J.M.; Ghobrial, I.M.; Giebel, B.; Gimona, M.; Graner, M.; Gursel, I.; Gursel, M.; Heegaard, N.H.H.; Hendrix, A.; Kierulf, P.; Kokubun, K.; Kosanovic, M.; Kralj-Iglic, V.; Krämer-Albers, E.M.; Laitinen, S.; Lässer, C.; Lener, T.; Ligeti, E.; Linē, A.; Lipps, G.; Llorente, A.; Lötvall, J.; Manček-Keber, M.; Marcilla, A.; Mittelbrunn, M.; Nazarenko, I.; Nolte-’t Hoen, E.N.M.; Nyman, T.A.; O’Driscoll, L.; Olivan, M.; Oliveira, C.; Pállinger, É.; del Portillo, H.A.; Reventós, J.; Rigau, M.; Rohde, E.; Sammar, M.; Sánchez-Madrid, F.; Santarém, N.; Schallmoser, K.; Stampe Ostenfeld, M.; Stoorvogel, W.; Stukelj, R.; Van der Grein, S.G.; Helena Vasconcelos, M.; Wauben, M.H.M.; De Wever, O. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles, 2015, 4(1), 27066.
[http://dx.doi.org/10.3402/jev.v4.27066] [PMID: 25979354]
[5]
Tkach, M.; Théry, C. Communication by extracellular vesicles: where we are and where we need to go. Cell, 2016, 164(6), 1226-1232.
[http://dx.doi.org/10.1016/j.cell.2016.01.043] [PMID: 26967288]
[6]
Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol., 2019, 21(1), 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[7]
Pisitkun, T.; Shen, R.-F.; Knepper, M.A. Identification and proteomic profiling of exosomes in human urine. PNAS, 2004, 101(36), 13368-13373.
[8]
Zhao, Z.; Yang, Y.; Zeng, Y.; He, M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip, 2016, 16(3), 489-496.
[http://dx.doi.org/10.1039/C5LC01117E] [PMID: 26645590]
[9]
Aheget, H.; Mazini, L.; Martin, F.; Belqat, B.; Marchal, J.A.; Benabdellah, K. Exosomes: Their role in pathogenesis, diagnosis and treatment of diseases. Cancers (Basel), 2020, 13(1), 84.
[http://dx.doi.org/10.3390/cancers13010084] [PMID: 33396739]
[10]
Zhou, X.; Xie, F.; Wang, L.; Zhang, L.; Zhang, S.; Fang, M.; Zhou, F. The function and clinical application of extracellular vesicles in innate immune regulation. Cell. Mol. Immunol., 2020, 17(4), 323-334.
[http://dx.doi.org/10.1038/s41423-020-0391-1] [PMID: 32203193]
[11]
Wang, J.; Zheng, Y.; Zhao, M. Exosome-based cancer therapy: implication for targeting cancer stem cells. Front. Pharmacol., 2017, 7, 533-533.
[http://dx.doi.org/10.3389/fphar.2016.00533] [PMID: 28127287]
[12]
de Jong, O.G.; Kooijmans, S.A.A.; Murphy, D.E.; Jiang, L.; Evers, M.J.W.; Sluijter, J.P.G.; Vader, P.; Schiffelers, R.M. Drug delivery with extracellular vesicles: From imagination to innovation. Acc. Chem. Res., 2019, 52(7), 1761-1770.
[http://dx.doi.org/10.1021/acs.accounts.9b00109] [PMID: 31181910]
[13]
Kurian, T.K.; Banik, S.; Gopal, D.; Chakrabarti, S.; Mazumder, N. Elucidating methods for isolation and quantification of exosomes: A review. Mol. Biotechnol., 2021, 63(4), 249-266.
[http://dx.doi.org/10.1007/s12033-021-00300-3] [PMID: 33492613]
[14]
Zhang, C.; Zhao, Y.; Xu, X.; Xu, R.; Li, H.; Teng, X.; Du, Y.; Miao, Y.; Lin, H.; Han, D. Cancer diagnosis with DNA molecular computation. Nat. Nanotechnol., 2020, 15(8), 709-715.
[http://dx.doi.org/10.1038/s41565-020-0699-0] [PMID: 32451504]
[15]
Bobrie, A.; Colombo, M.; Krumeich, S.; Raposo, G.; Théry, C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles, 2012, 1(1), 18397.
[http://dx.doi.org/10.3402/jev.v1i0.18397] [PMID: 24009879]
[16]
Böing, A.N.; van der Pol, E.; Grootemaat, A.E.; Coumans, F.A.W.; Sturk, A.; Nieuwland, R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles, 2014, 3(1), 23430.
[http://dx.doi.org/10.3402/jev.v3.23430] [PMID: 25279113]
[17]
Rider, M.A.; Hurwitz, S.N.; Meckes, D.G., Jr; Extra, P.E.G. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep., 2016, 6(1), 23978.
[http://dx.doi.org/10.1038/srep23978] [PMID: 27068479]
[18]
Busatto, S.; Vilanilam, G.; Ticer, T.; Lin, W.L.; Dickson, D.; Shapiro, S.; Bergese, P.; Wolfram, J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells, 2018, 7(12), 273.
[http://dx.doi.org/10.3390/cells7120273] [PMID: 30558352]
[19]
Mondal, S.K.; Whiteside, T.L. Immunoaffinity-based isolation of melanoma cell-derived and T cell-derived exosomes from plasma of melanoma patients. Methods Mol. Biol., 2021, 2265, 305-321.
[http://dx.doi.org/10.1007/978-1-0716-1205-7_23] [PMID: 33704724]
[20]
Contreras-Naranjo, J.C.; Wu, H.J.; Ugaz, V.M. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip, 2017, 17(21), 3558-3577.
[http://dx.doi.org/10.1039/C7LC00592J] [PMID: 28832692]
[21]
Watson, J.D.; Crick, F.H.C. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953, 171(4356), 737-738.
[http://dx.doi.org/10.1038/171737a0] [PMID: 13054692]
[22]
Shipman, S.L.; Nivala, J.; Macklis, J.D.; Church, G.M. CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature, 2017, 547(7663), 345-349.
[http://dx.doi.org/10.1038/nature23017] [PMID: 28700573]
[23]
Zhu, Q.; Liu, G.; Kai, M. DNA Aptamers in the diagnosis and treatment of human diseases. Molecules, 2015, 20(12), 20979-20997.
[http://dx.doi.org/10.3390/molecules201219739] [PMID: 26610462]
[24]
Dunn, M. R.; Jimenez, R. M.; Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem., 2017, 1(10), 0076.
[http://dx.doi.org/10.1038/s41570-017-0076]
[25]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[26]
Morita, Y.; Leslie, M.; Kameyama, H.; Volk, D.; Tanaka, T. Aptamer therapeutics in cancer: current and future. Cancers (Basel), 2018, 10(3), 80.
[http://dx.doi.org/10.3390/cancers10030080] [PMID: 29562664]
[27]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[28]
Buzás, E.I.; Tóth, E.Á.; Sódar, B.W.; Szabó-Taylor, K.É. Molecular interactions at the surface of extracellular vesicles. Semin. Immunopathol., 2018, 40(5), 453-464.
[http://dx.doi.org/10.1007/s00281-018-0682-0] [PMID: 29663027]
[29]
Richardson, J.J.; Ejima, H. Surface engineering of extracellular vesicles through chemical and biological strategies. Chem. Mater., 2019, 31(7), 2191-2201.
[http://dx.doi.org/10.1021/acs.chemmater.9b00050]
[30]
Rayamajhi, S.; Aryal, S. Surface functionalization strategies of extracellular vesicles. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(21), 4552-4569.
[http://dx.doi.org/10.1039/D0TB00744G] [PMID: 32377649]
[31]
Pitchaimani, A.; Nguyen, T.D.T.; Marasini, R.; Eliyapura, A.; Azizi, T.; Jaberi-Douraki, M.; Aryal, S. Biomimetic natural killer membrane camouflaged polymeric nanoparticle for targeted bioimaging. Adv. Funct. Mater., 2019, 29(4), 1806817.
[http://dx.doi.org/10.1002/adfm.201806817]
[32]
Sato, Y.T.; Umezaki, K.; Sawada, S.; Mukai, S.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep., 2016, 6(1), 21933.
[http://dx.doi.org/10.1038/srep21933] [PMID: 26911358]
[33]
Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin., 2017, 38(6), 754-763.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[34]
Tran, P.H.L.; Xiang, D.; Tran, T.T.D.; Yin, W.; Zhang, Y.; Kong, L.; Chen, K.; Sun, M.; Li, Y.; Hou, Y.; Zhu, Y.; Duan, W. Exosomes and nanoengineering: a match made for precision therapeutics. Adv. Mater., 2020, 32(18), 1904040.
[http://dx.doi.org/10.1002/adma.201904040] [PMID: 31531916]
[35]
Smyth, T.; Petrova, K.; Payton, N.M.; Persaud, I.; Redzic, J.S.; Graner, M.W.; Smith-Jones, P.; Anchordoquy, T.J. Surface functionalization of exosomes using click chemistry. Bioconjug. Chem., 2014, 25(10), 1777-1784.
[http://dx.doi.org/10.1021/bc500291r] [PMID: 25220352]
[36]
Tian, T.; Zhang, H.X.; He, C.P.; Fan, S.; Zhu, Y.L.; Qi, C.; Huang, N.P.; Xiao, Z.D.; Lu, Z.H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
[37]
He, F.; Liu, H.; Guo, X.; Yin, B.C.; Ye, B.C. Direct exosome quantification via bivalent-cholesterol-labeled DNA anchor for signal amplification. Anal. Chem., 2017, 89(23), 12968-12975.
[http://dx.doi.org/10.1021/acs.analchem.7b03919] [PMID: 29139297]
[38]
Kooijmans, S.A.A.; Fliervoet, L.A.L.; van der Meel, R.; Fens, M.H.A.M.; Heijnen, H.F.G.; van Bergen en Henegouwen, P.M.P.; Vader, P.; Schiffelers, R.M. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J. Control. Release, 2016, 224, 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.009] [PMID: 26773767]
[39]
Wan, S.; Zhang, L.; Wang, S.; Liu, Y.; Wu, C.; Cui, C.; Sun, H.; Shi, M.; Jiang, Y.; Li, L.; Qiu, L.; Tan, W. Molecular recognition-based DNA nanoassemblies on the surfaces of nanosized exosomes. J. Am. Chem. Soc., 2017, 139(15), 5289-5292.
[http://dx.doi.org/10.1021/jacs.7b00319] [PMID: 28332837]
[40]
Kumar, S.; Michael, I.J.; Park, J.; Granick, S.; Cho, Y.K. Cloaked exosomes: biocompatible, durable, and degradable encapsulation. Small, 2018, 14(34), 1802052.
[http://dx.doi.org/10.1002/smll.201802052] [PMID: 30024108]
[41]
Deleavey, G.F.; Damha, M.J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol., 2012, 19(8), 937-954.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.011] [PMID: 22921062]
[42]
Bell, N.M.; Micklefield, J. Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications. ChemBioChem, 2009, 10(17), 2691-2703.
[http://dx.doi.org/10.1002/cbic.200900341] [PMID: 19739190]
[43]
Goodchild, J. Conjugates of oligonucleotides and modified oligonucleotides: A review of their synthesis and properties. Bioconjug. Chem., 1990, 1(3), 165-187.
[http://dx.doi.org/10.1021/bc00003a001] [PMID: 1965782]
[44]
Patutina, O.A.; Gaponova Miroshnichenko, S.K.; Sen’kova, A.V.; Savin, I.A.; Gladkikh, D.V.; Burakova, E.A.; Fokina, A.A.; Maslov, M.A.; Shmendel’, E.V.; Wood, M.J.A.; Vlassov, V.V.; Altman, S.; Stetsenko, D.A.; Zenkova, M.A. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc. Natl. Acad. Sci. USA, 2020, 117(51), 32370-32379.
[http://dx.doi.org/10.1073/pnas.2016158117] [PMID: 33288723]
[45]
Wu, L.; Wang, Y.; Xu, X.; Liu, Y.; Lin, B.; Zhang, M.; Zhang, J.; Wan, S.; Yang, C.; Tan, W. Aptamer-based detection of circulating targets for precision medicine. Chem. Rev., 2021, 121(19), 12035-12105.
[http://dx.doi.org/10.1021/acs.chemrev.0c01140] [PMID: 33667075]
[46]
Sefah, K.; Shangguan, D.; Xiong, X.; O’Donoghue, M.B.; Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc., 2010, 5(6), 1169-1185.
[http://dx.doi.org/10.1038/nprot.2010.66] [PMID: 20539292]
[47]
Dragovic, R.A.; Gardiner, C.; Brooks, A.S.; Tannetta, D.S.; Ferguson, D.J.P.; Hole, P.; Carr, B.; Redman, C.W.G.; Harris, A.L.; Dobson, P.J.; Harrison, P.; Sargent, I.L. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine, 2011, 7(6), 780-788.
[http://dx.doi.org/10.1016/j.nano.2011.04.003] [PMID: 21601655]
[48]
Gómez-de-Mariscal, E.; Maška, M.; Kotrbová, A.; Pospíchalová, V.; Matula, P.; Muñoz-Barrutia, A. Deep-learning-based segmentation of small extracellular vesicles in transmission electron microscopy images. Sci. Rep., 2019, 9(1), 13211.
[http://dx.doi.org/10.1038/s41598-019-49431-3] [PMID: 31519998]
[49]
Lane, R.E.; Korbie, D.; Anderson, W.; Vaidyanathan, R.; Trau, M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep., 2015, 5(1), 7639.
[http://dx.doi.org/10.1038/srep07639] [PMID: 25559219]
[50]
Rupert, D.L.M.; Lässer, C.; Eldh, M.; Block, S.; Zhdanov, V.P.; Lotvall, J.O.; Bally, M.; Höök, F. Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal. Chem., 2014, 86(12), 5929-5936.
[http://dx.doi.org/10.1021/ac500931f] [PMID: 24848946]
[51]
Pospichalova, V.; Svoboda, J.; Dave, Z.; Kotrbova, A.; Kaiser, K.; Klemova, D.; Ilkovics, L.; Hampl, A.; Crha, I.; Jandakova, E.; Minar, L.; Weinberger, V.; Bryja, V. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles, 2015, 4(1), 25530.
[http://dx.doi.org/10.3402/jev.v4.25530] [PMID: 25833224]
[52]
Logozzi, M.; De Milito, A.; Lugini, L.; Borghi, M.; Calabrò, L.; Spada, M.; Perdicchio, M.; Marino, M.L.; Federici, C.; Iessi, E.; Brambilla, D.; Venturi, G.; Lozupone, F.; Santinami, M.; Huber, V.; Maio, M.; Rivoltini, L.; Fais, S. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One, 2009, 4(4), e5219.
[http://dx.doi.org/10.1371/journal.pone.0005219] [PMID: 19381331]
[53]
Yu, Y.; Li, Y.T.; Jin, D.; Yang, F.; Wu, D.; Xiao, M.M.; Zhang, H.; Zhang, Z.Y.; Zhang, G.J. Electrical and label-free quantification of exosomes with a reduced Graphene Oxide field effect transistor biosensor. Anal. Chem., 2019, 91(16), 10679-10686.
[http://dx.doi.org/10.1021/acs.analchem.9b01950] [PMID: 31331170]
[54]
Xu, L.; Chopdat, R.; Li, D.; Al-Jamal, K.T. Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes. Biosens. Bioelectron., 2020, 169, 112576.
[http://dx.doi.org/10.1016/j.bios.2020.112576] [PMID: 32919211]
[55]
Zhang, Y.; Jiao, J.; Wei, Y.; Wang, D.; Yang, C.; Xu, Z. Plasmonic Colorimetric biosensor for sensitive exosome detection via enzyme-induced etching of gold nanobipyramid@MnO2 nanosheet nanostructures. Anal. Chem., 2020, 92(22), 15244-15252.
[http://dx.doi.org/10.1021/acs.analchem.0c04136] [PMID: 33108733]
[56]
Zhang, Y.; Wang, D.; Yue, S.; Lu, Y.; Yang, C.; Fang, J.; Xu, Z. Sensitive multicolor visual detection of exosomes via dual signal amplification strategy of enzyme-catalyzed metallization of au nanorods and hybridization chain reaction. ACS Sens., 2019, 4(12), 3210-3218.
[http://dx.doi.org/10.1021/acssensors.9b01644] [PMID: 31820935]
[57]
Wang, X.; Shang, H.; Ma, C.; Chen, L. A fluorescence assay for exosome detection based on bivalent cholesterol anchor triggered target conversion and enzyme-free signal amplification. Anal. Chem., 2021, 93(24), 8493-8500.
[http://dx.doi.org/10.1021/acs.analchem.1c00796] [PMID: 34111932]
[58]
Dong, Z.; Tang, C.; Zhang, Z.; Zhou, W.; Zhao, R.; Wang, L.; Xu, J.; Wu, Y.; Wu, J.; Zhang, X.; Xu, L.; Zhao, L.; Fang, X. Simultaneous detection of exosomal membrane protein and RNA by highly sensitive aptamer assisted multiplex–PCR. ACS Appl. Bio Mater., 2020, 3(5), 2560-2567.
[http://dx.doi.org/10.1021/acsabm.9b00825] [PMID: 35025388]
[59]
Zhang, Z.; Tang, C.; Zhao, L.; Xu, L.; Zhou, W.; Dong, Z.; Yang, Y.; Xie, Q.; Fang, X. Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale, 2019, 11(20), 10106-10113.
[http://dx.doi.org/10.1039/C9NR01589B] [PMID: 31089660]
[60]
Zhou, B.; Xu, K.; Zheng, X.; Chen, T.; Wang, J.; Song, Y.; Shao, Y.; Zheng, S. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct. Target. Ther., 2020, 5(1), 144.
[http://dx.doi.org/10.1038/s41392-020-00258-9] [PMID: 32747657]
[61]
Boukouris, S.; Mathivanan, S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin. Appl., 2015, 9(3-4), 358-367.
[http://dx.doi.org/10.1002/prca.201400114] [PMID: 25684126]
[62]
Liu, C.; Zhao, J.; Tian, F.; Cai, L.; Zhang, W.; Feng, Q.; Chang, J.; Wan, F.; Yang, Y.; Dai, B.; Cong, Y.; Ding, B.; Sun, J.; Tan, W. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat. Biomed. Eng., 2019, 3(3), 183-193.
[http://dx.doi.org/10.1038/s41551-018-0343-6] [PMID: 30948809]
[63]
Li, Y.; Deng, J.; Han, Z.; Liu, C.; Tian, F.; Xu, R.; Han, D.; Zhang, S.; Sun, J. Molecular identification of tumor-derived extracellular vesicles using thermophoresis-mediated DNA Computation. J. Am. Chem. Soc., 2021, 143(3), 1290-1295.
[http://dx.doi.org/10.1021/jacs.0c12016] [PMID: 33455159]
[64]
Lin, B.; Tian, T.; Lu, Y.; Liu, D.; Huang, M.; Zhu, L.; Zhu, Z.; Song, Y.; Yang, C. Tracing tumor‐derived exosomal PD‐L1 by dual‐aptamer activated proximity‐induced droplet digital PCR. Angew. Chem. Int. Ed., 2021, 60(14), 7582-7586.
[http://dx.doi.org/10.1002/anie.202015628] [PMID: 33382182]
[65]
Hermann, T.; Patel, D.J. Adaptive recognition by nucleic acid aptamers. Science, 2000, 287(5454), 820-825.
[http://dx.doi.org/10.1126/science.287.5454.820] [PMID: 10657289]
[66]
Cho, E.J.; Lee, J.W.; Ellington, A.D. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2009, 2(1), 241-264.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.112851] [PMID: 20636061]
[67]
He, D.; Ho, S.L.; Chan, H.N.; Wang, H.; Hai, L.; He, X.; Wang, K.; Li, H.W. Molecular-recognition-based DNA nanodevices for enhancing the direct visualization and quantification of single vesicles of tumor exosomes in plasma microsamples. Anal. Chem., 2019, 91(4), 2768-2775.
[http://dx.doi.org/10.1021/acs.analchem.8b04509] [PMID: 30644724]
[68]
Chen, J.; Meng, H.M.; An, Y.; Geng, X.; Zhao, K.; Qu, L.; Li, Z. Structure-switching aptamer triggering hybridization displacement reaction for label-free detection of exosomes. Talanta, 2020, 209, 120510.
[http://dx.doi.org/10.1016/j.talanta.2019.120510] [PMID: 31892034]
[69]
Jin, D.; Peng, X.X.; Qin, Y.; Wu, P.; Lu, H.; Wang, L.; Huang, J.; Li, Y.; Zhang, Y.; Zhang, G.J.; Yang, F. Multivalence-Actuated DNA Nanomachines Enable Bicolor Exosomal Phenotyping and PD-L1-Guided Therapy Monitoring. Anal. Chem., 2020, 92(14), 9877-9886.
[http://dx.doi.org/10.1021/acs.analchem.0c01387] [PMID: 32551501]
[70]
Smyth, T.; Kullberg, M.; Malik, N.; Smith-Jones, P.; Graner, M.W.; Anchordoquy, T.J. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J. Control. Release, 2015, 199, 145-155.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.013] [PMID: 25523519]
[71]
Yerneni, S.S.; Lathwal, S.; Shrestha, P.; Shirwan, H.; Matyjaszewski, K.; Weiss, L.; Yolcu, E.S.; Campbell, P.G.; Das, S.R. Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers. ACS Nano, 2019, 13(9), 10555-10565.
[http://dx.doi.org/10.1021/acsnano.9b04651] [PMID: 31436946]
[72]
Lathwal, S.; Yerneni, S.S.; Boye, S.; Muza, U.L.; Takahashi, S.; Sugimoto, N.; Lederer, A.; Das, S.R.; Campbell, P.G.; Matyjaszewski, K. Engineering exosome polymer hybrids by atom transfer radical polymerization. Proc. Natl. Acad. Sci. USA, 2021, 118(2), e2020241118.
[http://dx.doi.org/10.1073/pnas.2020241118] [PMID: 33384328]
[73]
Matsumoto, A.; Takahashi, Y.; Ariizumi, R.; Nishikawa, M.; Takakura, Y. Development of DNA-anchored assembly of small extracellular vesicle for efficient antigen delivery to antigen presenting cells. Biomaterials, 2019, 225, 119518.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119518] [PMID: 31586864]
[74]
Zou, J.; Shi, M.; Liu, X.; Jin, C.; Xing, X.; Qiu, L.; Tan, W. Aptamer-functionalized exosomes: elucidating the cellular uptake mechanism and the potential for cancer-targeted chemotherapy. Anal. Chem., 2019, 91(3), 2425-2430.
[http://dx.doi.org/10.1021/acs.analchem.8b05204] [PMID: 30620179]
[75]
Wan, Y.; Wang, L.; Zhu, C.; Zheng, Q.; Wang, G.; Tong, J.; Fang, Y.; Xia, Y.; Cheng, G.; He, X.; Zheng, S.Y. Aptamer-conjugated extracellular nanovesicles for targeted drug delivery. Cancer Res., 2018, 78(3), 798-808.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2880] [PMID: 29217761]
[76]
Luo, Z.W.; Li, F.X.Z.; Liu, Y.W.; Rao, S.S.; Yin, H.; Huang, J.; Chen, C.Y.; Hu, Y.; Zhang, Y.; Tan, Y.J.; Yuan, L.Q.; Chen, T.H.; Liu, H.M.; Cao, J.; Liu, Z.Z.; Wang, Z.X.; Xie, H. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale, 2019, 11(43), 20884-20892.
[http://dx.doi.org/10.1039/C9NR02791B] [PMID: 31660556]
[77]
Hosseini Shamili, F.; Alibolandi, M.; Rafatpanah, H.; Abnous, K.; Mahmoudi, M.; Kalantari, M.; Taghdisi, S.M.; Ramezani, M. Immunomodulatory properties of MSC-derived exosomes armed with high affinity aptamer toward mylein as a platform for reducing multiple sclerosis clinical score. J. Control. Release, 2019, 299, 149-164.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.032] [PMID: 30807806]
[78]
Aghebat Rafat, A.; Sagredo, S.; Thalhammer, M.; Simmel, F.C. Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein-binding cavities. Nat. Chem., 2020, 12(9), 852-859.
[http://dx.doi.org/10.1038/s41557-020-0504-6] [PMID: 32661410]
[79]
Dai, Z.; Gao, Q.; Cheung, M.C.; Leung, H.M.; Lau, T.C.K.; Sleiman, H.F.; Lai, K.W.C.; Lo, P.K. A highly versatile platform based on geometrically well-defined 3D DNA nanostructures for selective recognition and positioning of multiplex targets. Nanoscale, 2016, 8(43), 18291-18295.
[http://dx.doi.org/10.1039/C6NR05411K] [PMID: 27775745]
[80]
Zhang, J.; Lin, B.; Wu, L.; Huang, M.; Li, X.; Zhang, H.; Song, J.; Wang, W.; Zhao, G.; Song, Y.; Yang, C. DNA Nanolithography Enables a Highly Ordered Recognition Interface in a Microfluidic Chip for the Efficient Capture and Release of Circulating Tumor Cells. Angew. Chem. Int. Ed., 2020, 59(33), 14115-14119.
[http://dx.doi.org/10.1002/anie.202005974] [PMID: 32394524]
[81]
Zhuang, J.; Tan, J.; Wu, C.; Zhang, J.; Liu, T.; Fan, C.; Li, J.; Zhang, Y. Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy. Nucleic Acids Res., 2020, 48(16), 8870-8882.
[http://dx.doi.org/10.1093/nar/gkaa683] [PMID: 32810272]
[82]
Huang, H.; Guo, Z.; Zhang, C.; Cui, C.; Fu, T.; Liu, Q.; Tan, W. Logic-Gated Cell-Derived Nanovesicles via DNA-Based Smart Recognition Module. ACS Appl. Mater. Interfaces, 2021, 13(26), 30397-30403.
[http://dx.doi.org/10.1021/acsami.1c07632] [PMID: 34161059]
[83]
Pi, F.; Binzel, D.W.; Lee, T.J.; Li, Z.; Sun, M.; Rychahou, P.; Li, H.; Haque, F.; Wang, S.; Croce, C.M.; Guo, B.; Evers, B.M.; Guo, P. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol., 2018, 13(1), 82-89.
[http://dx.doi.org/10.1038/s41565-017-0012-z] [PMID: 29230043]
[84]
Yong, T.; Wang, D.; Li, X.; Yan, Y.; Hu, J.; Gan, L.; Yang, X. Extracellular vesicles for tumor targeting delivery based on five features principle. J. Control. Release, 2020, 322, 555-565.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.039] [PMID: 32246977]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy